organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Dimorphism in 4,4,6,6-tetra­chloro-2,2-(2,2-di­methyl­propane-1,3-di­­oxy)cyclotriphosphazene and 6,6-di­chloro-2,2:4,4-bis­­(2,2-di­methyl­propane-1,3-di­­oxy)cyclotriphosphazene

aDepartment of Chemistry, University of Southampton, Southampton SO17 1BJ, England, bSchool of Biological and Chemical Sciences, Birkbeck College (University of London), Malet Street, London WC1E 7HX, England, and cDepartment of Chemistry, Gebze Institute of Technology, Gebze, Turkey
*Correspondence e-mail: s.j.coles@soton.ac.uk

(Received 21 December 2006; accepted 19 January 2007; online 10 February 2007)

A second, polymorphic, form of the previously reported compound 4,4,6,6-tetra­chloro-2,2-(2,2-dimethyl­propane-1,3-di­oxy)cyclotriphosphazene, C5H10Cl4N3O2P3, is now reported. The mol­ecular structures of these two compounds are similar, aside from minor conformational differences. However, the compounds crystallize in two different space groups and exhibit quite different crystal structure assemblies. Additionally, 6,6-dichloro-2,2:4,4-bis­(2,2-dimethyl­propane-1,3-dioxy)cyclotriphosphazene, C10H20Cl2N3O4P3, is shown to exhibit two different conformational polymorphs when crystallized from different solvent mixtures. The α form crystallizes in the space group Pnma with the mol­ecular structure lying on a mirror plane (symmetry code: x, −y + [{1\over 2}], z), whilst the β form is in the space group C2/c with the mol­ecular structure lying on a twofold axis (symmetry code: −x, y, −z + [{3\over 2}]). The difference between the two mol­ecular structures is in the conformation of the spiro-ring substituents with respect to the phosphazene ring. The resulting crystal structures give rise to differing packing motifs.

Comment

The reaction of hexa­chloro­cyclo­triphosphazene, N3P3Cl6, with 2,2-dimethylpropane-1,3-diol in tetra­hydro­furan (THF) gives a mixture of the known mono-spiro compound 4,4,6,6-tetra­chloro-2,2-(2,2-dimethyl­propane-1,3-di­oxy)cyclotriphosphazene and the known dispiro compound 6,6-dichloro-2,2:4,4-bis­(2,2-dimethyl­propane-1,3-di­oxy)cyclotriphosphazene via a dif­ferent synthetic route from that in the literature (Al-Madfa et al., 1990[Al-Madfa, H. A., Shaw, R. A. & Ture, S. (1990). Phosphorus Sulfur Silicon Relat. Elem. 53, 333-338.]).

The crystal structure of 4,4,6,6-tetra­chloro-2,2-(2,2-dimethyl­propane-1,3-di­oxy)cyclotriphosphazene has previously

[Scheme 1]
been determined and reported (Satish Kumar & Kumara Swamy, 2001[Satish Kumar, N. & Kumara Swamy, K. C. (2001). Acta Cryst. C57, 1421-1422.]) and is available in the Cambridge Structural Database (refcode MEVVEO; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). The present paper reports a new crystal structure of this compound, (I)[link] (Fig. 1[link]), arising from different crystallization conditions, viz. MEVVEO was crystallized from dichloro­methane–hexane (1:4) and (I)[link] from THF–n-hexane (1:6). Whilst the mol­ecular connectivities of the two structures are identical, the crystal packing differs somewhat, as do some other parameters. The melting point measured for (I)[link] is 430–431 K and is identical to that reported for MEVVEO (427–428 K).

MEVVEO crystallizes in the space group P21/n, whilst (I)[link] is in P[\overline{1}]. The phosphazene N3P3 ring is nearly planar [the maximum deviation from the mean ring plane in (I) is 0.061 Å for atom N3]. Neither structure exhibits any classical hydrogen bonding, but an inspection of the close contacts (i.e. the closest non-bonded separations in the solid state that are less than the sum of the van der Waals radii) reveals the differences between the two.

MEVVEO only forms one close contact, between a bridge-head methyl H atom and an O atom in the 1,3,2-dioxaphospho­rinane ring [C4—H5⋯O1i = 2.530 Å; symmetry code: (i) [{1\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z], which gives rise to a two-dimensional ribbon-like motif (Fig. 2[link]). The polymorph reported here forms a slightly more complex crystal structure, again a two-dimensional ribbon-like motif. This motif arises from an alternation of head-to-tail inter­actions between Cl atoms [Cl1⋯Cl3ii = 3.433 (7) Å; symmetry code: (ii) −x, 2 − y, −z] and between a different Cl atom and an O atom in the 1,3,2-dioxaphos­phorinane ring [Cl4⋯O2iii = 3.1051 (12) Å; symmetry code: (iii) −x, 1 − y, 1 − z; Fig. 3[link]].

To highlight similarities and contrasts between these two polymorphic structures some equivalent bond lengths and angles are tabulated in Table 1[link]. These show remarkable similarities. Crucially, the parameter Δ(P—N) [for definition, see Beşli et al. (2002[Beşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kılıç, A., Mayer, T. A. & Shaw, R. A. (2002). Acta Cryst. B58, 1067-1073.])], a measure of the electron-releasing power of the spiro group, is gratifyingly virtually the same. We can see, however, significant differences in the torsion angles of these two structures (Table 2[link]). This shows clearly that, whilst both spiro rings are in a chair conformation, the spiro ring in (I)[link] is much more distorted than that in MEVVEO. The differences in the chemically related segments of the spiro group are vastly greater in (I)[link] than in MEVVEO.

We now also report the new crystal structure and polymorphic behaviour of the dispiro compound (II)[link] when crystallized from different solvent mixtures. The α form results from crystallization with THF–n-hexane (1:6), whilst the β form arises from crystallization with THF–n-hexane–dichloro­methane (1:6:5).

The mol­ecular structures of the α and β forms exhibit the same connectivities and geometric parameters and are in accordance with those expected (Chandrasekhar & Thomas, 1993[Chandrasekhar, V. & Thomas, K. R. J. (1993). Struct. Bonding (Berlin), 81, 41-113.]). The phosphazene rings in both structures are planar as a result of crystallographic symmetry and the main mol­ecular geometric parameters are given in Table 5[link]. These are very similar, except that θ, the bond angle of the Cl—P—Cl group, is somewhat larger in the β form [101.38 (3)°] than in the α form [99.85 (3)°], whilst the reverse is the case for Δ(P—N) (defined as ba; 0.0220 versus 0.0122 Å), which is a measure of the transfer of the electron-density from the spiro groups towards the PCl2 group.

The 1,3,2-dioxaphospho­rinane rings adopt chair conformations in both structures. However, when viewed perpendicular to the phosphazene ring (Figs. 4[link] and 5[link]), it can be seen that there are differences in the mol­ecular structure in that the 1,3,2-dioxaphospho­rinane rings can adopt different conformations with respect to the N3P3 ring. This conformation may be simply described as either `up' or `down', where in the α form the ring attached to atom P1 is `down' and that attached to P2 is `up', whilst both rings in the β form may be described as `up'. Quanti­tatively, this can be described by the dihedral angle between a plane perpendicularly bisecting the phosphazene ring (as defined by the N, P and Cl atoms) and a plane formed by the O atom and connected C atoms of the dioxaphospho­rinane ring, as shown in Fig. 6[link]. In the α form, the `down' conformation has a value of 70.67 (6)°, whilst the `up' conformation has the value 23.47 (5)°. In the β form, as a result of crystallographic symmetry, both rings are in the `up' configuration and have a value of 19.58 (4)°. As with the pair of polymorphs of the related monospiro derivative, N3P3Cl4[(OCH2)2CMe2], we have analysed the torsion angles of the spiro substituents of both polymorphs (Tables 3[link] and 4[link]). As in the case of the monospiro derivatives, there are differences between these two polymorphs, but here they are less marked.

The compound crystallizes with a rod morphology in the space group Pnma and a block morphology in the space group C2/c for the α and β forms, respectively. The melting point of both forms is 484–485 K.

There are no classical inter­molecular hydrogen bonds present in either structure and hence the differences in the crystal structure assemblies is influenced by close packing considerations. Figs. 7[link] and 8[link] depict projections down the unit-cell b axis of the α and β forms, respectively. This clearly shows that the symmetric nature of the mol­ecular structure of the β form allows for correspondingly symmetric packing and hence the mol­ecules align in sheet-like motifs, which then stack on top of each other. The crystal structure of the α form is also composed of stacked sheets; however, its asymmetric mol­ecular structure gives rise to less symmetric packing than that of the β form. Despite this observation, the percentages of space occupied in the unit cell (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]; Kitaigorodski, 1973[Kitaigorodski, A. I. (1973). Molecular Crystals and Molecules. New York: Academic Press.]) are 66 and 66.6% for α and β forms, respectively, and hence the packing efficiencies are effectively equal.

[Figure 1]
Figure 1
A view of the mol­ecule of (I)[link], shown with 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
The crystal structure of MEVVEO. [Symmetry code: (i) [{1\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z.]
[Figure 3]
Figure 3
The crystal structure of (I)[link]. [Symmetry codes: (ii) −x, 2 − y, −z; (iii) −x, 1 − y, 1 − z.]
[Figure 4]
Figure 4
A view of the mol­ecule of the α form of (II), shown with 50% probability displacement ellipsoids.
[Figure 5]
Figure 5
A view of the mol­ecule of the β form of (II), shown with 50% probability displacement ellipsoids.
[Figure 6]
Figure 6
A description of the planes used in calculating the relative conformation of the dioxaphospho­rinane rings. The rings are defined by the inclined (`up' conformation) and near horizontal (`down' conformation) planes and their conformation calculated relative to the N⋯PCl2 plane (the near vertical band).
[Figure 7]
Figure 7
A projection down the b axis of the close packing of the α form of (II).
[Figure 8]
Figure 8
A projection down the b axis of the close packing of the β form of (II).

Experimental

A solution of N3P3Cl6 (9 g, 25.86 mmol) in dry THF (25 ml) was added dropwise to a stirred solution of pyridine (8.2 g, 103.66 mmol) in dry THF (5 ml) under argon pressure in a 100 ml three-necked round-bottomed flask, and then 2,2-dimethyl­propane-1,3-diol (5.4 g, 51.84 mmol) in dry THF (30 ml) was added. The reaction mixture was stirred under an atmosphere of argon at room temperature for a further 21 h and then refluxed for 2 h. Pyridine hydro­chloride was filtered off and the solvent removed under reduced pressure at 303 K. Two compounds were detected (RF = 0.52 and 0.25) by thin-layer chromatography using THF–n-hexane (1:6) as the mobile phase. The crude product was subjected to column chromatography using THF–n-hexane (1:6) as eluant. Compound (I)[link] (1.5 g, yield 15.36%) was separated (RF = 0.52) and crystallized from THF–n-hexane (1:6). Analysis found: C 15.03, H 2.78, N 10.95%; (M + H)+ = 378; C5H10Cl4N3O2P3 requires: C 15.85, H 2.66, N 11.09%; M+ = 377. The second fraction (RF = 0.25) gave the dispiro compound (II). Analysis found: C 29.10, H 5.01, N 10.13%; (M + H)+ = 410; C10H20Cl2N3O4P3 requires: C 29.29, H 4.92, N 10.25%; M+ 409. The α form was initially crystallized from THF–n-hexane (1:6) and the β form was subsequently crystallized from THF–n-hexane–dichloro­methane (1:6:5).

Compound (I)[link]

Crystal data
  • C5H10Cl4N3O2P3

  • Mr = 378.87

  • Triclinic, [P \overline 1]

  • a = 7.9063 (1) Å

  • b = 9.6543 (2) Å

  • c = 10.7025 (2) Å

  • α = 70.771 (1)°

  • β = 71.470 (1)°

  • γ = 73.531 (1)°

  • V = 716.62 (2) Å3

  • Z = 2

  • Dx = 1.756 Mg m−3

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 120 (2) K

  • Lath, colourless

  • 0.40 × 0.20 × 0.12 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.656, Tmax = 0.874

  • 12367 measured reflections

  • 3244 independent reflections

  • 3094 reflections with I > 2σ(I)

  • Rint = 0.051

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.069

  • S = 1.02

  • 3244 reflections

  • 157 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.03P)2 + 0.4854P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.004

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.39 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.039 (3)

Table 1
Selected bond lenths (Å) and angles (°) for (I) and MEVVEO

  (I) MEVVEO
a 1.5935 (13) 1.589 (2)
b 1.5683 (13) 1.563 (2)
c 1.5847 (13) 1.581 (2)
d 1.9992 (6) 1.9938 (11)
e 1.5706 (11) 1.5635 (18)
     
α 116.62 (7) 116.26 (11)
β 122.01 (8) 121.59 (13)
γ 119.29 (7) 118.85 (11)
δ 119.88 (8) 119.42 (13)
θ 104.75 (6) 104.57 (9)
ω 100.74 (3) 100.85 (5)
     
Δ(P—N) (ba) 0.0252 (13) 0.026 (2)

Table 2
Selected torsion angles (°) for (I) and MEVVEO

  (I) Δ MEVVEO Δ
N1—P1—O1—C1 70.23 (11) 1.79 (11) 69.24 (7) 0.13 (7)
N1—P1—O2—C3 −68.44 (11) −69.37 (7)
N3—P1—O1—C1 −162.09 (10) 1.41 (10)
N3—P1—O2—C3 163.49 (10)
P1—O1—C1—C2 53.52 (15) 5.38 (15) 56.71 (9) 0.26 (11)
P1—O2—C3—C2 −58.79 (14) −56.45 (11)
O1—C1—C2—C3 −55.57 (16) 2.67 (16) −57.91 (10) 0.23 (12)
O2—C3—C2—C1 58.23 (16) 57.68 (12)

Compound (II), α form[link]

Crystal data
  • C10H20Cl2N3O4P3

  • Mr = 410.1

  • Orthorhombic, P n m a

  • a = 11.7673 (2) Å

  • b = 9.2325 (1) Å

  • c = 16.3007 (3) Å

  • V = 1770.93 (5) Å3

  • Z = 4

  • Dx = 1.538 Mg m−3

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.40 × 0.12 × 0.12 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.780, Tmax = 0.926

  • 20492 measured reflections

  • 2143 independent reflections

  • 1974 reflections with I > 2σ(I)

  • Rint = 0.057

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.078

  • S = 1.10

  • 2143 reflections

  • 139 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0367P)2 + 1.1012P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.47 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0182 (14)

Table 3
Selected torsion angles (°) for the α form of (II)[link]

O1—C1—C2—C1iv 57.7 (2)
O2—C5—C6—C5iv 56.99 (19)
C2—C1—O1—P1 −56.47 (16)
C6—C5—O2—P2 −57.34 (14)
C1—O1—P1—N1 161.68 (11)
C1—O1—P1—N3 −69.48 (12)
C5—O2—P2—N2 163.58 (10)
C5—O2—P2—N1 −67.60 (11)
Symmetry code: (iv) [x, -y+{\script{1\over 2}}, z].

Compound (II)[link], β form

Crystal data
  • C10H20Cl2N3O4P3

  • Mr = 410.1

  • Monoclinic, C 2/c

  • a = 18.0604 (4) Å

  • b = 8.3210 (1) Å

  • c = 11.8528 (3) Å

  • β = 99.955 (1)°

  • V = 1754.43 (6) Å3

  • Z = 4

  • Dx = 1.553 Mg m−3

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.40 × 0.26 × 0.08 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.778, Tmax = 0.949

  • 12671 measured reflections

  • 2002 independent reflections

  • 1862 reflections with I > 2σ(I)

  • Rint = 0.081

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.068

  • S = 1.05

  • 2002 reflections

  • 104 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0235P)2 + 1.7002P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.40 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0094 (7)

Table 4
Selected torsion angles (°) for the β form of (II)[link]

O1—C1—C2—C5 −57.07 (14)
C1—C2—C5—O2 57.56 (14)
C2—C1—O1—P1 57.38 (13)
C2—C5—O2—P1 −58.62 (13)
C5—O2—P1—N2 −66.90 (10)
C5—O2—P1—N1 164.05 (9)
C1—O1—P1—N2 68.35 (10)
C1—O1—P1—N1 −163.16 (9)

Table 5
Selected bond lengths (Å) and angles (°) for the α and β forms of (II)

  Form α Form β
a 1.5671 (18) 1.5704 (12)
b 1.5891 (18) 1.5826 (12)
c 1.5748 (17) 1.5796 (8)
d 1.9985 (5) 2.0017 (5)
e 1.5739 (11) 1.5766 (10)
     
α 120.10 (10) 120.61 (9)
β 120.97 (12) 120.21 (8)
γ 117.33 (10) 117.23 (7)
δ 123.32 (11) 123.07 (10)
θ 99.85 (3) 101.38 (3)
ω 103.66 (8) 103.44 (5)
     
Δ(P—N) (ba) 0.0220 (18) 0.0122 (12)

For (I)[link] and the β form of (II)[link], all H atoms were fixed in idealized positions [C—H = 0.98 (CH3) or 0.99 Å (CH2)] and refined using a riding model, with Uiso(H) values set at either 1.2Ueq(C) (methyl­ene groups) or 1.5Ueq(C) (methyl groups). The H atoms of the α form of (II) were treated in the same manner, apart from those situated about the mirror plane, which were selected from a difference map, restrained to idealized bond lengths (C—H = 0.98 Å) and their isotropic displacement parameters allowed to refine freely.

For all compounds, data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: publCIF (Westrip, 2007[Westrip, S. P. (2007). publCIF. In preparation.]).

Supporting information


Comment top

The reaction of hexachlorocyclotriphosphazene, N3P3Cl6, with 2,2-dimethyl-1,3-propanediol in tetrahydrofuran (THF) gives a mixture of the known mono-spiro compound 4,4,6,6- tetrachlorocyclo-2,2-(2,2-dimethylpropane-1,3-dioxy)triphosphazene and the known di-spiro compound 6,6- dichlorocyclo-2,2:4,4-bis(2,2-dimethylpropane-1,3-dioxy)triphosphazene via a different synthetic route from that in the literature (Al-Madfa et al., 1990).

The crystal structure of 4,4,6,6- tetrachlorocyclo-2,2-(2,2-dimethylpropane-1,3-dioxy)triphosphazene has previously been determined and reported (Satish Kumar & Kumara Swamy, 2001) and is available in the Cambridge Structural Database (Allen, 2002) with the refcode MEVVEO. The present paper reports a new crystal structure of this compound, (I) (Fig. 1), arising from different crystallization conditions, viz. MEVVEO is crystallized from dichloromethane–hexane (1:4) and (I) from THF–n-hexane (1:6). Whilst the molecular connectivities of the two structures are identical, the crystal packing differs somewhat, as do some other parameters. The melting point measured for (I) is 430–431 K and is identical to that reported for MEVVEO (427–428 K).

MEVVEO crystallizes in space group P21/n, whilst (I) is in P1. The phosphazene N3P3 ring is nearly planar (the maximum deviation from the mean ring plane is 0.061 Å for N3). Neither structure exhibits any classical hydrogen-bonding, but an inspection of the close contacts (i.e. the closest non-bonded separations in the solid state that are less than the sum of the van der Waals radii) reveals the differences between the two.

MEVVEO only forms one close contact, between a bridge-head methyl H atom and an O atom in the 1,3,2-dioxaphosphorinane ring [C4—H5···O1i = 2.530 Å; symmetry code: (i) 1/2 - x, -1/2 + y, 1/2 - z], which gives rise to a two-dimensional ribbon-like motif (Fig. 2). The polymorph reported here forms a slightly more complex crystal structure, again a two-dimensional ribbon-like motif. This motif arises from an alternation of head-to-tail interactions between Cl atoms [Cl1···Cl3i = 3.433 (7) Å; symmetry code: (i) -x, 2 - y, -z] and between a different Cl atom and an O atom in the 1,3,2-dioxaphosphorinane ring [Cl4···O2ii = 3.1051 (12) Å; symmetry code: (ii) -x, 1 - y, 1 - z; Fig. 3].

To highlight similarities and contrasts between these two polymorphic structures some equivalent bond lengths and bond angles are tabulated in Table 1. These show remarkable similarities. Crucially, the parameter Δ(P—N) [for definition see Beşli et al. (2002)], a measure of the electron-releasing power of the spiro-group, at 0.026 Å is gratifyingly virtually the same. We can see, however, significant differences in the torsion angles of these two structures (Table 2). This shows clearly that, whilst both spiro rings are in a chair conformation, the spiro ring in (I) is much more distorted than that in MEVVEO. The differences in the chemically related segments of the spiro moiety are vastly greater in (I) than in MEVVEO.

We now also report the new crystal structure and polymorphic behaviour of the di-spiro compound (II) when crystallized from different solvent mixtures. The α form results from crystallization with THF–n-hexane (1:6), whilst the β form arises from crystallization with THF–n-hexane–dichloromethane (1:6:5).

The molecular structures of the α and β forms exhibit the same connectivities and geometric parameters and are in accordance with those expected (Chandrasekhar & Thomas, 1993). The phosphazene rings in both structures are planar as a result of crystallographic symmetry and the main molecular geometric parameters are given in Table 3. These are very similar, except that θ, the bond angle of the Cl—P—Cl group, is somewhat larger in the β form (101.38°) than in the α form (99.85°), whilst the reverse is the case for Δ(P—N) (defined as b - a; 0.022 versus 0.0122 Å), which is a measure of the transfer of the electron-density from the spiro groups towards the PCl2 group.

The 1,3,2-dioxaphosphorinane rings adopt chair conformations in both structures. However, when viewed perpendicular to the phosphazene ring (Figs. 4 and 5), it can be seen that there are differences in the molecular structure in that the 1,3,2-dioxaphosphorinane rings can adopt different conformations with respect to the N3P3 ring. This conformation may be simply described as either `up' or `down', where in the α form the ring attached to atom P1 is `down' and that attached to P2 is 'up', whilst both rings in the β form may be described as `up'. Quantitatively, this can be described by the dihedral angle between a plane perpendicularly bisecting the phosphazene ring (as defined by the N, P and Cl atoms) and a plane formed by the O atom and connected C atoms of the dioxaphosphorinane ring, as shown in Fig. 6. In the α form, the `down' conformation has a value of 70.67 (6)°, whilst the `up' conformation has the value 23.47 (5)°. In the β form, as a result of crystallographic symmetry, both rings are in the `up' configuration and have a value of 19.58 (4)°. As with the pair of polymorphs of the related mono-spiro derivative, N3P3Cl4[(OCH2)2CMe2], we have analysed the torsion angles of the spiro substituents of both polymorphs (Table 4). As in the case of the mono-spiro derivatives there are differences between these two polymorphs, but here they are less marked.

The compound crystallizes with a rod morphology in the space group Pnma and a block morphology in the space group C2/c for the α and β forms, respectively. The melting point of both forms is 484–485 K.

There are no classical intermolecular hydrogen bonds present in either structure and hence the differences in the crystal structure assemblies is influenced by close packing considerations. Figs. 7 and 8 depict projections down the unit-cell b axis of the α and β forms, respectively. This clearly shows that the symmetric nature of the molecular structure of the β form allows for correspondingly symmetric packing and hence the molecules align in sheet-like motifs, which then stack on top of each other. The crystal structure of the α form is also composed of stacked sheets; however, its asymmetric molecular structure gives rise to less symmetric packing than that of the β form. Despite this observation, the percentage of space occupied in the unit cell (Spek, 2003; Kitaigorodski, 1973) is 66 and 66.6% for α and β forms, respectively, and hence the packing efficiencies are effectively equal.

Related literature top

For related literature, see: Al-Madfa, Shaw & Ture (1990); Allen (2002); Beşli et al. (2002); Chandrasekhar & Thomas (1993); Kitaigorodski (1973); Satish & Kumara Swamy (2001); Spek (2003).

Experimental top

A solution of N3P3Cl6 (9 g, 25.86 mmol) in dry THF (25 ml) was added dropwise to a stirred solution of pyridine (8.2 g, 103.66 mmol) in dry THF (5 ml) under argon pressure in a 100 ml three-necked round-bottomed flask, and then 2,2-dimethylpropane-1,3-diol (5.4 g, 51.84 mmol) in dry THF (30 ml) was added. The reaction mixture was stirred under an atmosphere of argon at room temperature for a further 21 h and then refluxed for 2 h. Pyridine hydrochloride was filtered off and the solvent removed under reduced pressure at 303 K. Two compounds were detected (Rf = 0.52 and 1/4) by thin-layer chromatography using THF–n-hexane (1:6) as the mobile phase. The crude product was subjected to column chromatography using THF–n-hexane (1:6) as eluant. Compound (I) (1.5 g, yield 15.36%) was separated (Rf = 0.52) and crystallized from THF–n-hexane (1:6). Found: C 15.03, H 2.78, N 10.95%; (M+H)+ 378. C5H10Cl4N3O2P3 requires: C 15.85, H 2.66, N 11.09%; M+ 377. The second fraction (Rf = 1/4) gave the dispiro compound (II). Found: C 29.10, H 5.01, N 10.13%; (M+H)+ 410. C10H20Cl2N3O4P3 requires: C 29.29, H 4.92, N 10.25%; M+ 409. The α form was initially crystallized from THF–n-hexane (1:6) and the β form was subsequently crystallized from THF–n-hexane–dichloromethane (1:6:5).

Refinement top

For (I) and the β form of (IIb), all H atoms are fixed in idealized positions [C—H = 0.98 (CH3) or 0.99 Å (CH2)] and refined using a riding model with Uiso(H) set to either 1.2Ueq (methylene groups) or 1.5Ueq (methyl groups). Please specify treatment of αform.

Computing details top

For all compounds, data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and WinGX (Farrugia, 1999); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) (50% probability displacement ellipsoids).
[Figure 2] Fig. 2. The crystal structure of MEVVEO. [Symmetry code: (i) 1/2 - x, -1/2 + y, 1/2 - z.]
[Figure 3] Fig. 3. The crystal structure of (I). [Symmetry codes: (i) -x, 2 - y, -z; (ii) -x, 1 - y, 1 - z.]
[Figure 4] Fig. 4. A view of the molecule of the α form of (II) (50% probability displacement ellipsoids).
[Figure 5] Fig. 5. A view of the molecule of the β form of (II) (50% probability displacement ellipsoids)
[Figure 6] Fig. 6. A de scription of the planes used in calculating relative conformation of the dioxaphosphorinane rings. The rings are defined by the blue (`up' conformation) and yellow (`down' conformation) planes and their conformation calculated relative to the N···PCl2 plane (marked in red).
[Figure 7] Fig. 7. A projection down the b axis of the close packing of the α form.
[Figure 8] Fig. 8. A projection down the b axis of the close packing of the β form.
(I) 4,4,6,6-tetrachlorocyclo-2,2-(2,2-dimethylpropane-1,3-dioxy)triphosphazene top
Crystal data top
C5H10Cl4N3O2P3Z = 2
Mr = 378.87F(000) = 380
Triclinic, P1Dx = 1.756 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9063 (1) ÅCell parameters from 6852 reflections
b = 9.6543 (2) Åθ = 2.9–27.5°
c = 10.7025 (2) ŵ = 1.15 mm1
α = 70.771 (1)°T = 120 K
β = 71.470 (1)°Lath, colourless
γ = 73.531 (1)°0.40 × 0.20 × 0.12 mm
V = 716.62 (2) Å3
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
3094 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.051
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
θmax = 27.5°, θmin = 3.1°
Tmin = 0.656, Tmax = 0.874h = 1010
12367 measured reflectionsk = 1212
3244 independent reflectionsl = 1313
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.030P)2 + 0.4854P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.026(Δ/σ)max = 0.004
wR(F2) = 0.069Δρmax = 0.47 e Å3
S = 1.02Δρmin = 0.39 e Å3
3244 reflectionsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
157 parametersExtinction coefficient: 0.039 (3)
0 restraints
Crystal data top
C5H10Cl4N3O2P3γ = 73.531 (1)°
Mr = 378.87V = 716.62 (2) Å3
Triclinic, P1Z = 2
a = 7.9063 (1) ÅMo Kα radiation
b = 9.6543 (2) ŵ = 1.15 mm1
c = 10.7025 (2) ÅT = 120 K
α = 70.771 (1)°0.40 × 0.20 × 0.12 mm
β = 71.470 (1)°
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
3244 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
3094 reflections with I > 2σ(I)
Tmin = 0.656, Tmax = 0.874Rint = 0.051
12367 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.02Δρmax = 0.47 e Å3
3244 reflectionsΔρmin = 0.39 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6891 (2)0.47470 (16)0.09610 (16)0.0175 (3)
H1A0.74860.39780.09720.021*
H1B0.75040.50540.01040.021*
C20.7119 (2)0.61047 (16)0.21803 (15)0.0155 (3)
C30.6073 (2)0.56401 (16)0.34955 (15)0.0164 (3)
H3A0.61950.65150.42910.02*
H3B0.65990.48610.35680.02*
C40.6428 (2)0.73861 (17)0.20895 (17)0.0218 (3)
H4A0.66140.82560.28620.033*
H4B0.710.76550.12320.033*
H4C0.51280.70690.21160.033*
C50.9143 (2)0.6574 (2)0.21683 (19)0.0262 (4)
H5A0.95580.57380.22260.039*
H5B0.98440.68520.1320.039*
H5C0.93210.74330.29510.039*
N10.41904 (17)0.22413 (14)0.24696 (15)0.0182 (3)
N20.07039 (17)0.07040 (14)0.26647 (15)0.0198 (3)
N30.16631 (18)0.34987 (14)0.22610 (15)0.0201 (3)
O10.49735 (15)0.40977 (12)0.09849 (11)0.0174 (2)
O20.41447 (14)0.50575 (11)0.35162 (11)0.0161 (2)
P10.36946 (5)0.36629 (4)0.23139 (4)0.01312 (11)
P20.27437 (5)0.07827 (4)0.26380 (4)0.01254 (10)
P30.01440 (5)0.21131 (4)0.25738 (4)0.01572 (11)
Cl10.36008 (5)0.09855 (4)0.12023 (4)0.01853 (11)
Cl20.27157 (6)0.02796 (4)0.43179 (4)0.02691 (12)
Cl30.13143 (6)0.14122 (5)0.11849 (5)0.02993 (12)
Cl40.17073 (6)0.28191 (5)0.42816 (5)0.03323 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0164 (7)0.0146 (7)0.0171 (7)0.0021 (5)0.0003 (5)0.0030 (5)
C20.0163 (7)0.0111 (6)0.0172 (7)0.0005 (5)0.0035 (5)0.0039 (5)
C30.0182 (7)0.0131 (7)0.0172 (7)0.0002 (5)0.0069 (6)0.0034 (5)
C40.0306 (8)0.0108 (7)0.0253 (8)0.0024 (6)0.0084 (7)0.0064 (6)
C50.0177 (7)0.0240 (8)0.0337 (9)0.0011 (6)0.0068 (7)0.0074 (7)
N10.0137 (6)0.0114 (6)0.0306 (7)0.0011 (5)0.0066 (5)0.0072 (5)
N20.0136 (6)0.0131 (6)0.0330 (8)0.0016 (5)0.0041 (5)0.0089 (5)
N30.0177 (6)0.0131 (6)0.0334 (7)0.0021 (5)0.0078 (5)0.0105 (5)
O10.0204 (5)0.0140 (5)0.0143 (5)0.0015 (4)0.0048 (4)0.0031 (4)
O20.0170 (5)0.0126 (5)0.0141 (5)0.0014 (4)0.0010 (4)0.0016 (4)
P10.01414 (18)0.00874 (18)0.01606 (19)0.00143 (13)0.00363 (14)0.00355 (14)
P20.01361 (18)0.00864 (17)0.01572 (19)0.00231 (13)0.00406 (14)0.00316 (13)
P30.01225 (18)0.01301 (19)0.0225 (2)0.00386 (14)0.00276 (14)0.00573 (15)
Cl10.02003 (19)0.01287 (17)0.02044 (19)0.00599 (13)0.00478 (14)0.00060 (13)
Cl20.0434 (3)0.0218 (2)0.0188 (2)0.00414 (17)0.01190 (17)0.00754 (15)
Cl30.0277 (2)0.0253 (2)0.0425 (3)0.00375 (16)0.02145 (19)0.00542 (18)
Cl40.0329 (2)0.0345 (2)0.0318 (2)0.02118 (19)0.01054 (18)0.01369 (19)
Geometric parameters (Å, º) top
C1—O11.4625 (18)C5—H5B0.98
C1—C21.530 (2)C5—H5C0.98
C1—H1A0.99N1—P21.5642 (12)
C1—H1B0.99N1—P11.6008 (13)
C2—C31.527 (2)N2—P21.5844 (13)
C2—C41.528 (2)N2—P31.5850 (13)
C2—C51.531 (2)N3—P31.5724 (13)
C3—O21.4632 (17)N3—P11.5860 (13)
C3—H3A0.99O1—P11.5685 (11)
C3—H3B0.99O2—P11.5727 (11)
C4—H4A0.98P2—Cl12.0001 (5)
C4—H4B0.98P2—Cl22.0032 (5)
C4—H4C0.98P3—Cl31.9953 (6)
C5—H5A0.98P3—Cl41.9981 (6)
O1—C1—C2111.91 (12)C2—C5—H5C109.5
O1—C1—H1A109.2H5A—C5—H5C109.5
C2—C1—H1A109.2H5B—C5—H5C109.5
O1—C1—H1B109.2P2—N1—P1122.53 (8)
C2—C1—H1B109.2P2—N2—P3119.88 (8)
H1A—C1—H1B107.9P3—N3—P1121.48 (8)
C3—C2—C4110.73 (13)C1—O1—P1117.97 (9)
C3—C2—C1108.79 (11)C3—O2—P1116.45 (9)
C4—C2—C1110.38 (13)O1—P1—O2104.75 (6)
C3—C2—C5108.14 (13)O1—P1—N3107.11 (7)
C4—C2—C5110.78 (12)O2—P1—N3108.70 (7)
C1—C2—C5107.94 (13)O1—P1—N1110.02 (7)
O2—C3—C2110.84 (12)O2—P1—N1108.97 (7)
O2—C3—H3A109.5N3—P1—N1116.62 (7)
C2—C3—H3A109.5N1—P2—N2119.05 (7)
O2—C3—H3B109.5N1—P2—Cl1109.71 (5)
C2—C3—H3B109.5N2—P2—Cl1108.43 (5)
H3A—C3—H3B108.1N1—P2—Cl2110.06 (6)
C2—C4—H4A109.5N2—P2—Cl2107.81 (5)
C2—C4—H4B109.5Cl1—P2—Cl2100.11 (2)
H4A—C4—H4B109.5N3—P3—N2119.52 (7)
C2—C4—H4C109.5N3—P3—Cl3108.38 (6)
H4A—C4—H4C109.5N2—P3—Cl3108.11 (6)
H4B—C4—H4C109.5N3—P3—Cl4108.79 (6)
C2—C5—H5A109.5N2—P3—Cl4109.14 (5)
C2—C5—H5B109.5Cl3—P3—Cl4101.37 (3)
H5A—C5—H5B109.5
O1—C1—C2—C355.57 (16)P3—N3—P1—N19.21 (14)
O1—C1—C2—C466.12 (16)P2—N1—P1—O1125.27 (10)
O1—C1—C2—C5172.68 (12)P2—N1—P1—O2120.41 (10)
C4—C2—C3—O263.24 (15)P2—N1—P1—N33.06 (14)
C1—C2—C3—O258.23 (16)P1—N1—P2—N20.35 (14)
C5—C2—C3—O2175.21 (12)P1—N1—P2—Cl1125.31 (9)
C2—C1—O1—P153.52 (15)P1—N1—P2—Cl2125.47 (9)
C2—C3—O2—P158.79 (14)P3—N2—P2—N12.14 (14)
C1—O1—P1—O246.75 (11)P3—N2—P2—Cl1128.41 (8)
C1—O1—P1—N3162.09 (10)P3—N2—P2—Cl2124.06 (8)
C1—O1—P1—N170.23 (11)P1—N3—P3—N211.92 (15)
C3—O2—P1—O149.26 (11)P1—N3—P3—Cl3136.30 (9)
C3—O2—P1—N3163.49 (10)P1—N3—P3—Cl4114.29 (9)
C3—O2—P1—N168.44 (11)P2—N2—P3—N38.14 (14)
P3—N3—P1—O1132.93 (10)P2—N2—P3—Cl3132.65 (8)
P3—N3—P1—O2114.40 (10)P2—N2—P3—Cl4117.90 (9)
(IIa) 6,6-dichlorocyclo-2,2:4,4-bis(2,2-dimethylpropane-1,3-dioxy)triphosphazene top
Crystal data top
C10H20Cl2N3O4P3F(000) = 848
Mr = 410.1Dx = 1.538 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 10345 reflections
a = 11.7673 (2) Åθ = 2.9–27.5°
b = 9.2325 (1) ŵ = 0.66 mm1
c = 16.3007 (3) ÅT = 120 K
V = 1770.93 (5) Å3Block, colourless
Z = 40.40 × 0.12 × 0.12 mm
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
1974 reflections with I > 2σ(I)
ϕ & ω scansRint = 0.057
Absorption correction: multi-scan
(SORTAV ;Blessing, 1997)
θmax = 27.5°, θmin = 3.0°
Tmin = 0.780, Tmax = 0.926h = 1515
20492 measured reflectionsk = 1111
2143 independent reflectionsl = 2121
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0367P)2 + 1.1012P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.029(Δ/σ)max = 0.001
wR(F2) = 0.078Δρmax = 0.43 e Å3
S = 1.10Δρmin = 0.47 e Å3
2143 reflectionsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
139 parametersExtinction coefficient: 0.0182 (14)
8 restraints
Crystal data top
C10H20Cl2N3O4P3V = 1770.93 (5) Å3
Mr = 410.1Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 11.7673 (2) ŵ = 0.66 mm1
b = 9.2325 (1) ÅT = 120 K
c = 16.3007 (3) Å0.40 × 0.12 × 0.12 mm
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
2143 independent reflections
Absorption correction: multi-scan
(SORTAV ;Blessing, 1997)
1974 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.926Rint = 0.057
20492 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0298 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.43 e Å3
2143 reflectionsΔρmin = 0.47 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.32811 (14)0.11698 (16)0.27801 (8)0.0214 (3)
H1A0.3140.0290.24490.026*
H1B0.40830.11490.29640.026*
C20.30866 (17)0.250.22539 (12)0.0161 (4)
C30.39658 (18)0.250.15654 (13)0.0241 (5)
C40.1895 (2)0.250.18935 (14)0.0374 (6)
C50.04259 (12)0.11619 (16)0.57832 (9)0.0181 (3)
H5A0.07660.02840.60310.022*
H5B0.05730.11320.51850.022*
C60.09851 (16)0.250.61466 (12)0.0162 (4)
C70.22334 (18)0.250.58901 (13)0.0245 (5)
C80.08802 (18)0.250.70773 (13)0.0296 (5)
N10.14745 (14)0.250.46237 (10)0.0193 (4)
N20.26812 (15)0.250.60382 (11)0.0208 (4)
N30.37651 (15)0.250.45674 (11)0.0231 (4)
O10.25369 (9)0.11613 (12)0.34942 (6)0.0203 (2)
O20.07982 (8)0.11584 (11)0.59278 (6)0.0170 (2)
P10.25794 (4)0.250.40919 (3)0.01372 (14)
P20.14834 (4)0.250.55971 (3)0.01372 (14)
P30.38097 (4)0.250.55287 (3)0.01660 (14)
Cl10.47663 (4)0.08436 (5)0.59110 (2)0.03139 (15)
H3A0.3854 (19)0.1635 (14)0.1227 (11)0.047*
H3B0.4740 (10)0.250.1787 (18)0.047*
H4A0.1785 (19)0.1615 (13)0.1571 (11)0.047*
H4B0.134 (2)0.250.2343 (13)0.047*
H7A0.2599 (17)0.1616 (14)0.6093 (14)0.047*
H7B0.229 (3)0.250.52904 (19)0.047*
H8A0.1225 (16)0.1624 (13)0.7308 (12)0.047*
H8B0.0076 (8)0.250.723 (2)0.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0326 (8)0.0175 (7)0.0141 (6)0.0030 (6)0.0089 (6)0.0000 (5)
C20.0170 (9)0.0196 (10)0.0118 (8)00.0025 (7)0
C30.0307 (11)0.0252 (11)0.0165 (10)00.0103 (9)0
C40.0248 (12)0.067 (2)0.0200 (12)00.0045 (9)0
C50.0146 (6)0.0158 (7)0.0237 (7)0.0013 (5)0.0011 (5)0.0003 (6)
C60.0142 (9)0.0187 (10)0.0158 (9)00.0026 (7)0
C70.0157 (10)0.0229 (12)0.0351 (13)00.0001 (9)0
C80.0285 (12)0.0449 (15)0.0154 (10)00.0077 (9)0
N10.0139 (8)0.0329 (10)0.0112 (8)00.0000 (6)0
N20.0162 (8)0.0344 (11)0.0117 (8)00.0004 (6)0
N30.0147 (8)0.0408 (11)0.0138 (8)00.0012 (6)0
O10.0313 (6)0.0170 (5)0.0125 (5)0.0051 (4)0.0067 (4)0.0009 (4)
O20.0142 (5)0.0166 (5)0.0202 (5)0.0023 (4)0.0024 (4)0.0033 (4)
P10.0152 (2)0.0161 (3)0.0098 (2)00.00103 (17)0
P20.0134 (2)0.0177 (3)0.0100 (2)00.00101 (17)0
P30.0133 (2)0.0241 (3)0.0124 (3)00.00077 (18)0
Cl10.0324 (2)0.0360 (3)0.0258 (2)0.01546 (17)0.00312 (15)0.00046 (16)
Geometric parameters (Å, º) top
C1—O11.4567 (16)C6—C71.527 (3)
C1—C21.5153 (18)C7—H7A0.980 (16)
C1—H1A0.99C7—H7B0.980 (4)
C1—H1B0.99C8—H8A0.980 (15)
C2—C41.520 (3)C8—H8B0.980 (13)
C2—C31.526 (3)N1—P11.5627 (17)
C3—H3A0.980 (15)N1—P21.5869 (17)
C3—H3B0.980 (16)N2—P31.5662 (18)
C4—H4A0.980 (14)N2—P21.5822 (18)
C4—H4B0.98 (2)N3—P31.5679 (18)
C5—O21.4596 (17)N3—P11.5960 (18)
C5—C61.5199 (18)O1—P11.5746 (11)
C5—H5A0.99O2—P21.5732 (10)
C5—H5B0.99P3—Cl11.9985 (5)
C6—C81.522 (3)
O1—C1—C2111.46 (13)C6—C7—H7A109.2 (13)
O1—C1—H1A109.3C6—C7—H7B109.9 (19)
C2—C1—H1A109.3H7A—C7—H7B107.8 (17)
O1—C1—H1B109.3C6—C8—H8A110.5 (13)
C2—C1—H1B109.3C6—C8—H8B110 (2)
H1A—C1—H1B108H8A—C8—H8B107.4 (16)
C1i—C2—C1108.27 (16)P1—N1—P2123.32 (11)
C1i—C2—C4110.99 (12)P3—N2—P2120.95 (12)
C1—C2—C4110.99 (12)P3—N3—P1120.98 (11)
C1i—C2—C3108.29 (11)C1—O1—P1118.10 (9)
C1—C2—C3108.29 (11)C5—O2—P2116.66 (9)
C4—C2—C3109.93 (17)N1—P1—O1108.47 (6)
C2—C3—H3A108.9 (13)N1—P1—O1i108.47 (6)
C2—C3—H3B111.1 (19)O1—P1—O1i103.44 (8)
H3A—C3—H3B109.4 (16)N1—P1—N3117.25 (10)
C2—C4—H4A109.2 (14)O1—P1—N3109.17 (6)
C2—C4—H4B108.8 (19)O1i—P1—N3109.17 (6)
H4A—C4—H4B108.3 (16)O2i—P2—O2103.87 (8)
O2—C5—C6111.47 (12)O2i—P2—N2107.51 (6)
O2—C5—H5A109.3O2—P2—N2107.51 (6)
C6—C5—H5A109.3O2i—P2—N1109.83 (5)
O2—C5—H5B109.3O2—P2—N1109.83 (5)
C6—C5—H5B109.3N2—P2—N1117.40 (9)
H5A—C5—H5B108N2—P3—N3120.10 (10)
C5—C6—C5i108.74 (16)N2—P3—Cl1i108.19 (4)
C5—C6—C8110.69 (11)N3—P3—Cl1i109.30 (4)
C5i—C6—C8110.69 (11)N2—P3—Cl1108.19 (4)
C5—C6—C7108.04 (11)N3—P3—Cl1109.30 (4)
C5i—C6—C7108.04 (11)Cl1i—P3—Cl199.85 (3)
C8—C6—C7110.54 (16)
O1—C1—C2—C1i57.7 (2)P3—N3—P1—O1i123.79 (5)
O1—C1—C2—C464.32 (17)C5—O2—P2—O2i49.82 (12)
O1—C1—C2—C3174.93 (13)C5—O2—P2—N2163.58 (10)
O2—C5—C6—C5i56.99 (19)C5—O2—P2—N167.60 (11)
O2—C5—C6—C864.82 (16)P3—N2—P2—O2i124.35 (5)
O2—C5—C6—C7174.02 (12)P3—N2—P2—O2124.35 (5)
C2—C1—O1—P156.47 (16)P3—N2—P2—N10
C6—C5—O2—P257.34 (14)P1—N1—P2—O2i123.18 (5)
P2—N1—P1—O1124.15 (5)P1—N1—P2—O2123.18 (5)
P2—N1—P1—O1i124.15 (5)P1—N1—P2—N20
P2—N1—P1—N30P2—N2—P3—N30
C1—O1—P1—N1161.68 (11)P2—N2—P3—Cl1i126.35 (3)
C1—O1—P1—O1i46.65 (14)P2—N2—P3—Cl1126.35 (3)
C1—O1—P1—N369.48 (12)P1—N3—P3—N20
P3—N3—P1—N10P1—N3—P3—Cl1i125.83 (3)
P3—N3—P1—O1123.79 (5)P1—N3—P3—Cl1125.83 (3)
Symmetry code: (i) x, y+1/2, z.
(IIb) 6,6-dichlorocyclo-2,2:4,4-bis(2,2-dimethylpropane-1,3-dioxy)triphosphazene top
Crystal data top
C10H20Cl2N3O4P3F(000) = 848
Mr = 410.1Dx = 1.553 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7535 reflections
a = 18.0604 (4) Åθ = 2.9–27.5°
b = 8.3210 (1) ŵ = 0.66 mm1
c = 11.8528 (3) ÅT = 120 K
β = 99.955 (1)°Block, colourless
V = 1754.43 (6) Å30.40 × 0.26 × 0.08 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
1862 reflections with I > 2σ(I)
ϕ & ω scansRint = 0.081
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
θmax = 27.5°, θmin = 3.1°
Tmin = 0.778, Tmax = 0.949h = 2323
12671 measured reflectionsk = 1010
2002 independent reflectionsl = 1515
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0235P)2 + 1.7002P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.027(Δ/σ)max = 0.002
wR(F2) = 0.068Δρmax = 0.32 e Å3
S = 1.05Δρmin = 0.40 e Å3
2002 reflectionsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
104 parametersExtinction coefficient: 0.0094 (7)
0 restraints
Crystal data top
C10H20Cl2N3O4P3V = 1754.43 (6) Å3
Mr = 410.1Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.0604 (4) ŵ = 0.66 mm1
b = 8.3210 (1) ÅT = 120 K
c = 11.8528 (3) Å0.40 × 0.26 × 0.08 mm
β = 99.955 (1)°
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
2002 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
1862 reflections with I > 2σ(I)
Tmin = 0.778, Tmax = 0.949Rint = 0.081
12671 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.05Δρmax = 0.32 e Å3
2002 reflectionsΔρmin = 0.40 e Å3
104 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.16405 (8)0.04785 (16)0.75348 (10)0.0174 (3)
H1A0.12620.12210.77560.021*
H1B0.21350.07540.79940.021*
C20.16714 (8)0.06995 (16)0.62674 (10)0.0160 (3)
C30.23055 (8)0.03101 (18)0.59314 (12)0.0231 (3)
H3A0.2330.01290.51220.035*
H3B0.27840.00010.64030.035*
H3C0.22090.1450.60540.035*
C40.17883 (9)0.24801 (18)0.60461 (13)0.0242 (3)
H4A0.14010.31120.63310.036*
H4B0.22860.28120.64440.036*
H4C0.17520.26610.52210.036*
C50.09166 (8)0.02160 (16)0.55789 (11)0.0166 (3)
H5A0.09320.03260.47520.02*
H5B0.05220.09470.57650.02*
N10.07025 (7)0.37333 (14)0.72233 (10)0.0191 (3)
N200.09337 (18)0.750.0167 (3)
O10.14465 (5)0.11695 (11)0.77885 (7)0.0161 (2)
O20.07262 (5)0.14333 (11)0.58217 (7)0.0154 (2)
P10.068065 (18)0.18386 (4)0.71056 (3)0.01262 (12)
P200.46682 (5)0.750.01643 (14)
Cl10.03667 (2)0.61921 (4)0.62183 (3)0.02812 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0179 (7)0.0185 (7)0.0155 (6)0.0044 (5)0.0020 (5)0.0005 (5)
C20.0151 (6)0.0179 (6)0.0151 (6)0.0027 (5)0.0031 (5)0.0020 (5)
C30.0188 (7)0.0275 (8)0.0248 (7)0.0008 (6)0.0085 (6)0.0025 (5)
C40.0228 (8)0.0204 (7)0.0291 (7)0.0058 (6)0.0041 (6)0.0046 (6)
C50.0175 (7)0.0168 (6)0.0151 (6)0.0030 (5)0.0016 (5)0.0042 (5)
N10.0184 (6)0.0138 (6)0.0271 (6)0.0029 (4)0.0101 (5)0.0018 (4)
N20.0169 (8)0.0117 (7)0.0235 (8)00.0088 (6)0
O10.0143 (5)0.0197 (5)0.0137 (4)0.0021 (4)0.0007 (3)0.0033 (3)
O20.0173 (5)0.0167 (5)0.0125 (4)0.0043 (4)0.0031 (3)0.0008 (3)
P10.01215 (19)0.01263 (18)0.01369 (17)0.00019 (11)0.00393 (12)0.00084 (11)
P20.0194 (3)0.0109 (2)0.0207 (2)00.00809 (19)0
Cl10.0334 (2)0.0216 (2)0.0311 (2)0.00460 (14)0.01045 (16)0.01099 (13)
Geometric parameters (Å, º) top
C1—O11.4594 (16)C4—H4B0.98
C1—C21.5240 (17)C4—H4C0.98
C1—H1A0.99C5—O21.4556 (15)
C1—H1B0.99C5—H5A0.99
C2—C51.5171 (18)C5—H5B0.99
C2—C41.5257 (19)N1—P21.5704 (12)
C2—C31.5276 (19)N1—P11.5826 (12)
C3—H3A0.98N2—P11.5796 (8)
C3—H3B0.98O1—P11.5784 (10)
C3—H3C0.98O2—P11.5747 (9)
C4—H4A0.98P2—Cl12.0017 (5)
O1—C1—C2111.56 (10)H4B—C4—H4C109.5
O1—C1—H1A109.3O2—C5—C2111.39 (10)
C2—C1—H1A109.3O2—C5—H5A109.4
O1—C1—H1B109.3C2—C5—H5A109.4
C2—C1—H1B109.3O2—C5—H5B109.4
H1A—C1—H1B108C2—C5—H5B109.4
C5—C2—C1108.40 (11)H5A—C5—H5B108
C5—C2—C4107.65 (11)P2—N1—P1120.21 (8)
C1—C2—C4108.45 (11)P1i—N2—P1123.07 (10)
C5—C2—C3111.00 (11)C1—O1—P1116.49 (8)
C1—C2—C3110.33 (11)C5—O2—P1116.53 (8)
C4—C2—C3110.91 (12)O2—P1—O1103.44 (5)
C2—C3—H3A109.5O2—P1—N2110.93 (5)
C2—C3—H3B109.5O1—P1—N2109.75 (5)
H3A—C3—H3B109.5O2—P1—N1107.09 (6)
C2—C3—H3C109.5O1—P1—N1107.45 (6)
H3A—C3—H3C109.5N2—P1—N1117.23 (7)
H3B—C3—H3C109.5N1i—P2—N1120.61 (9)
C2—C4—H4A109.5N1i—P2—Cl1i109.18 (4)
C2—C4—H4B109.5N1—P2—Cl1i107.40 (5)
H4A—C4—H4B109.5N1i—P2—Cl1107.40 (4)
C2—C4—H4C109.5N1—P2—Cl1109.18 (4)
H4A—C4—H4C109.5Cl1i—P2—Cl1101.38 (3)
O1—C1—C2—C557.07 (14)C1—O1—P1—N268.35 (10)
O1—C1—C2—C4173.68 (11)C1—O1—P1—N1163.16 (9)
O1—C1—C2—C364.66 (14)P1i—N2—P1—O2117.92 (4)
C1—C2—C5—O257.56 (14)P1i—N2—P1—O1128.39 (4)
C4—C2—C5—O2174.68 (11)P1i—N2—P1—N15.49 (5)
C3—C2—C5—O263.76 (13)P2—N1—P1—O2114.23 (8)
C2—C1—O1—P157.38 (13)P2—N1—P1—O1135.18 (8)
C2—C5—O2—P158.62 (13)P2—N1—P1—N211.11 (10)
C5—O2—P1—O150.71 (10)P1—N1—P2—N1i5.75 (5)
C5—O2—P1—N266.90 (10)P1—N1—P2—Cl1i131.59 (7)
C5—O2—P1—N1164.05 (9)P1—N1—P2—Cl1119.26 (7)
C1—O1—P1—O250.08 (10)
Symmetry code: (i) x, y, z+3/2.

Experimental details

(I)(IIa)(IIb)
Crystal data
Chemical formulaC5H10Cl4N3O2P3C10H20Cl2N3O4P3C10H20Cl2N3O4P3
Mr378.87410.1410.1
Crystal system, space groupTriclinic, P1Orthorhombic, PnmaMonoclinic, C2/c
Temperature (K)120120120
a, b, c (Å)7.9063 (1), 9.6543 (2), 10.7025 (2)11.7673 (2), 9.2325 (1), 16.3007 (3)18.0604 (4), 8.3210 (1), 11.8528 (3)
α, β, γ (°)70.771 (1), 71.470 (1), 73.531 (1)90, 90, 9090, 99.955 (1), 90
V3)716.62 (2)1770.93 (5)1754.43 (6)
Z244
Radiation typeMo KαMo KαMo Kα
µ (mm1)1.150.660.66
Crystal size (mm)0.40 × 0.20 × 0.120.40 × 0.12 × 0.120.40 × 0.26 × 0.08
Data collection
DiffractometerBruker–Nonius KappaCCD area-detector
diffractometer
Bruker–Nonius KappaCCD area-detector
diffractometer
Bruker–Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Multi-scan
(SORTAV ;Blessing, 1997)
Multi-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.656, 0.8740.780, 0.9260.778, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
12367, 3244, 3094 20492, 2143, 1974 12671, 2002, 1862
Rint0.0510.0570.081
(sin θ/λ)max1)0.6490.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.069, 1.02 0.029, 0.078, 1.10 0.027, 0.068, 1.05
No. of reflections324421432002
No. of parameters157139104
No. of restraints080
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.390.43, 0.470.32, 0.40

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003) and WinGX (Farrugia, 1999), publCIF (Westrip, 2007).

IMEVVEO
a1.5935 (13)1.589 (2)
b1.5683 (13)1.563 (2)
c1.5847 (13)1.581 (2)
d1.9992 (6)1.9938 (11)
e1.5706 (11)1.5635 (18)
α116.62 (7)116.26 (11)
β122.01 (8)121.59 (13)
γ119.29 (7)118.85 (11)
δ119.88 (8)119.42 (13)
θ104.75 (6)104.57 (9)
ω100.74 (3)100.85 (5)
Δ(P-N) (b-a)0.0252 (13)0.026 (2)
IΔMEVVEOΔ
N1—P1—O1—C170.23 (11)1.79 (11)69.24 (7)0.13 (7)
N1—P1—O2—C3-68.44 (11)-69.37 (7)
N3—P1—O1—C1-162.09 (10)1.41 (10)
N3—P1—O2—C3163.49 (10)
P1—O1—C1—C253.52 (15)5.38 (15)56.71 (9)0.26 (11)
P1—O2—C3—C2-58.79 (14)-56.45 (11)
O1—C1—C2—C3-55.57 (16)2.67 (16)-57.91 (10)0.23 (12)
O2—C3—C2—C158.23 (16)57.68 (12)
Selected torsion angles (º) for (IIa) top
O1—C1—C2—C1i57.7 (2)C1—O1—P1—N1161.68 (11)
O2—C5—C6—C5i56.99 (19)C1—O1—P1—N369.48 (12)
C2—C1—O1—P156.47 (16)C5—O2—P2—N2163.58 (10)
C6—C5—O2—P257.34 (14)C5—O2—P2—N167.60 (11)
Symmetry code: (i) x, y+1/2, z.
Form IForm II
a1.5671 (18)1.5704 (12)
b1.5891 (18)1.5826 (12)
c1.5748 (17)1.5796 (8)
d1.9985 (5)2.0017 (5)
e1.5739 (11)1.5766 (10)
α120.10 (10)120.61 (9)
β120.97 (12)120.21 (8)
γ117.33 (10)117.23 (7)
δ123.32 (11)123.07 (10)
θ99.85 (3)101.38 (3)
ω103.66 (8)103.44 (5)
Δ(P-N) (b-a)0.0220 (18)0.0122 (12)
Selected torsion angles (º) for (IIb) top
O1—C1—C2—C557.07 (14)C5—O2—P1—N266.90 (10)
C1—C2—C5—O257.56 (14)C5—O2—P1—N1164.05 (9)
C2—C1—O1—P157.38 (13)C1—O1—P1—N268.35 (10)
C2—C5—O2—P158.62 (13)C1—O1—P1—N1163.16 (9)
 

Acknowledgements

The authors thank the EPSRC for funding of crystallographic facilities, Otsuka Chemical Co. Ltd for gifts of N3P3Cl6 (hexachlorocyclotriphosphazene) and the Gebze Institute of Technology (GIT) Research Fund for partial support (FH, Hİ and AK).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAl-Madfa, H. A., Shaw, R. A. & Ture, S. (1990). Phosphorus Sulfur Silicon Relat. Elem. 53, 333–338.  CAS Google Scholar
First citationBeşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kılıç, A., Mayer, T. A. & Shaw, R. A. (2002). Acta Cryst. B58, 1067–1073.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChandrasekhar, V. & Thomas, K. R. J. (1993). Struct. Bonding (Berlin), 81, 41–113.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKitaigorodski, A. I. (1973). Molecular Crystals and Molecules. New York: Academic Press.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSatish Kumar, N. & Kumara Swamy, K. C. (2001). Acta Cryst. C57, 1421–1422.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2007). publCIF. In preparation.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds