Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title chain compound, [Ag(NO3)(C3H7NO)(C26H24P2)]n, the bis­(diphenyl­phosphino)ethane (dppe) components lie across centres of inversion. The dppe units link the Ag+ ions into chains along [100]. A nitrate anion is coordinated to the Ag atom, together with one mol­ecule of N,N-dimethyl­formamide (DMF) solvent. At room temperature, the coordinated DMF shows a long Ag—O distance [2.620 (3) Å] and relatively large thermal motion, while at 100 K the Ag—O distance is shorter [2.5588 (19) Å] and the thermal motion is similar to that of the rest of the complex. The behaviour of the DMF mol­ecule is related to the size of the solvent pocket, viz. 146 Å3 at 293 K and 131 Å3 at 100 K.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010700306X/gd3080sup1.cif
Contains datablocks global, I_293K, I_100K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010700306X/gd3080I_293Ksup2.hkl
Contains datablock I_293K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010700306X/gd3080I_100Ksup3.hkl
Contains datablock I_100K

CCDC references: 641780; 641781

Comment top

Bis(diphenylphosphano)ethane (dppe) is a versatile ligand, forming complexes in which a bridging motif is frequently encountered. In complexes with a reduced number of ligands, the result is the formation of a polymeric chain. Silver(I) is a particular example where diphosphine-bridged coordination polymers are common (Zhang et al., 2003; Aslanidis et al., 2004; Cingolani et al., 2006; Bao et al., 2005).

The structure of the title compound, (I), at 293 K is polymeric, with dppe ligands bridging between Ag centres to generate a chain. There are two half dppe ligands in the asymmetric unit, with the remaining parts generated by crystallographic centres of inversion at the midpoints of the C—C bond of the ethane moiety. The polymeric chains extend parallel to the crystallographic a axis (Fig. 2).

The Ag atom in (I) has a distorted tetrahedral geometry (Fig. 1), made up of atoms P1 and P2 of the two half dppe ligands, atom O1 of the coordinating nitrate ligand and atom O11 of the DMF molecule. The bond distances and angles in (I) at 293 K (Table 1) are close to the average values observed in similar Ag complexes found in the Cambridge Structural Database (Version 5.27, August 2006; Allen, 2002), where the average Ag—P distance for Ag(dppe) complexes is 2.464 (6) Å (67 observations) and that for Ag(NO3) is 2.498 (9) Å (188 observations). The nitrate ligand shows a fairly long Ag1···O2 contact but with an acute N1—O2···Ag1 angle. This interaction forces the P1—Ag—P2 angle to open considerably. The other angles around the Ag are close to the ideal value of 109.47 °.

[Five instances of dppm in the previous two paragraphs have been changed to dppe. Please check this is correct.]

The large thermal motion of the DMF solvate at room temperature prompted us to investigate the solid-state behaviour at low temperature. The single-crystal X-ray experiment at 100 K showed a slight reduction in the cell volume of 2.87%, corresponding to 42.19 (10) Å3, with decreases in the lengths of all three cell axes compared with the 293 K experiment. The b axis shows a much greater decrease (1.71%) than the a or c axes (0.80 and 0.68%, respectively). The resulting structure (Fig. 3) is very similar to that at 293 K. The distances and angles are very similar for the nitrate and dppe ligands and their bonds to the Ag centre. However, the DMF molecule not only presents anisotropic displacement parameters similar to the other ligand atoms, but also a much shorter Ag—O11 distance in the low-temperature study.

The volume of the solvent pocket was calculated using PLATON (Spek, 2003). At 293 K, one void was found per asymmetric unit, with a volume of 146 Å3; the centroid has coordinates (0.197, 0.844, 0.034), 3.67 Å from atom C123, corresponding to the location of the DMF molecule (Fig. 4a). At 100 K, the volume of the void was found to be 132 Å3, a decrease of 9.59%; the centroid has coordinates (0.197, 0.845, 0.034), 3.54 Å from atom C123. The volume of the DMF molecule in the solid state is about 119.7 Å3 (Baburin & Blatov, 2004). At 293 K, the solvent pocket is much larger (26 Å3) than the solvent, allowing greater motion. At 100 K, the cell-volume reduction is due largely to the reduction of the solvent pocket, restricting the motion of the DMF molecule. Concomitantly, the DMF molecule forms a shorter and stronger bond to the Ag centre.

Related literature top

For related literature, see: Allen (2002); Aslanidis et al. (2004); Baburin & Blatov (2004); Bao et al. (2005); Cingolani et al. (2006); Spek (2003); Zhang et al. (2003).

Experimental top

The [Ag(dppe)]NO3 polymer was synthesized by the addition of dppe (71 mg, 0.18 mmol) in methanol (5 ml) to silver nitrate (31 mg, 0.18 mmol) in water (5 ml) with stirring at room temperature. After 1 h, the yellow precipitate which formed was collected, washed with methanol and allowed to dry. The product was dissolved in a small quantity of warm DMF (0.5 ml). The colourless solution was filtered on a Celite column and then allowed to evaporate in a desiccator at 277 K. After one week, colourless crystals of the title compound formed (m.p. above 523 K). IR (KBr, ν, cm-1): 3440 (s), 3066 (w), 3046 (w), 2926 (w), 1657 (vs), 1435 (s), 1385 (vs), 1303 (s), 1097 (m), 735 (m), 696 (s), 509 (m).

Refinement top

All H atoms were located in difference maps and were then placed in idealized positions and treated as riding atoms, with C—H distances of 0.93 (aromatic and aldehyde), 0.97 (CH2) or 0.96 Å (CH3) at 293 K, and 0.95, 0.99 and 0.98 Å, respectively, at 100 K, with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups and 1.2 for all other H atoms.

Computing details top

For both compounds, data collection: APEX2, BIS and COSMO (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT and SADABS (Bruker, 2006); program(s) used to solve structure: SHELXTL (Bruker, 2006); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I) at 293 K, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The symmetry-generated part of the polymer is shown in grey, with phenyl groups represented as lines. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) -x, 1 - y, 1 - z.]
[Figure 2] Fig. 2. A view of the polymeric chain of (I). The vertical direction is parallel to the b axis and the horizontal direction is parallel to the a axis. The phenyl groups are represented as lines.
[Figure 3] Fig. 3. A view of (I) at 100 K, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The symmetry-generated part of the polymer is shown in grey, with phenyl groups represented as lines. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) -x, 1 - y, 1 - z.]
[Figure 4] Fig. 4. Stereoviews of the solvent pocket calculated by PLATON (Spek, 2003) at (a) 293 K and (b) 100 K. The vertical direction is parallel to the b axis and the horizontal direction is parallel to the a axis.
(I_293K) catena-Poly[[(N,N-dimethylformamide-κO)(nitrato-κ2O:O')silver(I)]- µ-1,2-bis(diphenylphosphino)ethane-κ2P:P'] top
Crystal data top
[Ag(NO3)(C3H7NO)(C26H24P2)]Z = 2
Mr = 641.37F(000) = 656
Triclinic, P1Dx = 1.453 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.1758 (3) ÅCell parameters from 5132 reflections
b = 12.1731 (3) Åθ = 2.7–22.6°
c = 13.0499 (3) ŵ = 0.83 mm1
α = 112.201 (1)°T = 293 K
β = 102.200 (1)°Block, colourless
γ = 106.856 (1)°0.26 × 0.15 × 0.08 mm
V = 1466.34 (7) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5657 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 30.0°, θmin = 3.0°
Absorption correction: numerical
Bruker APEX2 routines (using XPREP and SADABS) were used to perform the Gaussian face-indexed numerical absorption correction.
h = 1515
Tmin = 0.898, Tmax = 0.951k = 1717
35945 measured reflectionsl = 1818
8523 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.249P]
where P = (Fo2 + 2Fc2)/3
8523 reflections(Δ/σ)max = 0.001
345 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Ag(NO3)(C3H7NO)(C26H24P2)]γ = 106.856 (1)°
Mr = 641.37V = 1466.34 (7) Å3
Triclinic, P1Z = 2
a = 11.1758 (3) ÅMo Kα radiation
b = 12.1731 (3) ŵ = 0.83 mm1
c = 13.0499 (3) ÅT = 293 K
α = 112.201 (1)°0.26 × 0.15 × 0.08 mm
β = 102.200 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8523 independent reflections
Absorption correction: numerical
Bruker APEX2 routines (using XPREP and SADABS) were used to perform the Gaussian face-indexed numerical absorption correction.
5657 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.951Rint = 0.053
35945 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.04Δρmax = 0.66 e Å3
8523 reflectionsΔρmin = 0.53 e Å3
345 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.20328 (2)0.48532 (2)0.32426 (2)0.04324 (9)
C10.4526 (3)0.4340 (3)0.4903 (2)0.0398 (6)
H1A0.41370.44720.55130.048*
H1B0.50280.38220.49600.048*
C20.0473 (3)0.5716 (3)0.5326 (2)0.0360 (6)
H2A0.12290.58610.59630.043*
H2B0.00080.62260.56800.043*
C110.0824 (6)0.2728 (5)0.0573 (6)0.1110 (19)
H110.05430.33740.03540.133*
C120.2331 (6)0.0654 (6)0.0094 (6)0.138 (3)
H12A0.20270.00010.02820.207*
H12B0.32930.02820.01880.207*
H12C0.19790.09820.09390.207*
C130.2639 (7)0.1504 (8)0.1316 (5)0.168 (4)
H13A0.35630.12790.13970.251*
H13B0.25650.08180.19390.251*
H13C0.22970.22950.13660.251*
C1110.4067 (3)0.3073 (3)0.2404 (3)0.0399 (6)
C1120.3728 (4)0.3189 (4)0.1386 (3)0.0614 (10)
H1120.30330.34390.12090.074*
C1130.4423 (6)0.2931 (5)0.0619 (4)0.0887 (15)
H1130.41840.30010.00740.106*
C1140.5439 (6)0.2583 (5)0.0875 (5)0.0958 (16)
H1140.59110.24370.03650.115*
C1150.5790 (5)0.2440 (5)0.1868 (4)0.0946 (16)
H1150.64820.21790.20260.113*
C1160.5101 (4)0.2689 (4)0.2640 (3)0.0672 (11)
H1160.53360.25970.33210.081*
C1210.2222 (3)0.1916 (3)0.3316 (3)0.0394 (6)
C1220.1049 (3)0.1090 (3)0.2327 (3)0.0564 (9)
H1220.07920.13420.17570.068*
C1230.0265 (4)0.0101 (4)0.2188 (4)0.0699 (11)
H1230.05080.06530.15160.084*
C1240.0612 (4)0.0479 (4)0.3029 (4)0.0739 (12)
H1240.00620.12750.29350.089*
C1250.1758 (4)0.0306 (4)0.4003 (4)0.0697 (11)
H1250.19930.00440.45700.084*
C1260.2575 (4)0.1500 (3)0.4148 (3)0.0558 (9)
H1260.33650.20270.48080.067*
C2120.0386 (3)0.6225 (3)0.3368 (3)0.0377 (6)
C2130.0492 (3)0.5888 (3)0.2212 (3)0.0488 (8)
H2130.01850.57160.19640.059*
C2140.1599 (4)0.5802 (4)0.1405 (3)0.0619 (10)
H2140.16600.55800.06260.074*
C2150.2595 (4)0.6047 (4)0.1773 (4)0.0658 (10)
H2150.33500.59660.12340.079*
C2160.2491 (4)0.6410 (4)0.2923 (4)0.0675 (11)
H2160.31570.66060.31730.081*
C2170.1400 (3)0.6486 (4)0.3713 (3)0.0580 (9)
H2170.13450.67180.44930.070*
C2210.2169 (3)0.7977 (3)0.5331 (3)0.0385 (6)
C2220.1783 (4)0.8781 (3)0.6147 (3)0.0592 (9)
H2220.09420.84500.61860.071*
C2230.2640 (4)1.0068 (4)0.6900 (4)0.0730 (11)
H2230.23661.06010.74350.088*
C2240.3880 (4)1.0561 (4)0.6868 (4)0.0703 (11)
H2240.44551.14270.73820.084*
C2250.4281 (4)0.9776 (4)0.6072 (4)0.0648 (10)
H2250.51291.01130.60470.078*
C2260.3429 (3)0.8483 (3)0.5307 (3)0.0495 (8)
H2260.37100.79550.47750.059*
N10.3609 (3)0.6073 (3)0.2012 (2)0.0482 (6)
N110.1875 (4)0.1686 (4)0.0182 (3)0.0810 (11)
O10.2362 (2)0.5401 (3)0.1655 (2)0.0607 (6)
O20.4305 (3)0.6486 (3)0.3063 (2)0.0673 (7)
O30.4117 (3)0.6270 (3)0.1312 (2)0.0755 (8)
O110.0171 (4)0.2934 (3)0.1551 (4)0.1368 (18)
P10.31895 (7)0.34780 (7)0.34372 (6)0.03427 (16)
P20.10879 (7)0.62630 (7)0.43386 (6)0.03282 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.04467 (14)0.04584 (15)0.04727 (15)0.02378 (11)0.01886 (11)0.02454 (12)
C10.0448 (16)0.0408 (17)0.0291 (14)0.0153 (13)0.0086 (12)0.0162 (13)
C20.0406 (15)0.0329 (15)0.0344 (15)0.0123 (12)0.0131 (12)0.0179 (13)
C110.107 (4)0.073 (4)0.118 (5)0.042 (3)0.002 (4)0.028 (3)
C120.109 (5)0.083 (4)0.164 (7)0.030 (4)0.030 (4)0.019 (4)
C130.157 (6)0.247 (9)0.063 (3)0.148 (7)0.003 (4)0.013 (4)
C1110.0463 (16)0.0325 (16)0.0339 (15)0.0148 (13)0.0152 (13)0.0095 (13)
C1120.097 (3)0.062 (2)0.051 (2)0.049 (2)0.036 (2)0.0341 (19)
C1130.160 (5)0.087 (3)0.067 (3)0.073 (4)0.073 (3)0.049 (3)
C1140.122 (4)0.092 (4)0.098 (4)0.053 (3)0.084 (4)0.038 (3)
C1150.070 (3)0.123 (4)0.081 (3)0.056 (3)0.040 (3)0.018 (3)
C1160.061 (2)0.095 (3)0.043 (2)0.047 (2)0.0164 (17)0.020 (2)
C1210.0430 (16)0.0366 (16)0.0428 (17)0.0201 (13)0.0185 (13)0.0184 (14)
C1220.0464 (18)0.043 (2)0.067 (2)0.0098 (15)0.0072 (17)0.0270 (18)
C1230.050 (2)0.046 (2)0.087 (3)0.0059 (17)0.008 (2)0.025 (2)
C1240.072 (3)0.046 (2)0.109 (4)0.019 (2)0.036 (3)0.044 (3)
C1250.082 (3)0.057 (2)0.083 (3)0.027 (2)0.029 (2)0.048 (2)
C1260.067 (2)0.045 (2)0.050 (2)0.0173 (17)0.0152 (17)0.0245 (17)
C2120.0374 (15)0.0352 (16)0.0423 (16)0.0141 (13)0.0124 (13)0.0218 (14)
C2130.0566 (19)0.055 (2)0.0407 (18)0.0281 (17)0.0179 (15)0.0242 (16)
C2140.072 (2)0.065 (2)0.0404 (19)0.027 (2)0.0066 (17)0.0252 (18)
C2150.049 (2)0.078 (3)0.068 (3)0.027 (2)0.0036 (18)0.042 (2)
C2160.052 (2)0.101 (3)0.079 (3)0.049 (2)0.030 (2)0.054 (3)
C2170.058 (2)0.085 (3)0.054 (2)0.043 (2)0.0264 (17)0.040 (2)
C2210.0382 (15)0.0329 (15)0.0434 (17)0.0108 (12)0.0118 (13)0.0215 (14)
C2220.053 (2)0.0389 (19)0.070 (2)0.0101 (16)0.0268 (18)0.0149 (18)
C2230.078 (3)0.037 (2)0.073 (3)0.0099 (19)0.028 (2)0.0056 (19)
C2240.063 (2)0.041 (2)0.067 (3)0.0037 (18)0.004 (2)0.015 (2)
C2250.0454 (19)0.060 (2)0.070 (3)0.0014 (17)0.0126 (18)0.033 (2)
C2260.0435 (17)0.049 (2)0.0511 (19)0.0128 (15)0.0140 (15)0.0249 (17)
N10.0622 (18)0.0435 (16)0.0460 (16)0.0226 (14)0.0255 (14)0.0240 (14)
N110.072 (2)0.067 (2)0.065 (2)0.040 (2)0.0035 (18)0.0014 (19)
O10.0484 (14)0.0806 (18)0.0566 (15)0.0214 (13)0.0196 (12)0.0390 (14)
O20.0658 (16)0.0789 (19)0.0440 (14)0.0177 (14)0.0151 (12)0.0275 (14)
O30.0828 (19)0.0754 (19)0.0569 (16)0.0090 (15)0.0363 (15)0.0315 (15)
O110.122 (3)0.063 (2)0.123 (3)0.007 (2)0.062 (3)0.025 (2)
P10.0364 (4)0.0328 (4)0.0325 (4)0.0152 (3)0.0111 (3)0.0143 (3)
P20.0337 (4)0.0320 (4)0.0366 (4)0.0131 (3)0.0134 (3)0.0198 (3)
Geometric parameters (Å, º) top
Ag1—O12.469 (2)C121—P11.821 (3)
Ag1—O22.851 (3)C122—C1231.378 (5)
Ag1—O112.620 (3)C122—H1220.9300
Ag1—P12.4445 (7)C123—C1241.368 (6)
Ag1—P22.4372 (7)C123—H1230.9300
C1—C1i1.536 (6)C124—C1251.361 (6)
C1—P11.832 (3)C124—H1240.9300
C1—H1A0.9700C125—C1261.390 (5)
C1—H1B0.9700C125—H1250.9300
C2—C2ii1.520 (5)C126—H1260.9300
C2—P21.826 (3)C212—C2131.374 (4)
C2—H2A0.9700C212—C2171.381 (4)
C2—H2B0.9700C212—P21.830 (3)
C11—O111.218 (6)C213—C2141.392 (4)
C11—N111.289 (6)C213—H2130.9300
C11—H110.9300C214—C2151.368 (5)
C12—N111.421 (7)C214—H2140.9300
C12—H12A0.9600C215—C2161.362 (5)
C12—H12B0.9600C215—H2150.9300
C12—H12C0.9600C216—C2171.374 (5)
C13—N111.440 (6)C216—H2160.9300
C13—H13A0.9600C217—H2170.9300
C13—H13B0.9600C221—C2261.376 (4)
C13—H13C0.9600C221—C2221.388 (5)
C111—C1121.374 (4)C221—P21.824 (3)
C111—C1161.387 (4)C222—C2231.381 (5)
C111—P11.833 (3)C222—H2220.9300
C112—C1131.391 (5)C223—C2241.357 (6)
C112—H1120.9300C223—H2230.9300
C113—C1141.343 (7)C224—C2251.375 (6)
C113—H1130.9300C224—H2240.9300
C114—C1151.364 (7)C225—C2261.387 (5)
C114—H1140.9300C225—H2250.9300
C115—C1161.390 (5)C226—H2260.9300
C115—H1150.9300N1—O31.232 (3)
C116—H1160.9300N1—O21.242 (3)
C121—C1221.391 (4)N1—O11.267 (4)
C121—C1261.393 (4)
P2—Ag1—P1140.92 (2)C125—C124—C123120.2 (4)
P2—Ag1—O1107.16 (6)C125—C124—H124119.9
P1—Ag1—O1110.04 (6)C123—C124—H124119.9
P2—Ag1—O11100.02 (11)C124—C125—C126120.0 (4)
P1—Ag1—O1195.27 (8)C124—C125—H125120.0
O1—Ag1—O1184.19 (12)C126—C125—H125120.0
P2—Ag1—O2106.76 (6)C125—C126—C121120.6 (3)
P1—Ag1—O290.21 (6)C125—C126—H126119.7
O1—Ag1—O247.17 (7)C121—C126—H126119.7
O11—Ag1—O2129.27 (12)C213—C212—C217118.3 (3)
N1—O2—Ag187.55 (19)C213—C212—P2117.2 (2)
C1i—C1—P1110.1 (2)C217—C212—P2124.5 (2)
C1i—C1—H1A109.6C212—C213—C214121.0 (3)
P1—C1—H1A109.6C212—C213—H213119.5
C1i—C1—H1B109.6C214—C213—H213119.5
P1—C1—H1B109.6C215—C214—C213119.2 (3)
H1A—C1—H1B108.2C215—C214—H214120.4
C2ii—C2—P2111.9 (3)C213—C214—H214120.4
C2ii—C2—H2A109.2C216—C215—C214120.5 (3)
P2—C2—H2A109.2C216—C215—H215119.7
C2ii—C2—H2B109.2C214—C215—H215119.7
P2—C2—H2B109.2C215—C216—C217120.0 (3)
H2A—C2—H2B107.9C215—C216—H216120.0
O11—C11—N11125.3 (6)C217—C216—H216120.0
O11—C11—H11117.4C216—C217—C212121.0 (3)
N11—C11—H11117.4C216—C217—H217119.5
N11—C12—H12A109.5C212—C217—H217119.5
N11—C12—H12B109.5C226—C221—C222118.7 (3)
H12A—C12—H12B109.5C226—C221—P2119.2 (2)
N11—C12—H12C109.5C222—C221—P2122.1 (2)
H12A—C12—H12C109.5C223—C222—C221120.4 (3)
H12B—C12—H12C109.5C223—C222—H222119.8
N11—C13—H13A109.5C221—C222—H222119.8
N11—C13—H13B109.5C224—C223—C222120.6 (4)
H13A—C13—H13B109.5C224—C223—H223119.7
N11—C13—H13C109.5C222—C223—H223119.7
H13A—C13—H13C109.5C223—C224—C225119.7 (4)
H13B—C13—H13C109.5C223—C224—H224120.1
C112—C111—C116118.6 (3)C225—C224—H224120.1
C112—C111—P1119.7 (2)C224—C225—C226120.3 (3)
C116—C111—P1121.6 (2)C224—C225—H225119.8
C111—C112—C113120.1 (4)C226—C225—H225119.8
C111—C112—H112119.9C221—C226—C225120.3 (3)
C113—C112—H112119.9C221—C226—H226119.9
C114—C113—C112120.3 (4)C225—C226—H226119.9
C114—C113—H113119.9O3—N1—O2121.2 (3)
C112—C113—H113119.9O3—N1—O1120.1 (3)
C113—C114—C115121.2 (4)O2—N1—O1118.6 (3)
C113—C114—H114119.4C11—N11—C12119.7 (5)
C115—C114—H114119.4C11—N11—C13123.2 (6)
C114—C115—C116119.1 (4)C12—N11—C13117.1 (5)
C114—C115—H115120.4N1—O1—Ag1105.46 (18)
C116—C115—H115120.4C11—O11—Ag1133.3 (4)
C111—C116—C115120.6 (4)C121—P1—C1104.52 (13)
C111—C116—H116119.7C121—P1—C111103.83 (13)
C115—C116—H116119.7C1—P1—C111103.70 (14)
C122—C121—C126118.1 (3)C121—P1—Ag1118.39 (9)
C122—C121—P1117.5 (2)C1—P1—Ag1109.55 (10)
C126—C121—P1124.4 (3)C111—P1—Ag1115.39 (10)
C123—C122—C121120.4 (3)C221—P2—C2102.71 (13)
C123—C122—H122119.8C221—P2—C212105.98 (13)
C121—C122—H122119.8C2—P2—C212104.35 (13)
C124—C123—C122120.7 (4)C221—P2—Ag1118.94 (10)
C124—C123—H123119.7C2—P2—Ag1110.86 (9)
C122—C123—H123119.7C212—P2—Ag1112.63 (10)
C116—C111—C112—C1130.5 (6)C1i—C1—P1—C121177.0 (3)
P1—C111—C112—C113177.6 (3)C1i—C1—P1—C11168.5 (3)
C111—C112—C113—C1140.8 (7)C1i—C1—P1—Ag155.2 (3)
C112—C113—C114—C1151.8 (8)C112—C111—P1—C121111.6 (3)
C113—C114—C115—C1161.5 (8)C116—C111—P1—C12170.4 (3)
C112—C111—C116—C1150.7 (6)C112—C111—P1—C1139.3 (3)
P1—C111—C116—C115177.3 (3)C116—C111—P1—C138.6 (3)
C114—C115—C116—C1110.2 (7)C112—C111—P1—Ag119.6 (3)
C126—C121—C122—C1230.2 (5)C116—C111—P1—Ag1158.4 (3)
P1—C121—C122—C123179.4 (3)P2—Ag1—P1—C12174.25 (12)
C121—C122—C123—C1241.3 (6)O1—Ag1—P1—C121124.47 (13)
C122—C123—C124—C1251.7 (7)O11—Ag1—P1—C12138.74 (16)
C123—C124—C125—C1260.4 (7)P2—Ag1—P1—C145.37 (11)
C124—C125—C126—C1211.1 (6)O1—Ag1—P1—C1115.91 (12)
C122—C121—C126—C1251.4 (5)O11—Ag1—P1—C1158.36 (15)
P1—C121—C126—C125178.2 (3)P2—Ag1—P1—C111161.89 (11)
C217—C212—C213—C2140.5 (5)O1—Ag1—P1—C1110.61 (13)
P2—C212—C213—C214178.3 (3)O11—Ag1—P1—C11185.11 (16)
C212—C213—C214—C2150.5 (6)C226—C221—P2—C2132.7 (2)
C213—C214—C215—C2161.9 (6)C222—C221—P2—C244.7 (3)
C214—C215—C216—C2172.3 (7)C226—C221—P2—C212118.1 (2)
C215—C216—C217—C2121.3 (6)C222—C221—P2—C21264.5 (3)
C213—C212—C217—C2160.1 (5)C226—C221—P2—Ag19.9 (3)
P2—C212—C217—C216178.6 (3)C222—C221—P2—Ag1167.5 (2)
C226—C221—C222—C2231.3 (5)C2ii—C2—P2—C221179.8 (3)
P2—C221—C222—C223178.7 (3)C2ii—C2—P2—C21269.3 (3)
C221—C222—C223—C2241.0 (7)C2ii—C2—P2—Ag152.2 (3)
C222—C223—C224—C2250.5 (7)C213—C212—P2—C221106.7 (3)
C223—C224—C225—C2260.2 (6)C217—C212—P2—C22174.6 (3)
C222—C221—C226—C2251.0 (5)C213—C212—P2—C2145.3 (2)
P2—C221—C226—C225178.5 (3)C217—C212—P2—C233.4 (3)
C224—C225—C226—C2210.5 (5)C213—C212—P2—Ag125.0 (3)
O11—C11—N11—C121.5 (9)C217—C212—P2—Ag1153.7 (3)
O11—C11—N11—C13178.0 (6)P1—Ag1—P2—C22188.20 (11)
O3—N1—O1—Ag1165.4 (2)O1—Ag1—P2—C22173.40 (12)
O2—N1—O1—Ag112.1 (3)O11—Ag1—P2—C221160.37 (14)
P2—Ag1—O1—N1103.49 (19)P1—Ag1—P2—C230.47 (11)
P1—Ag1—O1—N164.3 (2)O1—Ag1—P2—C2167.93 (11)
O11—Ag1—O1—N1157.8 (2)O11—Ag1—P2—C280.96 (13)
N11—C11—O11—Ag1176.8 (4)P1—Ag1—P2—C212146.96 (10)
P2—Ag1—O11—C1188.5 (6)O1—Ag1—P2—C21251.44 (12)
P1—Ag1—O11—C11127.6 (6)O11—Ag1—P2—C21235.53 (14)
O1—Ag1—O11—C1117.9 (6)O3—N1—O2—Ag1167.4 (3)
C122—C121—P1—C1174.0 (3)O1—N1—O2—Ag110.1 (3)
C126—C121—P1—C15.6 (3)P2—Ag1—O2—N1104.29 (18)
C122—C121—P1—C11177.6 (3)P1—Ag1—O2—N1111.44 (18)
C126—C121—P1—C111102.8 (3)O1—Ag1—O2—N16.19 (17)
C122—C121—P1—Ag151.8 (3)O11—Ag1—O2—N114.5 (2)
C126—C121—P1—Ag1127.8 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
(I_100K) catena-Poly[[(N,N-dimethylformamide-κO)(nitrato-κ2O:O')silver(I)]- µ-1,2-bis(diphenylphosphino)ethane-κ2P:P'] top
Crystal data top
[Ag(NO3)(C3H7NO)(C26H24P2)]Z = 2
Mr = 641.37F(000) = 656
Triclinic, P1Dx = 1.496 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.0869 (3) ÅCell parameters from 9993 reflections
b = 11.9653 (4) Åθ = 2.8–29.7°
c = 12.9618 (4) ŵ = 0.86 mm1
α = 112.322 (2)°T = 100 K
β = 102.410 (2)°Block, colourless
γ = 106.216 (2)°0.22 × 0.15 × 0.06 mm
V = 1424.15 (9) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7005 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 30.0°, θmin = 3.0°
Absorption correction: numerical
Bruker APEX2 routines (using XPREP and SADABS) were used to perform the Gaussian face-indexed numerical absorption correction.
h = 1515
Tmin = 0.900, Tmax = 0.958k = 1616
36255 measured reflectionsl = 1818
8237 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0342P)2 + 1.2423P]
where P = (Fo2 + 2Fc2)/3
8237 reflections(Δ/σ)max = 0.001
345 parametersΔρmax = 1.60 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Ag(NO3)(C3H7NO)(C26H24P2)]γ = 106.216 (2)°
Mr = 641.37V = 1424.15 (9) Å3
Triclinic, P1Z = 2
a = 11.0869 (3) ÅMo Kα radiation
b = 11.9653 (4) ŵ = 0.86 mm1
c = 12.9618 (4) ÅT = 100 K
α = 112.322 (2)°0.22 × 0.15 × 0.06 mm
β = 102.410 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8237 independent reflections
Absorption correction: numerical
Bruker APEX2 routines (using XPREP and SADABS) were used to perform the Gaussian face-indexed numerical absorption correction.
7005 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.958Rint = 0.042
36255 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.04Δρmax = 1.60 e Å3
8237 reflectionsΔρmin = 0.63 e Å3
345 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.201247 (16)0.484687 (16)0.321223 (14)0.01572 (5)
C10.4526 (2)0.4334 (2)0.49036 (18)0.0147 (4)
H1A0.41190.44760.55270.018*
H1B0.50430.37940.4970.018*
C20.0477 (2)0.5729 (2)0.53449 (18)0.0143 (4)
H2A0.12530.58620.59910.017*
H2B00.62590.57170.017*
C110.0818 (3)0.2733 (3)0.0535 (3)0.0327 (6)
H110.05550.33840.02850.039*
C120.2360 (3)0.0593 (3)0.0105 (3)0.0360 (6)
H12A0.22140.01690.03990.054*
H12B0.33210.03370.00210.054*
H12C0.18460.09060.09470.054*
C130.2687 (3)0.1429 (3)0.1375 (2)0.0445 (8)
H13A0.22740.21970.14810.067*
H13B0.36140.13070.14280.067*
H13C0.26910.06430.20020.067*
C1110.4105 (2)0.3049 (2)0.24057 (19)0.0150 (4)
C1120.3802 (3)0.3203 (2)0.1384 (2)0.0217 (5)
H1120.30970.3480.11980.026*
C1130.4532 (3)0.2950 (3)0.0630 (2)0.0314 (6)
H1130.43190.30490.00720.038*
C1140.5560 (3)0.2557 (3)0.0902 (3)0.0347 (6)
H1140.6070.24110.040.042*
C1150.5851 (3)0.2372 (3)0.1902 (2)0.0331 (6)
H1150.65490.20830.20760.04*
C1160.5124 (2)0.2611 (3)0.2653 (2)0.0255 (5)
H1160.5320.24760.33360.031*
C1210.2216 (2)0.1881 (2)0.32879 (19)0.0150 (4)
C1220.1042 (2)0.1043 (2)0.2264 (2)0.0190 (4)
H1220.07990.13080.16740.023*
C1230.0236 (2)0.0169 (2)0.2112 (2)0.0247 (5)
H1230.05430.07390.14080.03*
C1240.0562 (2)0.0553 (2)0.2985 (2)0.0247 (5)
H1240.00020.13770.28840.03*
C1250.1707 (2)0.0264 (2)0.3998 (2)0.0235 (5)
H1250.19240.00030.45970.028*
C1260.2548 (2)0.1471 (2)0.4149 (2)0.0193 (4)
H1260.33480.20150.48370.023*
C2110.0406 (2)0.6240 (2)0.33620 (19)0.0144 (4)
C2120.0508 (2)0.5891 (2)0.21807 (19)0.0175 (4)
H2120.01980.57270.1930.021*
C2130.1638 (2)0.5782 (2)0.1368 (2)0.0216 (5)
H2130.17020.55440.05640.026*
C2140.2671 (2)0.6019 (2)0.1729 (2)0.0219 (5)
H2140.3450.59270.11690.026*
C2150.2567 (2)0.6390 (2)0.2903 (2)0.0234 (5)
H2150.32660.65730.31530.028*
C2160.1444 (2)0.6496 (2)0.3718 (2)0.0200 (4)
H2160.13810.67430.45230.024*
C2210.2144 (2)0.8015 (2)0.53434 (19)0.0146 (4)
C2220.1735 (2)0.8831 (2)0.6167 (2)0.0208 (4)
H2220.08710.84840.62020.025*
C2230.2585 (3)1.0147 (2)0.6932 (2)0.0248 (5)
H2230.231.06950.74860.03*
C2240.3849 (2)1.0660 (2)0.6890 (2)0.0247 (5)
H2240.44281.15590.74130.03*
C2250.4267 (2)0.9859 (2)0.6083 (2)0.0232 (5)
H2250.51361.02120.6060.028*
C2260.3424 (2)0.8545 (2)0.5306 (2)0.0188 (4)
H2260.37140.80050.47510.023*
N10.35962 (19)0.60651 (18)0.19860 (17)0.0172 (4)
N110.1915 (2)0.1639 (2)0.02095 (19)0.0278 (5)
O10.23316 (16)0.54134 (17)0.16375 (14)0.0220 (3)
O20.43074 (17)0.65141 (17)0.30621 (14)0.0233 (3)
O30.41026 (18)0.62281 (17)0.12625 (15)0.0258 (4)
O110.0126 (2)0.29565 (19)0.15202 (19)0.0446 (6)
P10.31958 (5)0.34638 (5)0.34195 (5)0.01304 (10)
P20.10820 (5)0.62830 (5)0.43420 (5)0.01235 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01650 (8)0.01643 (8)0.01691 (8)0.00821 (6)0.00695 (6)0.00877 (7)
C10.0174 (10)0.0149 (10)0.0102 (9)0.0051 (8)0.0038 (8)0.0061 (8)
C20.0177 (10)0.0122 (9)0.0135 (10)0.0043 (8)0.0058 (8)0.0075 (8)
C110.0308 (13)0.0204 (12)0.0383 (15)0.0116 (11)0.0029 (12)0.0099 (11)
C120.0311 (14)0.0217 (13)0.0368 (16)0.0069 (11)0.0053 (12)0.0025 (12)
C130.0420 (17)0.057 (2)0.0217 (14)0.0326 (16)0.0011 (12)0.0026 (14)
C1110.0173 (10)0.0110 (9)0.0135 (10)0.0044 (8)0.0062 (8)0.0031 (8)
C1120.0326 (12)0.0179 (11)0.0195 (11)0.0145 (10)0.0119 (10)0.0091 (9)
C1130.0560 (18)0.0263 (13)0.0261 (13)0.0216 (13)0.0264 (13)0.0161 (11)
C1140.0385 (15)0.0314 (14)0.0371 (15)0.0141 (12)0.0291 (13)0.0103 (12)
C1150.0222 (12)0.0400 (16)0.0301 (14)0.0183 (12)0.0093 (11)0.0057 (12)
C1160.0239 (12)0.0337 (14)0.0166 (11)0.0167 (11)0.0047 (9)0.0074 (10)
C1210.0172 (10)0.0133 (9)0.0159 (10)0.0066 (8)0.0078 (8)0.0070 (8)
C1220.0186 (10)0.0182 (11)0.0193 (11)0.0069 (9)0.0054 (9)0.0089 (9)
C1230.0192 (11)0.0183 (11)0.0297 (13)0.0051 (9)0.0033 (10)0.0092 (10)
C1240.0241 (11)0.0154 (11)0.0360 (14)0.0067 (9)0.0116 (10)0.0139 (10)
C1250.0297 (12)0.0199 (11)0.0266 (12)0.0108 (10)0.0115 (10)0.0149 (10)
C1260.0233 (11)0.0177 (11)0.0167 (10)0.0088 (9)0.0060 (9)0.0081 (9)
C2110.0154 (9)0.0121 (9)0.0164 (10)0.0051 (8)0.0050 (8)0.0082 (8)
C2120.0214 (10)0.0167 (10)0.0164 (10)0.0093 (9)0.0075 (8)0.0084 (9)
C2130.0265 (12)0.0213 (11)0.0132 (10)0.0088 (9)0.0036 (9)0.0068 (9)
C2140.0188 (10)0.0230 (12)0.0207 (11)0.0078 (9)0.0006 (9)0.0109 (10)
C2150.0182 (11)0.0311 (13)0.0257 (12)0.0145 (10)0.0085 (9)0.0144 (11)
C2160.0216 (11)0.0269 (12)0.0161 (10)0.0134 (9)0.0080 (9)0.0114 (9)
C2210.0144 (9)0.0141 (9)0.0158 (10)0.0047 (8)0.0042 (8)0.0089 (8)
C2220.0184 (10)0.0163 (10)0.0249 (12)0.0044 (8)0.0082 (9)0.0085 (9)
C2230.0263 (12)0.0168 (11)0.0253 (12)0.0068 (9)0.0094 (10)0.0052 (10)
C2240.0230 (11)0.0176 (11)0.0228 (12)0.0009 (9)0.0004 (9)0.0085 (10)
C2250.0182 (10)0.0223 (12)0.0234 (12)0.0008 (9)0.0043 (9)0.0121 (10)
C2260.0162 (10)0.0205 (11)0.0193 (11)0.0046 (8)0.0054 (8)0.0116 (9)
N10.0216 (9)0.0153 (9)0.0175 (9)0.0086 (7)0.0093 (7)0.0083 (7)
N110.0257 (10)0.0257 (11)0.0211 (10)0.0136 (9)0.0007 (8)0.0023 (9)
O10.0168 (8)0.0302 (9)0.0205 (8)0.0074 (7)0.0073 (6)0.0145 (7)
O20.0235 (8)0.0275 (9)0.0152 (8)0.0068 (7)0.0050 (6)0.0100 (7)
O30.0293 (9)0.0252 (9)0.0180 (8)0.0026 (7)0.0127 (7)0.0093 (7)
O110.0385 (11)0.0210 (9)0.0428 (12)0.0020 (8)0.0183 (9)0.0093 (9)
P10.0142 (2)0.0127 (2)0.0119 (2)0.0054 (2)0.00441 (19)0.0056 (2)
P20.0130 (2)0.0128 (2)0.0134 (2)0.00524 (19)0.00531 (19)0.0078 (2)
Geometric parameters (Å, º) top
Ag1—O12.4451 (16)C121—P11.823 (2)
Ag1—O22.8573 (17)C122—C1231.387 (3)
Ag1—O112.5588 (19)C122—H1220.95
Ag1—P12.4354 (5)C123—C1241.390 (3)
Ag1—P22.4268 (6)C123—H1230.95
C1—C1i1.535 (4)C124—C1251.381 (3)
C1—P11.834 (2)C124—H1240.95
C1—H1A0.99C125—C1261.396 (3)
C1—H1B0.99C125—H1250.95
C2—C2ii1.529 (4)C126—H1260.95
C2—P21.834 (2)C211—C2121.395 (3)
C2—H2A0.99C211—C2161.396 (3)
C2—H2B0.99C211—P21.828 (2)
C11—O111.223 (3)C212—C2131.390 (3)
C11—N111.331 (3)C212—H2120.95
C11—H110.95C213—C2141.387 (3)
C12—N111.451 (4)C213—H2130.95
C12—H12A0.98C214—C2151.381 (3)
C12—H12B0.98C214—H2140.95
C12—H12C0.98C215—C2161.389 (3)
C13—N111.454 (3)C215—H2150.95
C13—H13A0.98C216—H2160.95
C13—H13B0.98C221—C2221.401 (3)
C13—H13C0.98C221—C2261.402 (3)
C111—C1121.389 (3)C221—P21.818 (2)
C111—C1161.398 (3)C222—C2231.391 (3)
C111—P11.829 (2)C222—H2220.95
C112—C1131.398 (3)C223—C2241.386 (4)
C112—H1120.95C223—H2230.95
C113—C1141.377 (4)C224—C2251.386 (4)
C113—H1130.95C224—H2240.95
C114—C1151.382 (4)C225—C2261.390 (3)
C114—H1140.95C225—H2250.95
C115—C1161.391 (3)C226—H2260.95
C115—H1150.95N1—O31.240 (2)
C116—H1160.95N1—O21.256 (2)
C121—C1261.401 (3)N1—O11.276 (2)
C121—C1221.407 (3)
P2—Ag1—P1139.863 (18)C125—C124—H124120
P2—Ag1—O1107.38 (4)C123—C124—H124120
P1—Ag1—O1110.53 (4)C124—C125—C126120.4 (2)
P2—Ag1—O11101.31 (6)C124—C125—H125119.8
P1—Ag1—O1195.67 (5)C126—C125—H125119.8
O1—Ag1—O1183.44 (7)C125—C126—C121120.2 (2)
P2—Ag1—O2106.37 (4)C125—C126—H126119.9
P1—Ag1—O289.91 (4)C121—C126—H126119.9
O1—Ag1—O247.74 (5)C212—C211—C216119.07 (19)
O11—Ag1—O2128.93 (7)C212—C211—P2116.91 (16)
C1i—C1—P1109.73 (17)C216—C211—P2123.99 (16)
C1i—C1—H1A109.7C213—C212—C211120.3 (2)
P1—C1—H1A109.7C213—C212—H212119.8
C1i—C1—H1B109.7C211—C212—H212119.8
P1—C1—H1B109.7C214—C213—C212120.0 (2)
H1A—C1—H1B108.2C214—C213—H213120
C2ii—C2—P2110.53 (18)C212—C213—H213120
C2ii—C2—H2A109.5C215—C214—C213120.1 (2)
P2—C2—H2A109.5C215—C214—H214120
C2ii—C2—H2B109.5C213—C214—H214120
P2—C2—H2B109.5C214—C215—C216120.2 (2)
H2A—C2—H2B108.1C214—C215—H215119.9
O11—C11—N11124.4 (3)C216—C215—H215119.9
O11—C11—H11117.8C215—C216—C211120.3 (2)
N11—C11—H11117.8C215—C216—H216119.8
N11—C12—H12A109.5C211—C216—H216119.8
N11—C12—H12B109.5C222—C221—C226119.0 (2)
H12A—C12—H12B109.5C222—C221—P2122.03 (16)
N11—C12—H12C109.5C226—C221—P2118.94 (17)
H12A—C12—H12C109.5C223—C222—C221120.3 (2)
H12B—C12—H12C109.5C223—C222—H222119.8
N11—C13—H13A109.5C221—C222—H222119.8
N11—C13—H13B109.5C224—C223—C222120.2 (2)
H13A—C13—H13B109.5C224—C223—H223119.9
N11—C13—H13C109.5C222—C223—H223119.9
H13A—C13—H13C109.5C225—C224—C223119.9 (2)
H13B—C13—H13C109.5C225—C224—H224120
C112—C111—C116119.3 (2)C223—C224—H224120
C112—C111—P1119.33 (16)C224—C225—C226120.5 (2)
C116—C111—P1121.36 (17)C224—C225—H225119.7
C111—C112—C113120.0 (2)C226—C225—H225119.7
C111—C112—H112120C225—C226—C221120.0 (2)
C113—C112—H112120C225—C226—H226120
C114—C113—C112120.1 (2)C221—C226—H226120
C114—C113—H113119.9O3—N1—O2121.31 (19)
C112—C113—H113119.9O3—N1—O1119.94 (18)
C113—C114—C115120.4 (2)O2—N1—O1118.74 (18)
C113—C114—H114119.8N1—O2—Ag186.18 (12)
C115—C114—H114119.8C11—N11—C12120.7 (2)
C114—C115—C116120.0 (2)C11—N11—C13121.6 (3)
C114—C115—H115120C12—N11—C13117.6 (2)
C116—C115—H115120N1—O1—Ag1105.41 (12)
C115—C116—C111120.2 (2)C11—O11—Ag1135.48 (19)
C115—C116—H116119.9C121—P1—C111103.80 (9)
C111—C116—H116119.9C121—P1—C1104.77 (9)
C126—C121—C122118.8 (2)C111—P1—C1103.17 (10)
C126—C121—P1124.05 (17)C121—P1—Ag1117.53 (7)
C122—C121—P1117.15 (16)C111—P1—Ag1116.35 (7)
C123—C122—C121120.3 (2)C1—P1—Ag1109.70 (7)
C123—C122—H122119.8C221—P2—C211106.06 (9)
C121—C122—H122119.8C221—P2—C2102.30 (9)
C122—C123—C124120.3 (2)C211—P2—C2104.56 (10)
C122—C123—H123119.8C221—P2—Ag1119.87 (7)
C124—C123—H123119.8C211—P2—Ag1111.50 (7)
C125—C124—C123119.9 (2)C2—P2—Ag1111.17 (7)
C116—C111—C112—C1131.4 (4)C112—C111—P1—C121113.25 (19)
P1—C111—C112—C113176.95 (19)C116—C111—P1—C12168.4 (2)
C111—C112—C113—C1140.5 (4)C112—C111—P1—C1137.66 (18)
C112—C113—C114—C1151.9 (4)C116—C111—P1—C140.7 (2)
C113—C114—C115—C1161.3 (4)C112—C111—P1—Ag117.5 (2)
C114—C115—C116—C1110.6 (4)C116—C111—P1—Ag1160.84 (17)
C112—C111—C116—C1152.0 (4)C1i—C1—P1—C121177.02 (19)
P1—C111—C116—C115176.4 (2)C1i—C1—P1—C11168.7 (2)
C126—C121—C122—C1230.3 (3)C1i—C1—P1—Ag156.0 (2)
P1—C121—C122—C123179.09 (18)P2—Ag1—P1—C12175.71 (8)
C121—C122—C123—C1241.7 (4)O1—Ag1—P1—C121124.43 (9)
C122—C123—C124—C1251.2 (4)O11—Ag1—P1—C12139.34 (10)
C123—C124—C125—C1260.6 (4)P2—Ag1—P1—C111160.34 (8)
C124—C125—C126—C1211.9 (4)O1—Ag1—P1—C1110.48 (9)
C122—C121—C126—C1251.4 (3)O11—Ag1—P1—C11184.61 (10)
P1—C121—C126—C125177.23 (18)P2—Ag1—P1—C143.76 (8)
C216—C211—C212—C2130.9 (3)O1—Ag1—P1—C1116.09 (8)
P2—C211—C212—C213177.25 (17)O11—Ag1—P1—C1158.81 (9)
C211—C212—C213—C2140.0 (3)C222—C221—P2—C21164.2 (2)
C212—C213—C214—C2151.3 (4)C226—C221—P2—C211117.10 (17)
C213—C214—C215—C2161.5 (4)C222—C221—P2—C245.1 (2)
C214—C215—C216—C2110.6 (4)C226—C221—P2—C2133.60 (17)
C212—C211—C216—C2150.6 (3)C222—C221—P2—Ag1168.57 (15)
P2—C211—C216—C215177.38 (18)C226—C221—P2—Ag110.14 (19)
C226—C221—C222—C2230.2 (3)C212—C211—P2—C221107.02 (17)
P2—C221—C222—C223178.90 (18)C216—C211—P2—C22174.9 (2)
C221—C222—C223—C2240.3 (4)C212—C211—P2—C2145.30 (16)
C222—C223—C224—C2250.0 (4)C216—C211—P2—C232.8 (2)
C223—C224—C225—C2260.5 (4)C212—C211—P2—Ag125.08 (18)
C224—C225—C226—C2210.6 (3)C216—C211—P2—Ag1152.98 (17)
C222—C221—C226—C2250.2 (3)C2ii—C2—P2—C221178.81 (19)
P2—C221—C226—C225178.50 (17)C2ii—C2—P2—C21168.4 (2)
O11—C11—N11—C121.2 (4)C2ii—C2—P2—Ag152.1 (2)
O11—C11—N11—C13179.3 (3)P1—Ag1—P2—C22187.60 (8)
O3—N1—O1—Ag1163.48 (16)O1—Ag1—P2—C22172.65 (9)
O2—N1—O1—Ag115.5 (2)O11—Ag1—P2—C221159.24 (9)
P2—Ag1—O1—N1104.58 (12)P1—Ag1—P2—C211147.72 (7)
P1—Ag1—O1—N161.97 (13)O1—Ag1—P2—C21152.03 (8)
O11—Ag1—O1—N1155.58 (14)O11—Ag1—P2—C21134.55 (9)
N11—C11—O11—Ag1179.59 (19)P1—Ag1—P2—C231.47 (8)
P2—Ag1—O11—C1186.9 (3)O1—Ag1—P2—C2168.29 (8)
P1—Ag1—O11—C11129.6 (3)O11—Ag1—P2—C281.70 (9)
O1—Ag1—O11—C1119.6 (3)O3—N1—O2—Ag1166.20 (18)
C126—C121—P1—C111103.80 (19)O1—N1—O2—Ag112.76 (18)
C122—C121—P1—C11177.53 (18)P2—Ag1—O2—N1106.69 (11)
C126—C121—P1—C14.1 (2)P1—Ag1—O2—N1110.53 (11)
C122—C121—P1—C1174.57 (17)O1—Ag1—O2—N17.85 (11)
C126—C121—P1—Ag1126.14 (17)O11—Ag1—O2—N113.32 (15)
C122—C121—P1—Ag152.53 (18)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.

Experimental details

(I_293K)(I_100K)
Crystal data
Chemical formula[Ag(NO3)(C3H7NO)(C26H24P2)][Ag(NO3)(C3H7NO)(C26H24P2)]
Mr641.37641.37
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)293100
a, b, c (Å)11.1758 (3), 12.1731 (3), 13.0499 (3)11.0869 (3), 11.9653 (4), 12.9618 (4)
α, β, γ (°)112.201 (1), 102.200 (1), 106.856 (1)112.322 (2), 102.410 (2), 106.216 (2)
V3)1466.34 (7)1424.15 (9)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.830.86
Crystal size (mm)0.26 × 0.15 × 0.080.22 × 0.15 × 0.06
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Bruker APEXII CCD area-detector
diffractometer
Absorption correctionNumerical
Bruker APEX2 routines (using XPREP and SADABS) were used to perform the Gaussian face-indexed numerical absorption correction.
Numerical
Bruker APEX2 routines (using XPREP and SADABS) were used to perform the Gaussian face-indexed numerical absorption correction.
Tmin, Tmax0.898, 0.9510.900, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
35945, 8523, 5657 36255, 8237, 7005
Rint0.0530.042
(sin θ/λ)max1)0.7030.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.111, 1.04 0.034, 0.081, 1.04
No. of reflections85238237
No. of parameters345345
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.531.60, 0.63

Computer programs: APEX2, BIS and COSMO (Bruker, 2006), SAINT (Bruker, 2006), SAINT and SADABS (Bruker, 2006), SHELXTL (Bruker, 2006), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) for (I_293K) top
Ag1—O12.469 (2)Ag1—P12.4445 (7)
Ag1—O22.851 (3)Ag1—P22.4372 (7)
Ag1—O112.620 (3)
P2—Ag1—P1140.92 (2)P1—Ag1—O1195.27 (8)
P2—Ag1—O1107.16 (6)O1—Ag1—O1184.19 (12)
P1—Ag1—O1110.04 (6)N1—O2—Ag187.55 (19)
P2—Ag1—O11100.02 (11)N1—O1—Ag1105.46 (18)
Selected geometric parameters (Å, º) for (I_100K) top
Ag1—O12.4451 (16)Ag1—P12.4354 (5)
Ag1—O22.8573 (17)Ag1—P22.4268 (6)
Ag1—O112.5588 (19)
P2—Ag1—P1139.863 (18)P1—Ag1—O1195.67 (5)
P2—Ag1—O1107.38 (4)O1—Ag1—O1183.44 (7)
P1—Ag1—O1110.53 (4)N1—O2—Ag186.18 (12)
P2—Ag1—O11101.31 (6)N1—O1—Ag1105.41 (12)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds