Download citation
Download citation
link to html
The mol­ecules of N,N′-bis­(2-pyridylmeth­yl)ferrocene-1,1′-diyl­dicarboxamide, [Fe(C12H11N2O)2], contain intra­molecular N—H...N hydrogen bonds and are linked into sheets by three independent C—H...O hydrogen bonds. The mol­ecules of the isomeric compound N,N′-bis­(3-pyridylmeth­yl)ferrocene-1,1′-diyldicarboxamide lie across inversion centres, and the mol­ecules are linked into sheets by a combination of N—H...N hydrogen bonds and π–π stacking inter­actions between pyridyl groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106041345/gd3052sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106041345/gd3052Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106041345/gd3052IIsup3.hkl
Contains datablock II

CCDC references: 628511; 628512

Comment top

Amide moieties, because of their unique stereoelectronic character, can interact with electron deficient centres through carbonyl groups and with electron rich centres through N—H units. This dual character has been successfully used for the design of amide-based receptors for recognizing a variety of guests including cations, anions and neutral molecules (Ranganathan et al., 1998; Kumar et al., 2003). Ferrocenyl compounds possess redox-responsive character and they can be used for electrochemical recognition of guests (Bernhardt & Creevey, 2004). In view of the above essential components for the molecular and electrochemical recognition of anionic guests, we have designed and synthesized the title compounds, (I) and (II) (Figs. 1 and 2), and we report their structures here.

The most striking difference between (I) and (II) lies in their conformations. In (I), the two substituents attached to the cyclopentadienyl groups are synclinal, whereas in (II),, they are antiperiplanar, as indicated by the torsion angles C5···Cg1···Cg2···C17 [69.3 (2)°] for (I) and C5···Cg1···Cg1*···C5* [−180.0 (2)°] for (II), where Cg1, Cg2, Cg1 and Cg1* are the centroids of the cyclopentadienyl rings. Moreover, the dihedral angles between the cyclopentadienyl groups and the amide planes (the O1/C6/N1 and O2/C18/N3 planes) are 4.3 (3) and 8.7 (3)° in (I); the corresponding values for (II) are 16.5 (3) and 16.5 (3)°. However, the bond dimensions in (I) and the centrosymmetric compound (II) are similar, except that the N1—C7 and N3—C19 bond lengths in (I) are shorter than the N1—C7 and N1* —C7* bond lengths in (II), and the N1—C7—C8 and N3—C19—C20 bond angles in (I) are larger than those in (II) (Tables 1 and 4). For each of (I) and (II), the bonds linking the cyclopentadienyl group and the carbonyl group are typical of a single bond (Csp2—Csp2); this fact suggests that the carbonyl group is not involved in the conjugation of the cyclopentadienyl group (Shi et al., 2006).

Although both compounds crystallize in the same space group, they show markedly different packing modes (Figs. 3 and 4). Compound (I) displays C—H···OC intermolecular hydrogen bonds in addition to N—H···N intramolecular hydrogen bonds (Table 2). Atom C11 of the 2-pyridyl group in the molecule at (x, y, z) acts as a hydrogen-bond donor, via atom H11, to carbonyl atom O2 in the molecule at (x, 1 + y, z), so generating a chain in the [010] direction. Two chains of this type passing through each unit cell are linked by C—H···OC hydrogen bonds in which atom C12 of the 2-pyridyl group in the molecule at (x, y, z) acts as a hydrogen-bond donor to carbonyl atom O2 in the molecule at (1 − x, 1 − y, 1 − z), thus leading to a [010] double chain along with the formation of an R22(24) (Bernstein et al., 1995) ring (Fig. 3). Two such double chains are further linked along the [001] direction via a C—H···OC hydrogen bond involving atom C1 of the cyclopentadienyl group and carbonyl atom O1 in the molecule at (1 − x, 1 − y, −z), thus resulting in a chain parallel to [001] along with the formation of an R22(10) ring. The combination of the [001] chain and the [010] double chain leads to a two-dimensional network.

Unlike those of (I), the molecules of compound (II) lie across an inversion centre, and they are linked by intermolecular N—H···N hydrogen bonds (Table 4). Atom N1 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via atom H1N, to pyridyl atom N2 in the molecule at (1 + x, y, z) to form a [100] chain. The chain passing through each unit cell is further linked along [010] by a ππ stacking interaction between the 3-pyridyl group in the molecule at (x, y, z) and the corresponding group in the molecule at (−x, 2 − y, −z) to give a [010] chain: the ring-centroid and interplanar distances are 3.668 (2) and 3.361 Å, respectively (Glidewell et al., 2005). The combination of the [100] and [010] chains generates a two-dimensional network.

Experimental top

A mixture of oxalyl chloride (3 ml, 34.4 mmol), 1,1'-ferrocenedicarboxylic acid (1.37 g, 5 mmol) and DMF (0.5 ml) in 20 ml of dichloromethane was stirred under nitrogen to give a clear solution. After removal of excess oxalyl chloride, the residue was dissolved in 10 ml of tetrahydrofuran (THF); to the solution was dropwise added a mixture of NEt3 (3.036 g, 30 mmol) and 2-pyridylmethylamine or 3-pyridylmethylamine (0.757 g, 7 mmol) in 25 ml of THF. The mixture was stirred overnight. The resulting crude solid was collected, washed with water, air-dried and recrystallized from 95% ethanol to afford the orange title compounds [(I): m.p. 499.55–500.25 K, yield 57%; (II): m.p. 474.95–475.05 K, yield 51%]. For (I), analysis calculated for C24H22FeN4O2: C 63.45, H 4.88, N 12.33%; found: C 63.50, H 4.72, N 12.51%. IR (KBr): 3273 (m, NH), 1648 (vs, OC) cm−1. UV [λmax, (ε× 104), in DMF]: 263.00 (2.78, B-band), 345.00 (0.17, R-band), 431.00 (0.09, d-d band) nm. 1H NMR (600 MHz, CDCl3, p.p.m.): δ 10.032 (2H, s, 2NH), 8.602, 7.764, 7.469, 7.292 (2H, s, 2H, s, 2H, s, 2H, s, 2C5H4N), 4.748, 4.350 (4H, s, 4H, s, C5H4), 4.551 (2H, s, CH2). For (II), analysis calculated for C24H22FeN4O2: C 63.45, H 4.88, N 12.33%; found: C 63.49, H 4.76, N 12.31%. IR (KBr): 3217 (m, NH), 1642 (vs, O C) cm−1. UV [λmax, (ε× 104), in DMF]: 264.00 (2.93, B-band), 310.50 (1.02, R-band), 503.50 (0.13, d-d band) nm. 1H NMR (600 MHz, CDCl3, p.p.m.): δ 8.578 (2H, s, 2NH), 8.495–8.514, 8.467–8.474, 7.750–7.763, 7.372–7.393 (2H, t, 2H, d, 2H, d, 2H, q, 2C5H4N), 4.759, 4.231 (4H, s, 4H, s, C5H4), 4.403–4.413 (2H, d, CH2).

Refinement top

All H atoms in (I) and (II) were placed at geometrically idealized positions and subsequently treated as riding atoms, with C—H distances of 0.93 (pyridyl group), 0.97 (CH2) and 0.98 (cyclopentadienyl group), and N—H distances of 0.86 Å at 295 K for (I), and C—H distances of 0.95 (pyridyl group), 0.99 (CH2) and 1.00 (cyclopentadienyl group), and an N—H distance of 0.88 Å at 193 K for (II); Uiso(H) values were set at 1.2Ueq(C,N).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989) for (I); CrystalClear (Rigaku Corporation & Molecular Structure Corporation, 2001) for (II). Cell refinement: CAD-4 Software for (I); CrystalClear for (II). Data reduction: XCAD4 (Harms & Wocadlo, 1995) for (I); CrystalStructure (Rigaku Corporation & Molecular Structure Corporation, 2004) for (II). For both compounds, program(s) used to solve structure: OSCAIL-X (McArdle, 2005) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL-X and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. Figure 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. Figure 2. The molecular structure of (II), showing the atom-labelling scheme. Symmetry equivalents related by (1 − x, 1 − y, 1 − z) are also shown and indicated by asterisks. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. Figure 3. The crystal structure of (I). Hydrogen bonds are drawn as dashed lines. For clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*), dollar sign ($) or ampersand (&) are at the symmetry positions (1 − x, 1 − y, 1 − z), (x, 1 + y, z) and (1 − x, 1 − y, −z), respectively.
[Figure 4] Fig. 4. Figure 4. The crystal structure of (II). Hydrogen bonds are drawn as dashed lines. For clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*), dollar sign ($) or prime (') are at the symmetry positions (1 − x, 1 − y, 1 − z), (1 + x, y, z) and (2 − x, 1 − y, 1 − z), respectively; Cg2 is centroid of the pyridyl ring; Cg2$, Cg2& and Cg2# are at the symmetry positions (1 + x, y, z), (−x, 2 − y, −z) and (1 − x, 2 − y, −z), respectively.
(I) N,N'-Bis(2-pyridylmethyl)ferrocene-1,1'-diyldicarboxamide top
Crystal data top
[Fe(C12H11N2O)2]Z = 2
Mr = 454.31F(000) = 472
Triclinic, P1Dx = 1.447 Mg m3
a = 8.9859 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8987 (2) ÅCell parameters from 25 reflections
c = 13.7459 (3) Åθ = 9–15°
α = 100.297 (2)°µ = 0.75 mm1
β = 102.114 (2)°T = 295 K
γ = 114.051 (1)°Prism, orange
V = 1042.75 (4) Å30.23 × 0.15 × 0.12 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
3611 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 27.5°, θmin = 3.4°
ω/2θ scansh = 1111
Absorption correction: empirical
ψ scan (North et al., 1968)
k = 1212
Tmin = 0.858, Tmax = 0.914l = 1717
14739 measured reflections3 standard reflections every 200 reflections
4769 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0348P)2 + 0.4231P]
where P = (Fo2 + 2Fc2)/3
4769 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Fe(C12H11N2O)2]γ = 114.051 (1)°
Mr = 454.31V = 1042.75 (4) Å3
Triclinic, P1Z = 2
a = 8.9859 (2) ÅMo Kα radiation
b = 9.8987 (2) ŵ = 0.75 mm1
c = 13.7459 (3) ÅT = 295 K
α = 100.297 (2)°0.23 × 0.15 × 0.12 mm
β = 102.114 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
3611 reflections with I > 2σ(I)
Absorption correction: empirical
ψ scan (North et al., 1968)
Rint = 0.050
Tmin = 0.858, Tmax = 0.9143 standard reflections every 200 reflections
14739 measured reflections intensity decay: none
4769 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.07Δρmax = 0.24 e Å3
4769 reflectionsΔρmin = 0.40 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4562 (3)0.2882 (3)0.05827 (18)0.0443 (6)
H10.51690.37190.03060.053*
C20.5007 (4)0.1708 (3)0.0753 (2)0.0502 (7)
H20.59920.16030.06240.060*
C30.3808 (4)0.0723 (3)0.1160 (2)0.0502 (7)
H30.38210.01770.13570.060*
C40.2607 (3)0.1278 (3)0.12431 (19)0.0432 (6)
H40.16370.08270.15050.052*
C50.3059 (3)0.2622 (3)0.08875 (17)0.0378 (6)
C60.2204 (3)0.3619 (3)0.08464 (18)0.0396 (6)
C70.0035 (4)0.4176 (3)0.1251 (2)0.0468 (6)
H7A0.11090.35940.13740.056*
H7B0.03130.43330.05730.056*
C80.0944 (3)0.5741 (3)0.2071 (2)0.0402 (6)
C90.0614 (4)0.6965 (4)0.1943 (2)0.0565 (8)
H90.01680.68580.13350.068*
C100.1473 (5)0.8340 (4)0.2738 (3)0.0672 (9)
H100.12550.91680.26780.081*
C110.2642 (4)0.8484 (3)0.3614 (3)0.0582 (8)
H110.32530.94120.41500.070*
C120.2892 (4)0.7227 (3)0.3683 (2)0.0544 (7)
H120.36760.73190.42850.065*
C130.5550 (3)0.4906 (3)0.32137 (18)0.0392 (6)
H130.49650.55480.31500.047*
C140.7029 (3)0.5103 (3)0.2920 (2)0.0497 (7)
H140.76390.58990.26150.060*
C150.7462 (4)0.3939 (4)0.3138 (2)0.0544 (8)
H150.84200.37860.30040.065*
C160.6257 (4)0.3022 (3)0.35723 (19)0.0467 (6)
H160.62380.21280.37920.056*
C170.5068 (3)0.3626 (3)0.36235 (17)0.0363 (5)
C180.3619 (3)0.2982 (3)0.40347 (17)0.0341 (5)
C190.1032 (3)0.2981 (3)0.42747 (19)0.0412 (6)
H19A0.06140.37430.43510.049*
H19B0.13920.28640.49570.049*
C200.0426 (3)0.1449 (3)0.35616 (19)0.0368 (5)
C210.1457 (4)0.0388 (3)0.3968 (2)0.0494 (7)
H210.12260.05910.46850.059*
C220.2819 (4)0.0963 (3)0.3312 (3)0.0642 (9)
H220.35310.16780.35770.077*
C230.3121 (4)0.1249 (3)0.2257 (3)0.0643 (9)
H230.40350.21570.17910.077*
C240.2030 (4)0.0151 (3)0.1912 (2)0.0561 (8)
H240.22270.03470.11980.067*
Fe10.50233 (5)0.29617 (4)0.21164 (3)0.03613 (12)
N10.0872 (3)0.3262 (2)0.12258 (16)0.0412 (5)
H1N0.05550.24720.14580.049*
N20.2067 (3)0.5870 (2)0.29298 (17)0.0448 (5)
N30.2504 (3)0.3557 (2)0.39139 (15)0.0367 (5)
H3N0.26650.42780.36180.044*
N40.0694 (3)0.1189 (2)0.25385 (16)0.0449 (5)
O10.2657 (3)0.4695 (2)0.04623 (16)0.0601 (6)
O20.3471 (3)0.1989 (2)0.44891 (14)0.0481 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0446 (15)0.0515 (15)0.0278 (12)0.0165 (13)0.0115 (11)0.0050 (11)
C20.0479 (17)0.0579 (17)0.0368 (14)0.0249 (14)0.0115 (12)0.0029 (12)
C30.0546 (18)0.0414 (14)0.0466 (16)0.0205 (13)0.0125 (13)0.0030 (12)
C40.0425 (15)0.0419 (14)0.0355 (13)0.0138 (12)0.0095 (11)0.0066 (11)
C50.0381 (14)0.0426 (13)0.0254 (11)0.0144 (11)0.0076 (10)0.0066 (10)
C60.0386 (14)0.0492 (14)0.0268 (12)0.0167 (12)0.0070 (10)0.0144 (11)
C70.0426 (15)0.0646 (17)0.0379 (14)0.0268 (14)0.0141 (12)0.0194 (13)
C80.0381 (14)0.0533 (15)0.0412 (14)0.0257 (12)0.0183 (11)0.0235 (12)
C90.067 (2)0.074 (2)0.0561 (18)0.0484 (18)0.0241 (16)0.0387 (16)
C100.092 (3)0.062 (2)0.081 (2)0.052 (2)0.041 (2)0.0385 (19)
C110.068 (2)0.0469 (16)0.065 (2)0.0282 (15)0.0275 (17)0.0169 (15)
C120.0570 (19)0.0548 (17)0.0516 (17)0.0296 (15)0.0117 (14)0.0138 (14)
C130.0399 (14)0.0340 (12)0.0340 (13)0.0127 (11)0.0081 (11)0.0035 (10)
C140.0395 (16)0.0534 (16)0.0398 (15)0.0105 (13)0.0122 (12)0.0034 (12)
C150.0417 (16)0.081 (2)0.0382 (15)0.0331 (16)0.0089 (12)0.0067 (14)
C160.0485 (16)0.0646 (17)0.0345 (13)0.0358 (14)0.0093 (12)0.0123 (12)
C170.0373 (14)0.0423 (13)0.0269 (12)0.0206 (11)0.0052 (10)0.0053 (10)
C180.0391 (14)0.0341 (12)0.0245 (11)0.0175 (11)0.0042 (10)0.0037 (9)
C190.0401 (14)0.0492 (14)0.0318 (13)0.0213 (12)0.0102 (11)0.0063 (11)
C200.0374 (14)0.0420 (13)0.0358 (13)0.0210 (11)0.0139 (11)0.0131 (11)
C210.0559 (18)0.0552 (16)0.0435 (15)0.0254 (14)0.0228 (13)0.0211 (13)
C220.066 (2)0.0477 (17)0.074 (2)0.0131 (15)0.0327 (18)0.0263 (16)
C230.059 (2)0.0428 (16)0.065 (2)0.0051 (14)0.0124 (16)0.0085 (15)
C240.0593 (19)0.0518 (16)0.0372 (15)0.0146 (14)0.0048 (13)0.0074 (13)
Fe10.0382 (2)0.0407 (2)0.02800 (19)0.01942 (16)0.00887 (14)0.00591 (14)
N10.0438 (13)0.0437 (12)0.0389 (12)0.0189 (10)0.0171 (10)0.0170 (9)
N20.0492 (14)0.0481 (12)0.0405 (12)0.0271 (11)0.0087 (10)0.0158 (10)
N30.0369 (12)0.0381 (11)0.0364 (11)0.0178 (9)0.0110 (9)0.0136 (9)
N40.0476 (13)0.0438 (12)0.0313 (11)0.0117 (10)0.0091 (10)0.0105 (9)
O10.0600 (13)0.0780 (14)0.0671 (14)0.0372 (11)0.0317 (11)0.0513 (12)
O20.0626 (13)0.0493 (10)0.0475 (11)0.0330 (10)0.0210 (9)0.0263 (9)
Geometric parameters (Å, º) top
C1—C21.414 (4)C13—C171.422 (3)
C1—C51.434 (3)C13—Fe12.031 (2)
C1—Fe12.042 (2)C13—H130.9800
C1—H10.9800C14—C151.417 (4)
C2—C31.420 (4)C14—Fe12.044 (3)
C2—Fe12.048 (2)C14—H140.9800
C2—H20.9800C15—C161.420 (4)
C3—C41.412 (4)C15—Fe12.050 (3)
C3—Fe12.053 (3)C15—H150.9800
C3—H30.9800C16—C171.428 (3)
C4—C51.431 (3)C16—Fe12.052 (3)
C4—Fe12.043 (3)C16—H160.9800
C4—H40.9800C17—C181.477 (3)
C5—C61.480 (4)C17—Fe12.045 (2)
C5—Fe12.035 (2)C18—O21.233 (3)
C6—O11.231 (3)C18—N31.337 (3)
C6—N11.346 (3)C19—N31.442 (3)
C7—N11.444 (3)C19—C201.512 (3)
C7—C81.514 (4)C19—H19A0.9700
C7—H7A0.9700C19—H19B0.9700
C7—H7B0.9700C20—N41.334 (3)
C8—N21.331 (3)C20—C211.381 (3)
C8—C91.390 (4)C21—C221.368 (4)
C9—C101.379 (4)C21—H210.9300
C9—H90.9300C22—C231.372 (4)
C10—C111.363 (5)C22—H220.9300
C10—H100.9300C23—C241.370 (4)
C11—C121.367 (4)C23—H230.9300
C11—H110.9300C24—N41.342 (3)
C12—N21.340 (3)C24—H240.9300
C12—H120.9300N1—H1N0.8600
C13—C141.417 (4)N3—H3N0.8600
C2—C1—C5107.5 (2)C13—C17—Fe169.04 (13)
C2—C1—Fe170.01 (15)C16—C17—Fe169.84 (14)
C5—C1—Fe169.15 (14)C18—C17—Fe1126.33 (16)
C2—C1—H1126.2O2—C18—N3121.7 (2)
C5—C1—H1126.2O2—C18—C17121.5 (2)
Fe1—C1—H1126.2N3—C18—C17116.7 (2)
C1—C2—C3108.7 (2)N3—C19—C20114.03 (19)
C1—C2—Fe169.53 (14)N3—C19—H19A108.7
C3—C2—Fe169.94 (15)C20—C19—H19A108.7
C1—C2—H2125.6N3—C19—H19B108.7
C3—C2—H2125.6C20—C19—H19B108.7
Fe1—C2—H2125.6H19A—C19—H19B107.6
C4—C3—C2108.0 (3)N4—C20—C21122.0 (2)
C4—C3—Fe169.44 (14)N4—C20—C19117.6 (2)
C2—C3—Fe169.56 (15)C21—C20—C19120.4 (2)
C4—C3—H3126.0C22—C21—C20119.8 (3)
C2—C3—H3126.0C22—C21—H21120.1
Fe1—C3—H3126.0C20—C21—H21120.1
C3—C4—C5108.2 (2)C21—C22—C23119.1 (3)
C3—C4—Fe170.23 (15)C21—C22—H22120.4
C5—C4—Fe169.17 (14)C23—C22—H22120.4
C3—C4—H4125.9C24—C23—C22117.8 (3)
C5—C4—H4125.9C24—C23—H23121.1
Fe1—C4—H4125.9C22—C23—H23121.1
C4—C5—C1107.5 (2)N4—C24—C23124.3 (3)
C4—C5—C6128.1 (2)N4—C24—H24117.8
C1—C5—C6124.4 (2)C23—C24—H24117.8
C4—C5—Fe169.75 (14)C13—Fe1—C5106.64 (10)
C1—C5—Fe169.65 (14)C13—Fe1—C1120.44 (11)
C6—C5—Fe1124.96 (16)C5—Fe1—C141.20 (10)
O1—C6—N1121.7 (2)C13—Fe1—C4124.54 (10)
O1—C6—C5121.9 (2)C5—Fe1—C441.08 (10)
N1—C6—C5116.4 (2)C1—Fe1—C468.91 (10)
N1—C7—C8114.6 (2)C13—Fe1—C1440.71 (10)
N1—C7—H7A108.6C5—Fe1—C14122.50 (11)
C8—C7—H7A108.6C1—Fe1—C14105.58 (11)
N1—C7—H7B108.6C4—Fe1—C14160.32 (12)
C8—C7—H7B108.6C13—Fe1—C1740.84 (10)
H7A—C7—H7B107.6C5—Fe1—C17122.05 (10)
N2—C8—C9121.8 (3)C1—Fe1—C17157.18 (10)
N2—C8—C7117.3 (2)C4—Fe1—C17108.83 (10)
C9—C8—C7120.8 (3)C14—Fe1—C1768.53 (10)
C10—C9—C8118.5 (3)C13—Fe1—C2156.06 (11)
C10—C9—H9120.8C5—Fe1—C268.49 (11)
C8—C9—H9120.8C1—Fe1—C240.46 (11)
C11—C10—C9119.9 (3)C4—Fe1—C268.11 (11)
C11—C10—H10120.1C14—Fe1—C2120.70 (11)
C9—C10—H10120.1C17—Fe1—C2161.53 (11)
C10—C11—C12118.2 (3)C13—Fe1—C1568.38 (11)
C10—C11—H11120.9C5—Fe1—C15158.94 (12)
C12—C11—H11120.9C1—Fe1—C15122.25 (11)
N2—C12—C11123.4 (3)C4—Fe1—C15158.36 (12)
N2—C12—H12118.3C14—Fe1—C1540.50 (12)
C11—C12—H12118.3C17—Fe1—C1568.43 (10)
C14—C13—C17108.3 (2)C2—Fe1—C15107.29 (11)
C14—C13—Fe170.13 (15)C13—Fe1—C1668.56 (11)
C17—C13—Fe170.12 (13)C5—Fe1—C16158.65 (11)
C14—C13—H13125.8C1—Fe1—C16159.42 (11)
C17—C13—H13125.8C4—Fe1—C16123.33 (11)
Fe1—C13—H13125.8C14—Fe1—C1668.29 (12)
C15—C14—C13108.0 (3)C17—Fe1—C1640.81 (10)
C15—C14—Fe170.00 (16)C2—Fe1—C16124.40 (11)
C13—C14—Fe169.16 (14)C15—Fe1—C1640.52 (11)
C15—C14—H14126.0C13—Fe1—C3161.57 (11)
C13—C14—H14126.0C5—Fe1—C368.56 (11)
Fe1—C14—H14126.0C1—Fe1—C368.47 (11)
C14—C15—C16108.2 (2)C4—Fe1—C340.33 (11)
C14—C15—Fe169.50 (15)C14—Fe1—C3156.96 (11)
C16—C15—Fe169.79 (16)C17—Fe1—C3125.43 (11)
C14—C15—H15125.9C2—Fe1—C340.51 (11)
C16—C15—H15125.9C15—Fe1—C3122.51 (12)
Fe1—C15—H15125.9C16—Fe1—C3109.05 (12)
C15—C16—C17107.9 (2)C6—N1—C7121.4 (2)
C15—C16—Fe169.69 (16)C6—N1—H1N119.3
C17—C16—Fe169.35 (14)C7—N1—H1N119.3
C15—C16—H16126.1C8—N2—C12118.2 (2)
C17—C16—H16126.1C18—N3—C19120.6 (2)
Fe1—C16—H16126.1C18—N3—H3N119.7
C13—C17—C16107.6 (2)C19—N3—H3N119.7
C13—C17—C18128.3 (2)C20—N4—C24117.0 (2)
C16—C17—C18124.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N40.862.303.079 (3)151
N3—H3N···N20.862.162.974 (3)157
C1—H1···O1i0.982.523.452 (4)159
C11—H11···O2ii0.932.433.173 (4)137
C12—H12···O2iii0.932.493.374 (4)158
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+1, y+1, z+1.
(II) N,N'-bis(3-pyridylmethyl)ferrocene-1,1'-diyldicarboxamide top
Crystal data top
[Fe(C12H11N2O)2]Z = 1
Mr = 454.31F(000) = 236
Triclinic, P1Dx = 1.512 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 6.386 (3) ÅCell parameters from 1980 reflections
b = 7.882 (3) Åθ = 3.2–25.3°
c = 9.987 (4) ŵ = 0.79 mm1
α = 85.305 (17)°T = 193 K
β = 89.53 (2)°Block, orange
γ = 84.831 (19)°0.30 × 0.25 × 0.10 mm
V = 499.0 (4) Å3
Data collection top
Rigaku Mercury
diffractometer
1810 independent reflections
Radiation source: fine-focus sealed tube1602 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 7.31 pixels mm-1θmax = 25.3°, θmin = 3.2°
ω scansh = 77
Absorption correction: multi-scan
Jacobson, 1998)
k = 98
Tmin = 0.811, Tmax = 0.917l = 1112
4908 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0253P)2 + 0.3145P]
where P = (Fo2 + 2Fc2)/3
1810 reflections(Δ/σ)max < 0.001
143 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Fe(C12H11N2O)2]γ = 84.831 (19)°
Mr = 454.31V = 499.0 (4) Å3
Triclinic, P1Z = 1
a = 6.386 (3) ÅMo Kα radiation
b = 7.882 (3) ŵ = 0.79 mm1
c = 9.987 (4) ÅT = 193 K
α = 85.305 (17)°0.30 × 0.25 × 0.10 mm
β = 89.53 (2)°
Data collection top
Rigaku Mercury
diffractometer
1810 independent reflections
Absorption correction: multi-scan
Jacobson, 1998)
1602 reflections with I > 2σ(I)
Tmin = 0.811, Tmax = 0.917Rint = 0.035
4908 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.09Δρmax = 0.36 e Å3
1810 reflectionsΔρmin = 0.45 e Å3
143 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.50000.50000.50000.02325 (17)
O10.2129 (3)0.4104 (2)0.17427 (18)0.0344 (5)
N10.4427 (3)0.6125 (3)0.13850 (19)0.0231 (5)
H1N0.56810.64310.15600.028*
N20.2239 (3)0.8381 (3)0.1824 (2)0.0298 (5)
C50.5048 (4)0.3941 (3)0.3208 (2)0.0234 (6)
C40.4270 (4)0.2788 (3)0.4235 (2)0.0268 (6)
H40.28570.23330.42540.032*
C30.5854 (4)0.2419 (3)0.5222 (3)0.0313 (6)
H30.57460.16630.60690.038*
C20.7611 (4)0.3321 (3)0.4820 (3)0.0313 (6)
H20.89550.33030.53300.038*
C10.7121 (4)0.4261 (3)0.3569 (2)0.0262 (6)
H10.80600.50150.30390.031*
C60.3751 (4)0.4719 (3)0.2054 (2)0.0226 (5)
C70.3117 (4)0.7142 (3)0.0379 (2)0.0245 (6)
H7A0.25190.63790.02290.029*
H7B0.39840.79180.01660.029*
C80.1349 (4)0.8182 (3)0.1044 (2)0.0216 (5)
C120.0630 (4)0.7612 (3)0.1156 (2)0.0265 (6)
H120.08740.66110.07330.032*
C110.1864 (4)0.9809 (3)0.2381 (3)0.0298 (6)
H110.29681.03660.28690.036*
C100.0026 (4)1.0518 (3)0.2287 (3)0.0289 (6)
H100.02061.15560.26760.035*
C90.1661 (4)0.9684 (3)0.1612 (2)0.0261 (6)
H90.29881.01390.15390.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0273 (3)0.0200 (3)0.0221 (3)0.0022 (2)0.0001 (2)0.0039 (2)
O10.0363 (11)0.0331 (11)0.0354 (11)0.0135 (9)0.0083 (9)0.0010 (9)
N10.0187 (11)0.0243 (11)0.0258 (11)0.0010 (9)0.0002 (9)0.0007 (9)
N20.0236 (12)0.0310 (13)0.0355 (12)0.0056 (10)0.0020 (10)0.0035 (10)
C50.0263 (14)0.0198 (13)0.0242 (13)0.0018 (11)0.0019 (11)0.0072 (11)
C40.0358 (16)0.0186 (13)0.0265 (13)0.0023 (11)0.0045 (12)0.0060 (11)
C30.0491 (18)0.0175 (13)0.0253 (14)0.0075 (12)0.0022 (13)0.0014 (11)
C20.0300 (15)0.0320 (15)0.0299 (14)0.0124 (12)0.0037 (12)0.0075 (12)
C10.0244 (14)0.0263 (14)0.0272 (13)0.0042 (11)0.0023 (11)0.0061 (11)
C60.0245 (14)0.0210 (13)0.0231 (12)0.0001 (11)0.0017 (11)0.0078 (10)
C70.0262 (14)0.0260 (14)0.0203 (12)0.0014 (11)0.0016 (10)0.0008 (11)
C80.0244 (14)0.0217 (13)0.0174 (12)0.0007 (10)0.0017 (10)0.0042 (10)
C120.0294 (15)0.0215 (13)0.0287 (14)0.0018 (11)0.0001 (11)0.0039 (11)
C110.0295 (15)0.0284 (14)0.0309 (14)0.0021 (12)0.0034 (12)0.0044 (12)
C100.0317 (15)0.0220 (14)0.0336 (15)0.0026 (11)0.0045 (12)0.0059 (12)
C90.0234 (14)0.0261 (14)0.0291 (14)0.0071 (11)0.0026 (11)0.0008 (11)
Geometric parameters (Å, º) top
Fe1—C5i2.035 (2)C4—C31.413 (4)
Fe1—C52.035 (2)C4—H41.0000
Fe1—C1i2.044 (2)C3—C21.420 (4)
Fe1—C12.044 (2)C3—H31.0000
Fe1—C2i2.050 (3)C2—C11.422 (4)
Fe1—C22.050 (3)C2—H21.0000
Fe1—C4i2.052 (2)C1—H11.0000
Fe1—C42.052 (2)C7—C81.516 (3)
Fe1—C3i2.053 (3)C7—H7A0.9900
Fe1—C32.053 (3)C7—H7B0.9900
O1—C61.235 (3)C8—C121.380 (4)
N1—C61.349 (3)C8—C91.385 (3)
N1—C71.454 (3)C12—H120.9500
N1—H1N0.8800C11—C101.375 (4)
N2—C111.336 (3)C11—H110.9500
N2—C121.346 (3)C10—C91.383 (4)
C5—C11.425 (4)C10—H100.9500
C5—C41.430 (3)C9—H90.9500
C5—C61.483 (3)
C5i—Fe1—C5180.000 (1)C1—C5—Fe169.92 (14)
C5i—Fe1—C1i40.89 (10)C4—C5—Fe170.19 (13)
C5—Fe1—C1i139.11 (10)C6—C5—Fe1121.80 (16)
C5i—Fe1—C1139.11 (10)C3—C4—C5107.6 (2)
C5—Fe1—C140.89 (10)C3—C4—Fe169.89 (15)
C1i—Fe1—C1180.0C5—C4—Fe168.86 (13)
C5i—Fe1—C2i68.49 (10)C3—C4—H4126.2
C5—Fe1—C2i111.51 (10)C5—C4—H4126.2
C1i—Fe1—C2i40.65 (10)Fe1—C4—H4126.2
C1—Fe1—C2i139.35 (10)C4—C3—C2108.6 (2)
C5i—Fe1—C2111.51 (10)C4—C3—Fe169.86 (14)
C5—Fe1—C268.49 (10)C2—C3—Fe169.63 (14)
C1i—Fe1—C2139.35 (10)C4—C3—H3125.7
C1—Fe1—C240.65 (10)C2—C3—H3125.7
C2i—Fe1—C2180.000 (1)Fe1—C3—H3125.7
C5i—Fe1—C4i40.95 (10)C3—C2—C1108.0 (2)
C5—Fe1—C4i139.05 (10)C3—C2—Fe169.87 (14)
C1i—Fe1—C4i68.68 (10)C1—C2—Fe169.47 (14)
C1—Fe1—C4i111.32 (10)C3—C2—H2126.0
C2i—Fe1—C4i68.23 (11)C1—C2—H2126.0
C2—Fe1—C4i111.77 (11)Fe1—C2—H2126.0
C5i—Fe1—C4139.05 (10)C2—C1—C5107.7 (2)
C5—Fe1—C440.95 (10)C2—C1—Fe169.88 (14)
C1i—Fe1—C4111.32 (10)C5—C1—Fe169.19 (14)
C1—Fe1—C468.68 (10)C2—C1—H1126.2
C2i—Fe1—C4111.77 (11)C5—C1—H1126.2
C2—Fe1—C468.23 (11)Fe1—C1—H1126.2
C4i—Fe1—C4180.0O1—C6—N1122.5 (2)
C5i—Fe1—C3i68.27 (10)O1—C6—C5120.9 (2)
C5—Fe1—C3i111.73 (10)N1—C6—C5116.6 (2)
C1i—Fe1—C3i68.28 (10)N1—C7—C8110.49 (19)
C1—Fe1—C3i111.72 (11)N1—C7—H7A109.6
C2i—Fe1—C3i40.50 (11)C8—C7—H7A109.6
C2—Fe1—C3i139.50 (11)N1—C7—H7B109.6
C4i—Fe1—C3i40.25 (10)C8—C7—H7B109.6
C4—Fe1—C3i139.75 (10)H7A—C7—H7B108.1
C5i—Fe1—C3111.73 (10)C12—C8—C9117.4 (2)
C5—Fe1—C368.27 (10)C12—C8—C7120.5 (2)
C1i—Fe1—C3111.72 (11)C9—C8—C7122.1 (2)
C1—Fe1—C368.28 (10)N2—C12—C8124.3 (2)
C2i—Fe1—C3139.50 (11)N2—C12—H12117.8
C2—Fe1—C340.50 (11)C8—C12—H12117.8
C4i—Fe1—C3139.75 (10)N2—C11—C10123.9 (2)
C4—Fe1—C340.25 (10)N2—C11—H11118.1
C3i—Fe1—C3180.000 (1)C10—C11—H11118.1
C6—N1—C7121.1 (2)C11—C10—C9118.3 (2)
C6—N1—H1N119.5C11—C10—H10120.8
C7—N1—H1N119.5C9—C10—H10120.8
C11—N2—C12116.4 (2)C10—C9—C8119.6 (2)
C1—C5—C4108.1 (2)C10—C9—H9120.2
C1—C5—C6128.8 (2)C8—C9—H9120.2
C4—C5—C6122.9 (2)
C2—Fe1—C5—C137.76 (15)C5—Fe1—C2—C137.97 (15)
C4—Fe1—C5—C1118.9 (2)C4—Fe1—C2—C182.18 (17)
C3—Fe1—C5—C181.47 (16)C3—Fe1—C2—C1119.3 (2)
C1—Fe1—C5—C4118.9 (2)C3—C2—C1—C50.4 (3)
C2—Fe1—C5—C481.14 (17)Fe1—C2—C1—C559.08 (16)
C3—Fe1—C5—C437.42 (15)C3—C2—C1—Fe159.46 (16)
C1—Fe1—C5—C6123.9 (3)C4—C5—C1—C20.5 (3)
C2—Fe1—C5—C6161.7 (2)C6—C5—C1—C2174.7 (2)
C4—Fe1—C5—C6117.2 (3)Fe1—C5—C1—C259.51 (17)
C3—Fe1—C5—C6154.6 (2)C4—C5—C1—Fe160.06 (16)
C1—C5—C4—C30.5 (3)C6—C5—C1—Fe1115.2 (2)
C6—C5—C4—C3175.1 (2)C5—Fe1—C1—C2119.0 (2)
Fe1—C5—C4—C359.38 (17)C4—Fe1—C1—C281.00 (17)
C1—C5—C4—Fe159.89 (16)C3—Fe1—C1—C237.58 (16)
C6—C5—C4—Fe1115.7 (2)C2—Fe1—C1—C5119.0 (2)
C5—Fe1—C4—C3119.1 (2)C4—Fe1—C1—C538.03 (14)
C1—Fe1—C4—C381.15 (16)C3—Fe1—C1—C581.44 (16)
C2—Fe1—C4—C337.29 (15)C7—N1—C6—O19.1 (3)
C1—Fe1—C4—C537.97 (14)C7—N1—C6—C5170.26 (19)
C2—Fe1—C4—C581.83 (16)C1—C5—C6—O1167.4 (2)
C3—Fe1—C4—C5119.1 (2)C4—C5—C6—O117.9 (4)
C5—C4—C3—C20.3 (3)Fe1—C5—C6—O1103.7 (2)
Fe1—C4—C3—C259.00 (17)C1—C5—C6—N113.2 (4)
C5—C4—C3—Fe158.74 (16)C4—C5—C6—N1161.5 (2)
C5—Fe1—C3—C438.06 (14)Fe1—C5—C6—N175.7 (3)
C1—Fe1—C3—C482.23 (16)C6—N1—C7—C874.1 (3)
C2—Fe1—C3—C4120.0 (2)N1—C7—C8—C1298.0 (3)
C5—Fe1—C3—C281.90 (16)N1—C7—C8—C979.1 (3)
C1—Fe1—C3—C237.72 (15)C11—N2—C12—C81.6 (4)
C4—Fe1—C3—C2120.0 (2)C9—C8—C12—N22.9 (4)
C4—C3—C2—C10.1 (3)C7—C8—C12—N2174.4 (2)
Fe1—C3—C2—C159.21 (16)C12—N2—C11—C100.9 (4)
C4—C3—C2—Fe159.14 (17)N2—C11—C10—C92.0 (4)
C5—Fe1—C2—C381.29 (16)C11—C10—C9—C80.6 (4)
C1—Fe1—C2—C3119.3 (2)C12—C8—C9—C101.6 (4)
C4—Fe1—C2—C337.07 (15)C7—C8—C9—C10175.6 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1ii0.952.563.242 (3)129
N1—H1N···N2iii0.882.152.952 (3)151
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Fe(C12H11N2O)2][Fe(C12H11N2O)2]
Mr454.31454.31
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)295193
a, b, c (Å)8.9859 (2), 9.8987 (2), 13.7459 (3)6.386 (3), 7.882 (3), 9.987 (4)
α, β, γ (°)100.297 (2), 102.114 (2), 114.051 (1)85.305 (17), 89.53 (2), 84.831 (19)
V3)1042.75 (4)499.0 (4)
Z21
Radiation typeMo KαMo Kα
µ (mm1)0.750.79
Crystal size (mm)0.23 × 0.15 × 0.120.30 × 0.25 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Rigaku Mercury
diffractometer
Absorption correctionEmpirical
ψ scan (North et al., 1968)
Multi-scan
Jacobson, 1998)
Tmin, Tmax0.858, 0.9140.811, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
14739, 4769, 3611 4908, 1810, 1602
Rint0.0500.035
(sin θ/λ)max1)0.6500.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.105, 1.07 0.041, 0.082, 1.09
No. of reflections47691810
No. of parameters280143
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.400.36, 0.45

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CrystalClear (Rigaku Corporation & Molecular Structure Corporation, 2001), CAD-4 Software, CrystalClear, XCAD4 (Harms & Wocadlo, 1995), CrystalStructure (Rigaku Corporation & Molecular Structure Corporation, 2004), OSCAIL-X (McArdle, 2005) and SHELXS97 (Sheldrick, 1997), OSCAIL-X and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), PLATON.

Selected geometric parameters (Å, º) for (I) top
C5—C61.480 (4)C17—C181.477 (3)
C6—O11.231 (3)C18—O21.233 (3)
C6—N11.346 (3)C18—N31.337 (3)
C7—N11.444 (3)C19—N31.442 (3)
N1—C7—C8114.6 (2)N3—C19—C20114.03 (19)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N40.862.303.079 (3)151
N3—H3N···N20.862.162.974 (3)157
C1—H1···O1i0.982.523.452 (4)159
C11—H11···O2ii0.932.433.173 (4)137
C12—H12···O2iii0.932.493.374 (4)158
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+1, y+1, z+1.
Selected geometric parameters (Å, º) for (II) top
O1—C61.235 (3)N1—C71.454 (3)
N1—C61.349 (3)C5—C61.483 (3)
N1—C7—C8110.49 (19)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N2i0.882.152.952 (3)151
Symmetry code: (i) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds