Download citation
Download citation
link to html
Bis(1,3-thia­zolidine-2-thione-κS2)gold(I) bis­(4-chloro­benzene­sulfonyl)amide, [Au(C3H5NS2)2](C12H8Cl2NS2O4), has no imposed symmetry. Classical N—H...N and N—H...O hydrogen bonds link the residues to form chains parallel to the b axis. Weaker inter­actions involve C—H...O, C—H...Au and a number of X...Cl contacts (X = Cl, S or Au) clustered in the region y ≃ {1 \over 4}. In bis­(1-methyl­imidazolidine-2-thione-κS2)gold(I) bis­(4-iodo­benzene­sulfonyl)amide, [Au(C4H8N2S)2](C12H8I2NS2O4), the Au atom of the cation and the N atom of the anion lie on the twofold axis (0, y{1 \over 4}) in the space group C2/c. The formula unit forms a self-contained ring with two symmetry-equivalent N—H...O hydrogen bonds, and weak C—H...X (X = O, I or S), Au...I and I...I contacts are observed. In both compounds, the anions display extended conformations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106044143/gd3058sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106044143/gd3058Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106044143/gd3058IIsup3.hkl
Contains datablock II

CCDC references: 632932; 632933

Comment top

We are interested in the secondary interactions involved in the packing of bis(thione)gold(I) complexes and have published a short series of papers reporting 12 structures so far (Friedrichs & Jones, 2004a,b,c, 2006). Here, we report the final two structures in the series, namely bis(thiazolidine-2-thione)gold(I) di(4-chlorobenzenesulfonyl)amide, (I), and bis(1-methyl-imidazolidine-2-thione)gold(I) di(4-iodobenzenesulfonyl)amide, (II). The thione ligand names in (I) and (II) are hereinafter abbreviated to tzt and Me-etu (imidazolidine-2-thione is also known by the trivial name ethylenethiourea = etu). The structures of [Au(tzt)2]+ with the anions Cl (as the monohydrate; Akrivos et al., 1994), camphorsulfonate (Friedrichs & Jones, 2004b) and dimesylamide [`DMS', N(SO2CH3)2; Friedrichs & Jones, 2004c], and of [Au(Me-etu)2]+ with the anions Cl (Friedrichs & Jones, 2004a), camphorsulfonate (Friedrichs & Jones, 2004b) and DMS (Friedrichs & Jones, 2004c) will be referred to for comparison.

Compound (I) crystallizes with one formula unit in the asymmetric unit (Fig. 1). In compound (II), both the anion and the cation display crystallographic twofold symmetry, whereby atoms Au and N1 lie on the twofold axis (0,y,1/4) (Fig. 2). The Au···N1 separation is only 3.257 (4) Å.

Important structural parameters are summarized in Tables 1 and 3. Bond lengths and angles are as expected. The stereochemical disposition of the rings is governed by the torsion angles Au—SC—NH and C—S···S—C. The former, which determine which of the ring heteroatoms is endo or exo with respect to the Au centre, are, as invariably observed for these cations, antiperiplanar (ring S endo) for tzt and synperiplanar (ring NH endo) for Me-etu. However, the C—S···S—C torsion angles of the cations across the linear gold(I) centres are much more variable, with absolute values for the three above-mentioned tzt compounds of 40, 9 and 10 (two independent cations), and 90°, respectively, and for the three above-mentioned Me-etu compounds of 180, 72 and 70, and 168, respectively. Here, the values are 154° for (I) and 74° for (II). (Torsion angles given in the text are absolute values rounded to the nearest degree; for exact values see Tables 1 and 3 or the original publications).

The ligand heterocycles are approximately planar, but the r.m.s. deviations are appreciably non-zero [0.11 and 0.12 Å for (I) and 0.08 Å for (II)], with some correspondingly non-zero torsion angles [maxima 25 and 26° for (I) and 18° for (II) about the C—C bonds].

The di(benzenesulfonyl)amide anions can display either a folded conformation with approximate local mirror symmetry (`hairpin' form) or an extended conformation with local twofold symmetry. In either case, two N—S—N—O torsion angles are approximately 180°, leading to a W-shaped O—S—N—S—O sequence; our convention is to assign these antiperiplanar O atoms the odd numbers, whereas the even-numbered O atoms are involved in synclinal SO bonds. Each Cn1—Cn2 ring bond is generally synperiplanar to the adjacent SO(sc) bond [scis ?]. For a more complete description of the standard geometry, see Lozano et al. (2004) and Henschel et al. (2005). In compounds (I) and (II), both anions display the extended conformation, with ring intercentroid distances of 7.31 and 6.82 Å, interplanar angles of 25.3 (2) and 5.0 (3)° and torsion angles C—S···S—C (across the central N atom) of 154 and 134°, respectively. This contrasts with the folded conformations observed for the [Au(etu)2]+ salts of the same anions (Friedrichs & Jones, 2006), with intercentroid distances of ca 3.6–3.7 Å and torsion angles close to zero. The validity of the local symmetry can be expressed as ΔτSN, the average difference between related pairs of absolute torsion angles about the S—N bonds. This is exactly zero for (II) by symmetry, but is unusually large for (I) at 35°. The irregular geometry of (I) is also seen in the high synperiplanar O2—S3—C31—C32 torsion angle of 28°.

The classical hydrogen-bonding patterns for (I) and (II) would be expected to be relatively simple, because the cations each have two NH donor functions rather than the four of the etu derivatives. Previous derivatives with tzt have formed simple chain or ring motifs. In (I), the N21—H···N1 hydrogen bond within the asymmetric unit is augmented by N11—H···O3 via the 21 operator to form chains of molecules with overall direction parallel to the b axis (Fig. 3, Table 3). The graph set (Bernstein et al., 1995) is C22(12).

Previous Me-etu derivatives (and an isopropyl-etu derivative; Hussain & Isab, 1985) have displayed either chain structures or self-contained rings within the asymmetric unit. Compound (II) forms its classical hydrogen bonds within the formula unit (Fig. 2). The graph set is R22(14). The N11—H···O1 interaction is significantly non-linear, and this may be caused by a long H11···N1 contact as a weak branch of an asymmetric three-centre system (Table 4).

Non-classical (`weak') hydrogen bonding (Desiraju & Steiner, 1999) may be expected in systems where the number of acceptors exceeds the number of classical donors. In our previous publications, we have drawn attention to C—H···X interactions (X = O but also Cl, S or Au), to short Au···S and S···S contacts, and in one case to the otherwise well known Au···Au (aurophilic) interactions (Schmidbaur, 1990), which however are not common in the thione complexes. For compound (I), two C—H···O interactions are observed between anions. There is also a short Cl1···Cl2 contact of 3.549 (2) Å [symmetry operator (1 − x,-1/2 + y,1/2 − z), C—Cl···Cl angles 78.0 and 90.9 (2)°], so that it is sensible to speak of an anion substructure (Fig. 4). The other C—H···O interactions in Table 3 connect a-translated chains of Fig. 3. There are no C—H···Cl or C—H···S interactions.

Compound (I) also shows a large number of short contacts to the exposed Cl atoms of the anions. These are concentrated around the region y 1/4 (Fig. 5). The C—H···Au contact (Table 3) also belongs to this part of the structure, but for clarity it is not shown in Fig. 5.

The extended packing of compound (II) is shown in Fig. 6. The dimers line up approximately parallel to the a axis and form an extended `tube' parallel to the c axis in the region x 1/2. They are connected amongst themselves and to neighbouring tubes via C—H···O and C—H···I interactions and Au···I and I···I contacts (for details, see Table 4 and the caption to Fig. 6). These tubes are connected in the b direction by the H23···S1 hydrogen bond.

Since these are provisionally the last structures in the series of 14, some concluding remarks are in order. The hope was to measure enough structures to permit generalized conclusions as to hydrogen-bonding patterns, and perhaps even to make cautious predictions of those patterns in as yet undetermined structures. With the benefit of hindsight, we can see that the systems have too many degrees of structural freedom. These may be classified as follows:

(i). Cation flexibility. The C—S···S—C torsion angles may exhibit any values, and this is certainly the greatest barrier to `crystal engineering'. The planarity of the heterocyclic rings and the Au—S—C—N torsion angles can also vary, but generally to a very limited extent.

(ii). Anion flexibility. The di(benzenesulfonyl)amines can adopt the folded or extended conformation. Other anions used [DMS, benzene-1,2-di(sulfonyl)amide, camphorsulfonate] are less flexible.

(iii). Use of potential hydrogen-bond donor and acceptor functions. In general, all NH donors of the cations are used, although sometimes with unexpected acceptors (e.g. I of p-I—C6H4 groups; Friedrichs & Jones, 2006). However, whereas the di(sulfonyl)amines often use just the O acceptors, they sometimes utilize the central N atom as well as or instead of the O atoms.

(iv). Multi-centre hydrogen bonding. Although most classical hydrogen bonds have been of the normal two-centre type, some systems {in particular [Au(etu)2]+[{(p-Cl—C6H4)SO2}2N]; Friedrichs & Jones, 2006} exhibit three- or even four-centre hydrogen bonds.

(v). Non-classical hydrogen bonding and other `weak' contacts. In general, the classical hydrogen bonds may be seen as structure-determining. However, C—H···X interactions (X = O, halogen, S or Au) and contacts such as Au···X (X = O, N, halogen, S or Au) or S···X (X = S or halogen) are very difficult to predict but may have an important effect on the packing in some cases (e.g. when the classical hydrogen bonding leads to small closed units such as rings, the packing of the rings is generally determined by the weaker contacts).

Experimental top

Compounds (I) and (II) were prepared from the corresponding chlorides as follows. The chloride (1 mmol) was suspended in methanol (30 ml) and treated with a solution of the silver disulfonylamide (1 mmol) (kindly provided by Professor A. Blaschette) in acetonitrile (5 ml). The cloudy reaction mixture was stirred for 1.5 h at room temperature in the dark. After filtering off the precipitated AgCl, the colourless filtrate was stored at 255 K for 12 h to yield crystals of (I) and (II).

For compound (I), yield: 0.258 g (65%); mp. 426 K; 1H NMR (d6-DMSO, δ, p.p.m.): 3.69 [4H, t, 3J(H - H) = 8.3 Hz, CH2], 4.24 (4H, t, CH2), 7.44 (4H, m, Hm), 7.45 (4H, m, Ho), 11.80 (2H, bs, NH); MS (NBA; A = anion, K = cation): FAB (negative) m/z = 364 (100%, [A]), 366 (75%, [A + 2H]), 753 (8%, [K + H]); FAB (positive) m/z = 316 (21%, [K - (C3H6NS2)]+), 434 (5%, [K - H]+), 435 (100%, [K]+), 437 (18%, [K + 2H]+), 750 (12%, [2K - (C3H6NS2) - H]+), 752 (4%, [2K - (C3H6NS2) + H]+); elemental analysis, calculated: C 27.00, H 2.27, N 5.25, S 24.03, Cl 8.86%; found: C 26.54, H 2.20, N 5.18, S 23.80, Cl 8.61%.

For compound (II), yield: 0.302 g (62%); mp. 441 K; 1H NMR (d6-DMSO, δ, p.p.m.): 3.06 (6H, s, NCH3), 3.63 (4H, m, second-order spectrum of ABNM spin system, CH2), 3.85 (4H, m, second-order spectrum of ABNM spin system, CH2), 7.37 [4H, dt, 3J(Ho - Hm) = 8.5 Hz, 5J(Ho - Hm) = ?.? Hz, Ho], 7.73 (4H, dt, Hm), 9.11 (4H, bs, NH); MS (NBA): FAB (negative) m/z = 548 (100%, [A]), 421 (13%, [A - I]); FAB (positive) m/z = 313 (16%, [K - (CH3—C3H6N2S)]+), 399 (4%, [K − 2CH3]+), 427 (13%, [K − 2H]+), 429 (100%, [K]+), 430 (12%, [K + H]+), 741 (2%, [2K - (CH3—C3H6N2S)]+); elemental analysis, calculated: C 24.57, H 2.48, N 7.17, S 13.12%; found: C 24.61, H 2.48, N 7.06, S 13.01%.

Refinement top

H atoms were treated as follows. N-bound H atoms were freely refined but with DFIX restraints (N—H = 0.85 Å with a notional s.u. of 0.02 Å). Methyl H atoms were identified in difference syntheses, idealized and refined as rigid groups allowed to rotate but not tip (C—H = 0.98 Å and H—C—H = 109.5°). Other H atoms were treated using a riding model starting from calculated positions (C—Harom = 0.95 and C—Hmethylene = 0.99 Å), with Uiso(H) = 1.2Ueq(C). [Please check added text]

Computing details top

For both compounds, data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of compound (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed line represents a hydrogen bond.
[Figure 2] Fig. 2. The formula unit of compound (II). Only the asymmetric unit is numbered. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines represent hydrogen bonds.
[Figure 3] Fig. 3. Classical hydrogen bonding in compound (I), viewed perpendicular to the ab plane. Dashed lines indicate hydrogen bonds. For clarity, the aromatic rings are represented by the ipso C atoms only.
[Figure 4] Fig. 4. The anion substructure of (I), viewed parallel to the a axis, showing the C—H···O and Cl···Cl interactions (dashed lines).
[Figure 5] Fig. 5. Short contacts (dashed lines) in (I) to Cl atoms in the region y 1/4, viewed parallel to the b axis. Italic labels correspond to the following contacts: (a) Au···Cl1(x + 1, y, z) 3.862 (2) Å; (b) Au···Cl1(x + 1, −y + 1/2, z − 1/2) 4.005 (2) Å; (c) Au···Cl2(−x + 1, y − 1/2, −z + 1/2) 3.768 (2) Å; (d) S11···Cl2(−x + 1, −y + 1, −z) 3.334 (2) Å; (e) S21···Cl1(x + 1, −y + 1/2, z − 1/2) 3.539 (2) Å; (f) S21···Cl2(−x + 1, −y + 1, −z) 3.649 (2) Å; (g) Cl1···Cl2(−x + 1, y − 1/2, −z + 1/2) 3.549 (2) Å. For clarity, anions are represented as SO2C6H4Cl fragments.
[Figure 6] Fig. 6. A packing diagram for (II), viewed parallel to the b axis at y 0. A row of four dimers (arranged like backslashes) can be recognized across the centre of the diagram, with neighbouring anions top and bottom. Italic labels correspond to the following contacts (see Table 4 for details of hydrogen bonds): (a) H13A···O2; (b) H14C···O2; (c) H14B···O1; (d) C25···O1; (e) H13B···I; (f) I···I(−x − 1/2, −y + 1/2, −z + 1) 4.1116 (7) Å; (g) Au···I(x, −y + 1, z − 1/2) 3.9467 (6) Å. Classical hydrogen bonds (cf. Fig. 2) are shown as dashed lines but are not labelled.
(I) Bis(thiazolidine-2-thione-κS2)gold(I) bis(4-chlorobenzenesulfonyl)amidate top
Crystal data top
[Au(C3H5NS2)2](C12H8Cl2NO4S2)F(000) = 1552
Mr = 800.58Dx = 2.091 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 63 reflections
a = 7.9342 (10) Åθ = 2.7–12.5°
b = 25.491 (3) ŵ = 6.52 mm1
c = 12.6874 (8) ÅT = 173 K
β = 97.639 (8)°Prism, colourless
V = 2543.3 (5) Å30.32 × 0.28 × 0.16 mm
Z = 4
Data collection top
Siemens P4
diffractometer
2947 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 25.0°, θmin = 3.0°
ω scansh = 91
Absorption correction: ψ scan
(XEMP; Siemens, 1994)
k = 030
Tmin = 0.202, Tmax = 0.352l = 1415
5152 measured reflections3 standard reflections every 247 reflections
4483 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.0218P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.83(Δ/σ)max = 0.001
4483 reflectionsΔρmax = 0.64 e Å3
316 parametersΔρmin = 0.49 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00069 (5)
Crystal data top
[Au(C3H5NS2)2](C12H8Cl2NO4S2)V = 2543.3 (5) Å3
Mr = 800.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9342 (10) ŵ = 6.52 mm1
b = 25.491 (3) ÅT = 173 K
c = 12.6874 (8) Å0.32 × 0.28 × 0.16 mm
β = 97.639 (8)°
Data collection top
Siemens P4
diffractometer
2947 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XEMP; Siemens, 1994)
Rint = 0.026
Tmin = 0.202, Tmax = 0.3523 standard reflections every 247 reflections
5152 measured reflections intensity decay: none
4483 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0282 restraints
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 0.83Δρmax = 0.64 e Å3
4483 reflectionsΔρmin = 0.49 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Non-bonded contacts etc.:

3.8621 (0.0019) Au - Cl1_$7 4.0050 (0.0016) Au - Cl1_$8 3.5390 (0.0021) S21 - Cl1_$8 3.7683 (0.0017) Au - Cl2_$3 3.3339 (0.0019) S11 - Cl2_$2 3.6492 (0.0022) S21 - Cl2_$2 3.5491 (0.0024) Cl1 - Cl2_$3

77.98 (0.19) C34 - Cl1 - Cl2_$3 90.93 (1/5) Cl1 - Cl2_$3 - C44_$3

−82.42 (0.26) C11 - S1 - S2 - C21 − 153.90 (0.26) C31 - S3 - S4 - C41

Operators for generating equivalent atoms: $2 − x + 1, −y + 1, −z $3 − x + 1, y − 1/2, −z + 1/2 $4 − x + 1, −y + 1, −z + 1 $7 x + 1, y, z $8 x + 1, −y + 1/2, z − 1/2

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.90987 (3)0.248858 (10)0.206881 (16)0.02590 (7)
S11.0369 (2)0.16827 (5)0.22657 (11)0.0288 (4)
S20.7683 (2)0.32642 (5)0.21127 (12)0.0326 (4)
C110.9301 (7)0.13245 (19)0.1265 (4)0.0217 (13)
N110.9384 (6)0.08127 (17)0.1204 (4)0.0232 (11)
H111.001 (6)0.0625 (16)0.163 (3)0.019 (15)*
C120.8241 (9)0.0553 (2)0.0364 (5)0.0297 (16)
H12A0.72220.04180.06490.036*
H12B0.88240.02560.00650.036*
C130.7743 (9)0.0959 (2)0.0476 (5)0.0377 (16)
H13A0.65540.09060.08070.045*
H13B0.84980.09420.10370.045*
S110.7971 (2)0.15912 (5)0.02109 (11)0.0305 (4)
C210.8368 (7)0.3669 (2)0.1180 (4)0.0209 (13)
N210.7871 (6)0.41571 (17)0.1078 (4)0.0241 (11)
H210.718 (6)0.431 (2)0.144 (4)0.036 (18)*
C220.8703 (8)0.4482 (2)0.0341 (4)0.0270 (15)
H22A0.96530.46840.07330.032*
H22B0.78800.47320.00390.032*
C230.9359 (7)0.4110 (2)0.0435 (4)0.0266 (13)
H23A1.04370.42410.06510.032*
H23B0.85170.40670.10790.032*
S210.9701 (2)0.34858 (5)0.02814 (11)0.0283 (3)
N10.5455 (6)0.47120 (15)0.2146 (3)0.0209 (10)
O10.2973 (5)0.44267 (13)0.0942 (3)0.0270 (9)
O20.2502 (5)0.50362 (14)0.2385 (3)0.0276 (10)
O30.8115 (5)0.51247 (14)0.2758 (3)0.0291 (10)
O40.5906 (5)0.51687 (14)0.3946 (3)0.0315 (10)
S30.34454 (19)0.46032 (5)0.20170 (10)0.0208 (3)
S40.6325 (2)0.51704 (5)0.28754 (11)0.0219 (3)
C310.3149 (7)0.40527 (19)0.2829 (4)0.0190 (12)
C320.2822 (7)0.4117 (2)0.3864 (4)0.0267 (13)
H320.28150.44580.41670.032*
C330.2505 (8)0.3680 (2)0.4453 (5)0.0313 (15)
H330.22850.37210.51670.038*
C340.2506 (7)0.3189 (2)0.4012 (4)0.0270 (13)
C350.2875 (7)0.3116 (2)0.2984 (4)0.0253 (13)
H350.29160.27740.26920.030*
C360.3181 (7)0.3555 (2)0.2393 (4)0.0233 (13)
H360.34160.35140.16820.028*
C410.5625 (7)0.57816 (18)0.2302 (4)0.0192 (12)
C420.5041 (7)0.6158 (2)0.2927 (4)0.0245 (13)
H420.49840.60880.36570.029*
C430.4527 (7)0.6646 (2)0.2496 (4)0.0249 (13)
H430.41250.69110.29260.030*
C440.4615 (7)0.6733 (2)0.1430 (4)0.0251 (13)
C450.5200 (7)0.6355 (2)0.0790 (4)0.0260 (13)
H450.52500.64210.00580.031*
C460.5712 (7)0.5875 (2)0.1242 (4)0.0243 (13)
H460.61260.56100.08170.029*
Cl10.2017 (2)0.26468 (6)0.47389 (13)0.0484 (5)
Cl20.3868 (2)0.73245 (5)0.08688 (12)0.0376 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.019 (3)0.016 (2)0.029 (2)0.001 (2)0.006 (2)0.0001 (19)
Au0.02979 (12)0.01680 (10)0.03119 (11)0.00292 (14)0.00430 (8)0.00047 (12)
S10.0312 (10)0.0205 (7)0.0328 (8)0.0003 (7)0.0028 (7)0.0012 (6)
S20.0422 (11)0.0205 (7)0.0378 (9)0.0023 (7)0.0155 (8)0.0005 (6)
C110.017 (3)0.020 (3)0.029 (3)0.005 (3)0.007 (3)0.005 (2)
N110.018 (3)0.019 (2)0.032 (3)0.002 (2)0.001 (2)0.003 (2)
C120.030 (4)0.026 (3)0.031 (4)0.005 (3)0.001 (3)0.000 (3)
C130.048 (5)0.028 (3)0.034 (3)0.007 (3)0.005 (3)0.003 (3)
S110.0373 (10)0.0185 (7)0.0335 (8)0.0017 (7)0.0036 (7)0.0060 (6)
C210.020 (3)0.021 (3)0.023 (3)0.002 (3)0.003 (3)0.005 (2)
N210.025 (3)0.020 (2)0.028 (3)0.005 (2)0.009 (2)0.005 (2)
C220.028 (4)0.021 (3)0.032 (4)0.002 (3)0.005 (3)0.005 (2)
C230.020 (4)0.031 (3)0.029 (3)0.001 (3)0.005 (3)0.001 (3)
S210.0278 (9)0.0228 (7)0.0360 (8)0.0056 (7)0.0108 (7)0.0039 (6)
O10.031 (2)0.029 (2)0.021 (2)0.0013 (19)0.0021 (18)0.0013 (16)
O20.020 (3)0.025 (2)0.038 (2)0.0050 (19)0.0052 (19)0.0008 (18)
O30.018 (2)0.021 (2)0.047 (3)0.0003 (18)0.003 (2)0.0097 (18)
O40.047 (3)0.024 (2)0.022 (2)0.005 (2)0.0016 (19)0.0009 (16)
S30.0196 (8)0.0189 (7)0.0239 (7)0.0002 (6)0.0036 (6)0.0003 (6)
S40.0232 (9)0.0166 (7)0.0247 (7)0.0015 (6)0.0006 (7)0.0035 (6)
C310.013 (3)0.021 (3)0.023 (3)0.008 (2)0.001 (2)0.002 (2)
C320.028 (4)0.030 (3)0.024 (3)0.002 (3)0.010 (3)0.003 (2)
C330.025 (4)0.038 (4)0.032 (3)0.000 (3)0.007 (3)0.004 (3)
C340.017 (3)0.026 (3)0.038 (3)0.005 (3)0.005 (3)0.007 (3)
C350.022 (3)0.023 (3)0.032 (3)0.002 (3)0.007 (3)0.000 (2)
C360.019 (3)0.030 (3)0.022 (3)0.006 (3)0.004 (2)0.004 (2)
C410.017 (3)0.013 (3)0.027 (3)0.003 (2)0.001 (2)0.004 (2)
C420.023 (3)0.026 (3)0.026 (3)0.004 (3)0.005 (3)0.001 (2)
C430.021 (3)0.019 (3)0.035 (3)0.003 (3)0.003 (3)0.005 (2)
C440.017 (3)0.016 (3)0.041 (3)0.005 (2)0.001 (3)0.005 (2)
C450.032 (4)0.026 (3)0.021 (3)0.003 (3)0.006 (3)0.000 (2)
C460.026 (4)0.021 (3)0.026 (3)0.001 (3)0.002 (3)0.006 (2)
Cl10.0542 (12)0.0360 (10)0.0604 (10)0.0018 (8)0.0272 (9)0.0179 (7)
Cl20.0381 (10)0.0226 (7)0.0498 (9)0.0015 (6)0.0022 (8)0.0095 (6)
Geometric parameters (Å, º) top
Au—S12.2873 (14)C34—Cl11.733 (5)
Au—S22.2782 (15)C35—C361.386 (7)
S1—C111.696 (6)C41—C421.365 (7)
S2—C211.711 (5)C41—C461.377 (7)
C11—N111.309 (6)C42—C431.397 (7)
C11—S111.729 (6)C43—C441.383 (7)
N11—C121.462 (7)C44—C451.379 (7)
C12—C131.500 (7)C44—Cl21.737 (5)
C13—S111.829 (6)C45—C461.389 (7)
C21—N211.307 (7)N11—H110.84 (4)
C21—S211.719 (5)C12—H12A0.99
N21—C221.470 (7)C12—H12B0.99
C22—C231.509 (7)C13—H13A0.99
C23—S211.834 (5)C13—H13B0.99
N1—S41.590 (4)N21—H210.86 (5)
N1—S31.605 (5)C22—H22A0.99
O1—S31.438 (4)C22—H22B0.99
O2—S31.446 (4)C23—H23A0.99
O3—S41.451 (4)C23—H23B0.99
O4—S41.441 (4)C32—H320.95
S3—C311.775 (5)C33—H330.95
S4—C411.777 (5)C35—H350.95
C31—C321.381 (7)C36—H360.95
C31—C361.386 (7)C42—H420.95
C32—C331.383 (7)C43—H430.95
C33—C341.372 (7)C45—H450.95
C34—C351.387 (7)C46—H460.95
S2—Au—S1171.23 (5)C45—C44—C43121.9 (5)
C11—S1—Au103.45 (19)C45—C44—Cl2119.2 (4)
C21—S2—Au107.64 (19)C43—C44—Cl2118.8 (4)
N11—C11—S1123.8 (4)C44—C45—C46118.4 (5)
N11—C11—S11112.1 (4)C41—C46—C45120.4 (5)
S1—C11—S11124.1 (3)C11—N11—H11124 (4)
C11—N11—C12117.5 (5)C12—N11—H11118 (3)
N11—C12—C13106.5 (4)N11—C12—H12A110.4
C12—C13—S11105.6 (4)C13—C12—H12A110.4
C11—S11—C1391.9 (3)N11—C12—H12B110.4
N21—C21—S2121.5 (4)C13—C12—H12B110.4
N21—C21—S21113.4 (4)H12A—C12—H12B108.6
S2—C21—S21125.1 (3)C12—C13—H13A110.6
C21—N21—C22116.4 (5)S11—C13—H13A110.6
N21—C22—C23106.5 (4)C12—C13—H13B110.6
C22—C23—S21105.2 (4)S11—C13—H13B110.6
C21—S21—C2391.7 (2)H13A—C13—H13B108.8
S4—N1—S3122.4 (3)C21—N21—H21125 (4)
O1—S3—O2117.7 (2)C22—N21—H21118 (4)
O1—S3—N1106.3 (2)N21—C22—H22A110.4
O2—S3—N1112.6 (2)C23—C22—H22A110.4
O1—S3—C31105.4 (2)N21—C22—H22B110.4
O2—S3—C31107.6 (2)C23—C22—H22B110.4
N1—S3—C31106.5 (2)H22A—C22—H22B108.6
O4—S4—O3116.6 (2)C22—C23—H23A110.7
O4—S4—N1114.2 (2)S21—C23—H23A110.7
O3—S4—N1103.7 (2)C22—C23—H23B110.7
O4—S4—C41106.9 (2)S21—C23—H23B110.7
O3—S4—C41106.6 (2)H23A—C23—H23B108.8
N1—S4—C41108.5 (2)C31—C32—H32120.4
C32—C31—C36120.3 (5)C33—C32—H32120.4
C32—C31—S3120.9 (4)C34—C33—H33119.8
C36—C31—S3118.7 (4)C32—C33—H33119.8
C31—C32—C33119.2 (5)C36—C35—H35120.8
C34—C33—C32120.3 (5)C34—C35—H35120.8
C33—C34—C35121.1 (5)C31—C36—H36119.7
C33—C34—Cl1119.9 (4)C35—C36—H36119.7
C35—C34—Cl1119.0 (4)C41—C42—H42119.9
C36—C35—C34118.4 (5)C43—C42—H42119.9
C31—C36—C35120.5 (5)C44—C43—H43120.8
C42—C41—C46120.7 (5)C42—C43—H43120.8
C42—C41—S4119.4 (4)C44—C45—H45120.8
C46—C41—S4119.9 (4)C46—C45—H45120.8
C41—C42—C43120.2 (5)C41—C46—H46119.8
C44—C43—C42118.4 (5)C45—C46—H46119.8
C11—S1—S2—C2182.4 (3)O1—S3—C31—C3623.3 (5)
Au—S1—C11—N11166.0 (5)O2—S3—C31—C36149.6 (4)
Au—S1—C11—S1113.7 (4)N1—S3—C31—C3689.4 (5)
S1—C11—N11—C12172.9 (4)C36—C31—C32—C330.9 (8)
S11—C11—N11—C126.7 (7)S3—C31—C32—C33176.5 (4)
C11—N11—C12—C1322.0 (7)C31—C32—C33—C340.4 (9)
N11—C12—C13—S1125.3 (6)C32—C33—C34—C352.0 (9)
N11—C11—S11—C138.4 (5)C32—C33—C34—Cl1177.2 (5)
S1—C11—S11—C13171.9 (4)C33—C34—C35—C362.4 (9)
C12—C13—S11—C1119.8 (5)Cl1—C34—C35—C36176.9 (4)
Au—S2—C21—N21174.7 (4)C32—C31—C36—C350.5 (8)
Au—S2—C21—S216.7 (4)S3—C31—C36—C35176.9 (4)
S2—C21—N21—C22172.8 (4)C34—C35—C36—C311.1 (8)
S21—C21—N21—C228.4 (6)O4—S4—C41—C427.6 (5)
C21—N21—C22—C2323.7 (7)O3—S4—C41—C42117.7 (5)
N21—C22—C23—S2126.3 (5)N1—S4—C41—C42131.2 (5)
N21—C21—S21—C237.6 (5)O4—S4—C41—C46173.9 (4)
S2—C21—S21—C23171.2 (4)O3—S4—C41—C4660.8 (5)
C22—C23—S21—C2119.9 (4)N1—S4—C41—C4650.3 (5)
C31—S3—S4—C41153.9 (3)C46—C41—C42—C430.2 (9)
S4—N1—S3—O1145.7 (3)S4—C41—C42—C43178.3 (4)
S4—N1—S3—O215.4 (4)C41—C42—C43—C440.4 (8)
S4—N1—S3—C31102.3 (3)C42—C43—C44—C450.3 (9)
S3—N1—S4—O452.1 (4)C42—C43—C44—Cl2176.4 (4)
S3—N1—S4—O3180.0 (3)C43—C44—C45—C460.1 (9)
S3—N1—S4—C4167.0 (4)Cl2—C44—C45—C46176.8 (4)
O1—S3—C31—C32154.1 (4)C42—C41—C46—C450.2 (8)
O2—S3—C31—C3227.8 (5)S4—C41—C46—C45178.8 (4)
N1—S3—C31—C3293.2 (5)C44—C45—C46—C410.4 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···N10.86 (5)2.01 (5)2.864 (6)174 (6)
N11—H11···O3i0.84 (4)2.03 (3)2.838 (6)161 (5)
C32—H32···O4ii0.952.653.362 (6)132
C46—H46···O1iii0.952.433.182 (6)136
C22—H22B···O1iii0.992.483.403 (7)154
C12—H12A···O2iv0.992.663.269 (7)120
C12—H12A···O4iv0.992.683.649 (8)167
C43—H43···Auv0.952.953.690 (5)136
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x+1, y1/2, z+1/2; (v) x+1, y+1/2, z+1/2.
(II) bis(1-methylimidazolidine-2-thione-κS2)gold(I) bis(4-iodobenzenesulfonyl)amidate top
Crystal data top
[Au(C4H8N2S)2](C12H8I2NO4S2)F(000) = 1840
Mr = 977.45Dx = 2.311 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 63 reflections
a = 17.4002 (14) Åθ = 4.0–12.5°
b = 10.1254 (10) ŵ = 7.77 mm1
c = 17.1493 (18) ÅT = 173 K
β = 111.596 (8)°Prism, pale yellow
V = 2809.3 (5) Å30.28 × 0.16 × 0.16 mm
Z = 4
Data collection top
Siemens P4
diffractometer
2494 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
ω scansh = 2220
Absorption correction: ψ scan
(XEMP; Siemens, 1994)
k = 134
Tmin = 0.249, Tmax = 0.289l = 021
4651 measured reflections3 standard reflections every 247 reflections
3218 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.047 w = 1/[σ2(Fo2) + (0.0199P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max = 0.001
3218 reflectionsΔρmax = 0.52 e Å3
170 parametersΔρmin = 0.61 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00162 (4)
Crystal data top
[Au(C4H8N2S)2](C12H8I2NO4S2)V = 2809.3 (5) Å3
Mr = 977.45Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.4002 (14) ŵ = 7.77 mm1
b = 10.1254 (10) ÅT = 173 K
c = 17.1493 (18) Å0.28 × 0.16 × 0.16 mm
β = 111.596 (8)°
Data collection top
Siemens P4
diffractometer
2494 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XEMP; Siemens, 1994)
Rint = 0.020
Tmin = 0.249, Tmax = 0.2893 standard reflections every 247 reflections
4651 measured reflections intensity decay: none
3218 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0261 restraint
wR(F2) = 0.047H atoms treated by a mixture of independent and constrained refinement
S = 0.89Δρmax = 0.52 e Å3
3218 reflectionsΔρmin = 0.61 e Å3
170 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Further details:

Dihedral angle TORS

Distance CONT

3.2574 (0.0044) Au - N1 4.1116 (0.0007) I - I_$7 3.9467 (0.0006) Au - I_$3

Angle ANGL

91.40 (0.11) C24 - I - I_$7

Operators for generating equivalent atoms:

$1 − x, y, −z + 1/2 $3 x, −y + 1, z − 1/2 $7 − x − 1/2, −y + 1/2, −z + 1

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.00000.76977 (2)0.25000.03116 (9)
S10.07428 (6)0.77991 (12)0.16488 (7)0.0365 (3)
N110.1760 (2)0.6035 (4)0.2746 (2)0.0290 (8)
H110.147 (2)0.594 (4)0.304 (2)0.035 (13)*
N120.20002 (19)0.6339 (3)0.1595 (2)0.0264 (8)
C110.1530 (2)0.6676 (4)0.2019 (2)0.0235 (9)
C120.2353 (2)0.4982 (4)0.2776 (2)0.0318 (10)
H12A0.20830.41060.26590.038*
H12B0.28180.49590.33240.038*
C130.2641 (2)0.5415 (5)0.2072 (3)0.0363 (11)
H13A0.31880.58510.23000.044*
H13B0.26720.46540.17220.044*
C140.1986 (3)0.6906 (4)0.0809 (2)0.0337 (10)
H14A0.15310.75410.06000.040*
H14B0.19070.62010.03950.040*
H14C0.25110.73570.09040.040*
N10.00000.4481 (4)0.25000.0204 (9)
S20.05733 (5)0.36951 (10)0.33102 (6)0.0215 (2)
O10.10730 (15)0.4689 (3)0.38751 (15)0.0306 (7)
O20.10148 (15)0.2605 (3)0.31231 (16)0.0298 (7)
C210.0068 (2)0.3011 (4)0.3807 (2)0.0189 (8)
C220.0158 (2)0.1645 (4)0.3814 (2)0.0242 (9)
H220.00940.10930.35280.029*
C230.0615 (2)0.1099 (4)0.4240 (2)0.0256 (9)
H230.06760.01680.42530.031*
C240.0986 (2)0.1912 (4)0.4649 (2)0.0243 (9)
C250.0916 (2)0.3277 (4)0.4629 (2)0.0255 (9)
H250.11800.38280.49030.031*
C260.0453 (2)0.3825 (4)0.4201 (2)0.0229 (8)
H260.04010.47570.41780.027*
I0.161913 (18)0.10369 (3)0.534458 (19)0.03991 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.02503 (12)0.02442 (14)0.04765 (16)0.0000.01764 (11)0.000
S10.0305 (5)0.0340 (6)0.0494 (7)0.0063 (5)0.0200 (5)0.0157 (6)
N110.0289 (17)0.034 (2)0.0309 (19)0.0029 (16)0.0193 (16)0.0079 (17)
N120.0267 (17)0.033 (2)0.0229 (17)0.0002 (15)0.0125 (14)0.0020 (16)
C110.0199 (18)0.023 (2)0.027 (2)0.0035 (17)0.0087 (16)0.0010 (18)
C120.027 (2)0.035 (3)0.033 (2)0.007 (2)0.0109 (18)0.009 (2)
C130.031 (2)0.042 (3)0.041 (3)0.003 (2)0.019 (2)0.006 (2)
C140.035 (2)0.042 (3)0.025 (2)0.005 (2)0.0126 (19)0.001 (2)
N10.028 (2)0.017 (2)0.017 (2)0.0000.0094 (18)0.000
S20.0203 (4)0.0276 (6)0.0176 (5)0.0003 (4)0.0082 (4)0.0002 (4)
O10.0280 (14)0.0431 (19)0.0205 (14)0.0174 (14)0.0089 (12)0.0091 (14)
O20.0258 (13)0.0385 (18)0.0271 (14)0.0085 (13)0.0121 (11)0.0020 (14)
C210.0210 (17)0.020 (2)0.0145 (18)0.0029 (16)0.0055 (15)0.0035 (16)
C220.028 (2)0.022 (2)0.023 (2)0.0048 (18)0.0094 (17)0.0026 (18)
C230.034 (2)0.014 (2)0.028 (2)0.0001 (17)0.0096 (18)0.0012 (17)
C240.0246 (19)0.029 (2)0.022 (2)0.0041 (17)0.0121 (17)0.0052 (18)
C250.027 (2)0.029 (2)0.022 (2)0.0026 (18)0.0110 (17)0.0000 (19)
C260.0267 (19)0.018 (2)0.023 (2)0.0017 (17)0.0073 (16)0.0010 (17)
I0.03984 (17)0.0443 (2)0.04451 (19)0.00196 (14)0.02595 (14)0.01215 (15)
Geometric parameters (Å, º) top
Au—S12.2806 (11)C24—C251.389 (6)
S1—C111.713 (4)C24—I2.095 (4)
N11—C111.329 (5)C25—C261.390 (5)
N11—C121.471 (5)N11—H110.84 (4)
N12—C111.324 (4)C12—H12A0.99
N12—C131.454 (5)C12—H12B0.99
N12—C141.457 (5)C13—H13A0.99
C12—C131.531 (5)C13—H13B0.99
N1—S21.593 (2)C14—H14A0.98
S2—O11.445 (3)C14—H14B0.98
S2—O21.447 (3)C14—H14C0.98
S2—C211.774 (4)C22—H220.95
C21—C261.385 (5)C23—H230.95
C21—C221.393 (5)C25—H250.95
C22—C231.377 (5)C26—H260.95
C23—C241.385 (5)
S1i—Au—S1174.84 (6)C21—C26—C25119.9 (4)
C11—S1—Au107.28 (13)C11—N11—H11125 (3)
C11—N11—C12110.6 (3)C12—N11—H11118 (3)
C11—N12—C13110.9 (3)N11—C12—H12A111.5
C11—N12—C14127.1 (3)C13—C12—H12A111.5
C13—N12—C14121.5 (3)N11—C12—H12B111.5
N12—C11—N11110.8 (3)C13—C12—H12B111.5
N12—C11—S1122.6 (3)H12A—C12—H12B109.3
N11—C11—S1126.6 (3)N12—C13—H13A111.2
N11—C12—C13101.2 (3)C12—C13—H13A111.2
N12—C13—C12102.8 (3)N12—C13—H13B111.2
S2i—N1—S2120.1 (3)C12—C13—H13B111.2
O1—S2—O2116.28 (16)H13A—C13—H13B109.1
O1—S2—N1105.42 (19)N12—C14—H14A109.5
O2—S2—N1113.63 (15)N12—C14—H14B109.5
O1—S2—C21106.22 (16)H14A—C14—H14B109.5
O2—S2—C21106.70 (17)N12—C14—H14C109.5
N1—S2—C21108.14 (13)H14A—C14—H14C109.5
C26—C21—C22120.7 (3)H14B—C14—H14C109.5
C26—C21—S2120.3 (3)C23—C22—H22120.3
C22—C21—S2119.0 (3)C21—C22—H22120.3
C23—C22—C21119.5 (4)C22—C23—H23120.1
C22—C23—C24119.8 (4)C24—C23—H23120.1
C23—C24—C25121.1 (4)C24—C25—H25120.5
C23—C24—I118.5 (3)C26—C25—H25120.5
C25—C24—I120.3 (3)C21—C26—H26120.0
C24—C25—C26118.9 (4)C25—C26—H26120.0
S1—C11—C11i—S1i74.0 (3)O1—S2—C21—C2643.4 (3)
C13—N12—C11—N112.3 (5)O2—S2—C21—C26168.0 (3)
C14—N12—C11—N11174.4 (4)N1—S2—C21—C2669.4 (3)
C13—N12—C11—S1177.5 (3)O1—S2—C21—C22134.9 (3)
C14—N12—C11—S15.4 (6)O2—S2—C21—C2210.2 (3)
C12—N11—C11—N1210.7 (5)N1—S2—C21—C22112.4 (3)
C12—N11—C11—S1169.6 (3)C26—C21—C22—C232.0 (6)
Au—S1—C11—N12169.3 (3)S2—C21—C22—C23176.3 (3)
Au—S1—C11—N1111.0 (4)C21—C22—C23—C240.6 (6)
C11—N11—C12—C1317.9 (4)C22—C23—C24—C251.0 (6)
C11—N12—C13—C1213.3 (4)C22—C23—C24—I176.6 (3)
C14—N12—C13—C12174.1 (4)C23—C24—C25—C261.1 (6)
N11—C12—C13—N1217.7 (4)I—C24—C25—C26176.4 (3)
C21—S2—S2i—C21i133.6 (3)C22—C21—C26—C251.9 (5)
S2i—N1—S2—O1173.29 (12)S2—C21—C26—C25176.4 (3)
S2i—N1—S2—O244.83 (13)C24—C25—C26—C210.3 (5)
S2i—N1—S2—C2173.42 (14)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O10.84 (4)2.21 (3)2.956 (4)149 (4)
N11—H11···N10.84 (4)2.81 (4)3.329 (4)122 (3)
C13—H13A···O2ii0.992.523.328 (5)139
C14—H14C···O2ii0.982.503.356 (5)145
C14—H14B···O1iii0.982.633.501 (5)148
C25—H25···O1iv0.952.533.378 (5)149
C13—H13B···Iv0.993.123.924 (4)139
C23—H23···S1vi0.952.833.645 (4)144
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z1/2; (iv) x, y+1, z+1; (v) x+1/2, y+1/2, z1/2; (vi) x, y1, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Au(C3H5NS2)2](C12H8Cl2NO4S2)[Au(C4H8N2S)2](C12H8I2NO4S2)
Mr800.58977.45
Crystal system, space groupMonoclinic, P21/cMonoclinic, C2/c
Temperature (K)173173
a, b, c (Å)7.9342 (10), 25.491 (3), 12.6874 (8)17.4002 (14), 10.1254 (10), 17.1493 (18)
β (°) 97.639 (8) 111.596 (8)
V3)2543.3 (5)2809.3 (5)
Z44
Radiation typeMo KαMo Kα
µ (mm1)6.527.77
Crystal size (mm)0.32 × 0.28 × 0.160.28 × 0.16 × 0.16
Data collection
DiffractometerSiemens P4
diffractometer
Siemens P4
diffractometer
Absorption correctionψ scan
(XEMP; Siemens, 1994)
ψ scan
(XEMP; Siemens, 1994)
Tmin, Tmax0.202, 0.3520.249, 0.289
No. of measured, independent and
observed [I > 2σ(I)] reflections
5152, 4483, 2947 4651, 3218, 2494
Rint0.0260.020
(sin θ/λ)max1)0.5950.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.053, 0.83 0.026, 0.047, 0.89
No. of reflections44833218
No. of parameters316170
No. of restraints21
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 0.490.52, 0.61

Computer programs: XSCANS (Siemens, 1991), XSCANS, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1994), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
Au—S12.2873 (14)S1—C111.696 (6)
Au—S22.2782 (15)S2—C211.711 (5)
S2—Au—S1171.23 (5)C21—S2—Au107.64 (19)
C11—S1—Au103.45 (19)S4—N1—S3122.4 (3)
C11—S1—S2—C2182.4 (3)S4—N1—S3—O1145.7 (3)
Au—S1—C11—N11166.0 (5)S4—N1—S3—O215.4 (4)
Au—S1—C11—S1113.7 (4)S4—N1—S3—C31102.3 (3)
N11—C12—C13—S1125.3 (6)S3—N1—S4—O452.1 (4)
Au—S2—C21—N21174.7 (4)S3—N1—S4—O3180.0 (3)
Au—S2—C21—S216.7 (4)S3—N1—S4—C4167.0 (4)
N21—C22—C23—S2126.3 (5)O2—S3—C31—C3227.8 (5)
C31—S3—S4—C41153.9 (3)O4—S4—C41—C427.6 (5)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N21—H21···N10.86 (5)2.01 (5)2.864 (6)174 (6)
N11—H11···O3i0.84 (4)2.03 (3)2.838 (6)161 (5)
C32—H32···O4ii0.952.653.362 (6)132
C46—H46···O1iii0.952.433.182 (6)136
C22—H22B···O1iii0.992.483.403 (7)154
C12—H12A···O2iv0.992.663.269 (7)120
C12—H12A···O4iv0.992.683.649 (8)167
C43—H43···Auv0.952.953.690 (5)136
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x+1, y1/2, z+1/2; (v) x+1, y+1/2, z+1/2.
Selected geometric parameters (Å, º) for (II) top
Au—S12.2806 (11)S1—C111.713 (4)
S1i—Au—S1174.84 (6)S2i—N1—S2120.1 (3)
C11—S1—Au107.28 (13)
S1—C11—C11i—S1i74.0 (3)S2i—N1—S2—O1173.29 (12)
Au—S1—C11—N12169.3 (3)S2i—N1—S2—O244.83 (13)
Au—S1—C11—N1111.0 (4)S2i—N1—S2—C2173.42 (14)
C21—S2—S2i—C21i133.6 (3)O2—S2—C21—C2210.2 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O10.84 (4)2.21 (3)2.956 (4)149 (4)
N11—H11···N10.84 (4)2.81 (4)3.329 (4)122 (3)
C13—H13A···O2ii0.992.523.328 (5)138.8
C14—H14C···O2ii0.982.503.356 (5)145.1
C14—H14B···O1iii0.982.633.501 (5)147.8
C25—H25···O1iv0.952.533.378 (5)149.0
C13—H13B···Iv0.993.123.924 (4)139.3
C23—H23···S1vi0.952.833.645 (4)144.1
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z1/2; (iv) x, y+1, z+1; (v) x+1/2, y+1/2, z1/2; (vi) x, y1, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds