Download citation
Download citation
link to html
In strychninium 4-chloro­benzoate, C21H23N2O2+·C7H4ClO2, (I), and strychninium 4-nitro­benzoate, C21H23N2O2+·C7H4NO4, (II), the strychninium cations form pillars stabilized by C—H...O and C—H...π hydrogen bonds. Channels between the pillars are occupied by anions linked to one another by C—H...π hydrogen bonds. The cations and anions are linked by ionic N—H+...O and C—H...X hydrogen bonds, where X = O, π and Cl in (I), and O and π in (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106024711/gd3030sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106024711/gd3030Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106024711/gd3030IIsup3.hkl
Contains datablock II

CCDC references: 621275; 621276

Comment top

Strychnine is one of the resolving agents used for the separation of racemic acids by fractional crystallization of strychninium diastereomeric salts (Jacques et al., 1991). During racemic resolution of N-4-nitrobenzoyl-DL-amino acids, strychninium diastereomeric salts have crystallized (Bialonska & Ciunik, 2006b). In the crystal structures of the strychninium salts, strychninium cations are assembled in corrugated layers. Holes at the surfaces of these layers have been recognized by the 4-nitrobenzoyl group of the amino acid derivative. Since the 4-nitrobenzoyl group plays a significant role in the racemic resolution of N-4-nitrobenzoyl-DL-amino acids, we decided to investigate the importance of the 4-nitrobenzoyl group for strychninium self-assembly. Thus, we have crystallized the strychninium salts, (I) and (II), respectively, of 4-nitro- and 4-chlorobenzoic acid.

Strychninium cations have seven stereogenic centers. Taking into account the numbering scheme employed in this paper these are N2(S), C7(S), C8(S), C11(S), C18(R), C19(R) and C21(S). The geometry of the strychninium cation in the crystal structures of (I) and (II) (Figs. 1 and 2) is comparable to that found in other related compounds (Gould et al., 1985, 1987; Mostad, 1985; Białońska & Ciunik, 2005, 2004, 2006a,b; Bottcher & Buchkremer-Hermanns, 1987; Ghosh et al., 1989; Sato & Yano, 1989; Costante et al., 1996; Robertson & Beevers, 1951; Bokhoven et al., 1951; Yano et al., 1994; Yuan et al., 1994).

In both (I) and (II), the cations form pillars (Fig. 2) extending in the [010] direction. The pillars are stabilized by CH···O(amide) and C—H···π(arene) hydrogen bonds (see Tables 2 and 4). Similar pillars are present in the previously described crystals of (-)-strychninium (+)-neopentyl phthalate chloroform solvate, (-)-strychninium (+)-neopentyl-1-deutero-phthalate chloroform solvate (Yuan et al., 1994) and strychninium N-phthaloyl-β-alaninate N-phthaloyl-β-alanine (Białońska & Ciunik, 2006a).

Channels are formed between four neighboring strychninium pillars (see Fig. 3). The channels are occupied by 4-chloro- or 4-nitrobenzoate anions in the crystals of (I) and (II), respectively. The anions are linked to one another by C—H···π hydrogen bonds. The strychninium cations and the 4-chloro- or 4-nitrobenzoate anions are linked by ionic N—H+···O- hydrogen bonds (Tables 1 and 3), in which the protonated amine atom N2 of the strychninium cation and atom O5 of the deprotonated carboxyl group of the 4-chloro- or 4-nitrobenzoate anion act as a donor and an acceptor, respectively. Moreover, the cations and the anions are linked by weak hydrogen bonds. In the crystal structure of (I), the 4-chlorobenzoate anions are acceptors of C—H···O, C—H···Cl and C—H···π hydrogen bonds (see Tables 1 and 2). In the crystal structure of (II), the 4-nitrobenzoate anions are acceptors of C—H···O and C—H···π hydrogen bonds (Tables 3 and 4).

Experimental top

Crystals of (I) and (II) were grown from methanol solutions containing equimolar amounts of strychnine and 4-chloro- or 4-nitrobenzoic acid, respectively. The crystallizations were performed at room temperature by slow evaporation of solvent.

Refinement top

All H atoms were included in idealizing positions and were treated as riding atoms, with C—H and N—H distances of 0.95–1.00 Å and 0.93 Å, respectively. Friedel pairs were merged before the final refinement of (II). The absolute configurations of (I) and (II) were chosen on the basis of the known absolute configurations of strychnine (Robertson & Beevers, 1951) and for (I) were confirmed by the value of the Flack (1983) parameter.

Computing details top

For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2001); cell refinement: CrysAlis RED (Oxford Diffraction, 2001); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT (Bruker, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
Fig. 1. The molecular configuration and atom-numbering scheme in the crystal structure of (I). Non-H atoms are shown as 30% probability displacement ellipsoids.

Fig. 2. The molecular configuration and atom-numbering scheme in the crystal structure of (II). Non-H atoms are shown as 30% probability displacement ellipsoids.

Fig. 3. The packing of (I). Strychninium cations (solid lines) form pillars. Channels between neighboring strychninium pillars are occupied by 4-chlorobenzoate anions (open lines). For clarity, H atoms have been omitted.

Fig. 4. The packing of (II). Channels between neighboring pillars of strychninium cations are occupied by 4-nitrobenzoate anions. For clarity, H atoms have been omitted.

Fig. 5 The surface of strychninium self-assembly together with the channels occupied by 4-chlorobenzoate anions. In (II), similar channels are occupied by 4-nitrobenzoate anions (Humphrey et al., 1996).
(I) strychninium 4-chlorobenzoate top
Crystal data top
C21H23N2O2+·C7H4ClO2F(000) = 516
Mr = 490.97Dx = 1.414 Mg m3
MonoclinicP21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 14059 reflections
a = 10.557 (4) Åθ = 3.2–31.0°
b = 7.682 (2) ŵ = 0.21 mm1
c = 14.376 (8) ÅT = 100 K
β = 98.47 (4)°Needle, colourless
V = 1153.2 (8) Å30.35 × 0.20 × 0.20 mm
Z = 2
Data collection top
Kuma KM-4 CCD
diffractometer
5047 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 31.0°, θmin = 3.2°
ω scanh = 1514
15981 measured reflectionsk = 1110
6470 independent reflectionsl = 2014
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.038P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
6470 reflectionsΔρmax = 0.28 e Å3
316 parametersΔρmin = 0.27 e Å3
1 restraintAbsolute structure: Robertson & Beevers (1951), Flack (1983), 2539 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (5)
Crystal data top
C21H23N2O2+·C7H4ClO2V = 1153.2 (8) Å3
Mr = 490.97Z = 2
MonoclinicP21Mo Kα radiation
a = 10.557 (4) ŵ = 0.21 mm1
b = 7.682 (2) ÅT = 100 K
c = 14.376 (8) Å0.35 × 0.20 × 0.20 mm
β = 98.47 (4)°
Data collection top
Kuma KM-4 CCD
diffractometer
5047 reflections with I > 2σ(I)
15981 measured reflectionsRint = 0.053
6470 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.084Δρmax = 0.28 e Å3
S = 1.01Δρmin = 0.27 e Å3
6470 reflectionsAbsolute structure: Robertson & Beevers (1951), Flack (1983), 2539 Friedel pairs
316 parametersAbsolute structure parameter: 0.01 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.68498 (10)0.31267 (17)0.32551 (7)0.0223 (2)
O20.99122 (12)0.37418 (17)0.59727 (7)0.0255 (3)
N11.02970 (12)0.3169 (2)0.44849 (8)0.0167 (3)
N21.02147 (12)0.3267 (2)0.12457 (8)0.0201 (3)
H221.07410.33100.07820.024*
C11.24835 (17)0.3783 (2)0.54250 (11)0.0242 (4)
H11.22050.37430.60240.029*
C21.37542 (18)0.4104 (3)0.53411 (12)0.0318 (4)
H21.43560.42830.58930.038*
C31.41684 (18)0.4169 (3)0.44612 (13)0.0341 (5)
H31.50440.43860.44200.041*
C41.33021 (17)0.3918 (3)0.36499 (12)0.0276 (4)
H41.35810.39540.30510.033*
C51.20336 (15)0.3616 (2)0.37176 (10)0.0196 (3)
C61.16263 (15)0.3520 (2)0.45992 (10)0.0192 (3)
C71.09489 (14)0.3191 (2)0.29421 (9)0.0164 (3)
C80.97578 (14)0.3202 (2)0.34675 (9)0.0155 (3)
H80.92380.21280.33030.019*
C90.95010 (16)0.3520 (2)0.51361 (10)0.0206 (3)
C100.80867 (16)0.3564 (3)0.47628 (11)0.0242 (4)
H10A0.76490.42160.52170.029*
H10B0.77610.23540.47460.029*
C110.76868 (16)0.4379 (2)0.37731 (11)0.0205 (3)
H110.72000.54770.38380.025*
C120.62062 (17)0.3772 (3)0.23722 (12)0.0264 (4)
H12A0.60250.50280.24340.032*
H12B0.53780.31600.22110.032*
C130.69937 (16)0.3516 (2)0.15921 (11)0.0243 (4)
H130.66670.27790.10820.029*
C140.81165 (16)0.4267 (2)0.15820 (11)0.0206 (3)
C150.89152 (17)0.3884 (3)0.08201 (11)0.0243 (4)
H15A0.84900.29790.03930.029*
H15B0.89970.49490.04460.029*
C161.02077 (18)0.1421 (2)0.15928 (11)0.0231 (4)
H16A1.04850.06090.11270.028*
H16B0.93400.10840.17100.028*
C171.11438 (17)0.1399 (2)0.24985 (11)0.0209 (4)
H17A1.20350.12630.23710.025*
H17B1.09450.04420.29150.025*
C180.88877 (16)0.4802 (2)0.33371 (10)0.0172 (3)
H180.93460.57270.37450.021*
C190.87198 (17)0.5539 (2)0.23314 (11)0.0193 (3)
H190.81750.66080.23060.023*
C201.00610 (16)0.6052 (2)0.21393 (11)0.0200 (3)
H20A0.99990.67170.15440.024*
H20B1.04870.67950.26560.024*
C211.08281 (16)0.4401 (2)0.20699 (10)0.0179 (3)
H211.17090.47330.19570.021*
Cl1.65519 (4)0.31007 (7)0.25034 (3)0.03249 (11)
O31.15842 (12)0.35716 (19)0.00982 (7)0.0292 (3)
O41.29935 (15)0.2173 (2)0.09418 (10)0.0473 (4)
C221.26717 (17)0.2860 (2)0.01686 (11)0.0232 (4)
C231.36176 (15)0.2903 (2)0.05251 (10)0.0195 (3)
C241.34149 (16)0.3953 (2)0.13251 (10)0.0190 (3)
H241.26500.46180.14550.023*
C251.43258 (17)0.4037 (2)0.19379 (11)0.0217 (4)
H251.41920.47570.24810.026*
C261.54246 (15)0.3049 (3)0.17358 (11)0.0214 (3)
C271.56350 (18)0.1962 (2)0.09591 (12)0.0250 (4)
H271.63870.12690.08430.030*
C281.47239 (17)0.1904 (2)0.03523 (12)0.0234 (4)
H281.48600.11740.01860.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0200 (6)0.0184 (6)0.0288 (5)0.0000 (6)0.0047 (4)0.0026 (5)
O20.0353 (7)0.0250 (7)0.0177 (5)0.0086 (6)0.0094 (5)0.0019 (5)
N10.0200 (6)0.0166 (7)0.0143 (5)0.0019 (6)0.0051 (4)0.0003 (6)
N20.0245 (7)0.0223 (8)0.0143 (5)0.0011 (7)0.0052 (5)0.0004 (6)
C10.0303 (10)0.0240 (9)0.0179 (7)0.0060 (8)0.0017 (6)0.0030 (7)
C20.0269 (10)0.0421 (12)0.0245 (8)0.0036 (9)0.0024 (7)0.0014 (8)
C30.0193 (9)0.0491 (13)0.0336 (9)0.0023 (9)0.0033 (7)0.0059 (9)
C40.0243 (9)0.0362 (11)0.0233 (8)0.0052 (8)0.0068 (6)0.0038 (8)
C50.0222 (8)0.0195 (9)0.0172 (7)0.0060 (7)0.0032 (6)0.0028 (6)
C60.0232 (8)0.0169 (9)0.0179 (6)0.0045 (6)0.0048 (6)0.0015 (6)
C70.0189 (7)0.0178 (8)0.0137 (6)0.0023 (7)0.0059 (5)0.0014 (7)
C80.0190 (7)0.0142 (8)0.0137 (6)0.0001 (7)0.0037 (5)0.0018 (6)
C90.0288 (9)0.0153 (9)0.0199 (7)0.0057 (7)0.0112 (6)0.0030 (6)
C100.0282 (9)0.0241 (10)0.0229 (7)0.0003 (7)0.0130 (6)0.0016 (7)
C110.0197 (8)0.0187 (9)0.0240 (8)0.0015 (7)0.0065 (6)0.0006 (7)
C120.0190 (9)0.0267 (10)0.0324 (9)0.0023 (7)0.0000 (7)0.0022 (8)
C130.0211 (9)0.0238 (10)0.0262 (8)0.0005 (7)0.0024 (6)0.0024 (7)
C140.0216 (9)0.0209 (9)0.0182 (7)0.0035 (7)0.0006 (6)0.0023 (7)
C150.0252 (9)0.0282 (10)0.0187 (7)0.0013 (8)0.0006 (6)0.0014 (7)
C160.0325 (10)0.0180 (9)0.0206 (8)0.0023 (7)0.0097 (7)0.0025 (7)
C170.0279 (9)0.0179 (9)0.0187 (7)0.0028 (7)0.0097 (7)0.0012 (7)
C180.0193 (8)0.0154 (8)0.0171 (7)0.0017 (6)0.0034 (6)0.0005 (6)
C190.0242 (9)0.0147 (8)0.0186 (7)0.0026 (7)0.0023 (6)0.0028 (6)
C200.0252 (9)0.0165 (9)0.0188 (7)0.0005 (7)0.0050 (6)0.0031 (6)
C210.0197 (8)0.0185 (8)0.0159 (7)0.0018 (6)0.0045 (6)0.0013 (6)
Cl0.0292 (2)0.0321 (3)0.0399 (2)0.0035 (2)0.01716 (18)0.0045 (2)
O30.0272 (7)0.0405 (9)0.0212 (5)0.0067 (6)0.0080 (5)0.0042 (6)
O40.0405 (9)0.0733 (12)0.0306 (7)0.0140 (8)0.0132 (6)0.0261 (7)
C220.0256 (9)0.0240 (10)0.0209 (7)0.0016 (7)0.0067 (6)0.0005 (7)
C230.0204 (8)0.0201 (9)0.0176 (7)0.0042 (7)0.0009 (6)0.0034 (6)
C240.0192 (8)0.0176 (9)0.0196 (7)0.0005 (7)0.0006 (6)0.0032 (6)
C250.0263 (9)0.0201 (9)0.0190 (7)0.0033 (7)0.0041 (6)0.0023 (7)
C260.0205 (8)0.0217 (9)0.0232 (7)0.0042 (8)0.0066 (6)0.0065 (7)
C270.0220 (9)0.0207 (10)0.0312 (9)0.0018 (7)0.0007 (7)0.0034 (7)
C280.0246 (9)0.0215 (9)0.0228 (8)0.0023 (7)0.0010 (7)0.0009 (7)
Geometric parameters (Å, º) top
O1—C121.437 (2)C12—H12B0.9900
O1—C111.438 (2)C13—C141.320 (2)
O2—C91.229 (2)C13—H130.9500
N1—C91.3737 (19)C14—C151.507 (2)
N1—C61.415 (2)C14—C191.523 (2)
N1—C81.4895 (19)C15—H15A0.9900
N2—C151.494 (2)C15—H15B0.9900
N2—C161.503 (2)C16—C171.514 (2)
N2—C211.535 (2)C16—H16A0.9900
N2—H220.9300C16—H16B0.9900
C1—C21.387 (3)C17—H17A0.9900
C1—C61.397 (2)C17—H17B0.9900
C1—H10.9500C18—C191.538 (2)
C2—C31.399 (3)C18—H181.0000
C2—H20.9500C19—C201.534 (2)
C3—C41.385 (3)C19—H191.0000
C3—H30.9500C20—C211.516 (2)
C4—C51.377 (2)C20—H20A0.9900
C4—H40.9500C20—H20B0.9900
C5—C61.399 (2)C21—H211.0000
C5—C71.512 (2)Cl—C261.7387 (17)
C7—C171.544 (2)O3—C221.278 (2)
C7—C211.551 (2)O4—C221.232 (2)
C7—C81.559 (2)C22—C231.512 (2)
C8—C181.529 (2)C23—C281.389 (2)
C8—H81.0000C23—C241.396 (2)
C9—C101.511 (3)C24—C251.398 (2)
C10—C111.555 (2)C24—H240.9500
C10—H10A0.9900C25—C261.381 (3)
C10—H10B0.9900C25—H250.9500
C11—C181.530 (2)C26—C271.386 (3)
C11—H111.0000C27—C281.391 (3)
C12—C131.504 (3)C27—H270.9500
C12—H12A0.9900C28—H280.9500
C12—O1—C11113.66 (14)C13—C14—C19123.71 (15)
C9—N1—C6125.41 (13)C15—C14—C19114.78 (15)
C9—N1—C8118.83 (13)N2—C15—C14110.03 (13)
C6—N1—C8109.87 (11)N2—C15—H15A109.7
C15—N2—C16112.69 (14)C14—C15—H15A109.7
C15—N2—C21113.17 (14)N2—C15—H15B109.7
C16—N2—C21107.53 (12)C14—C15—H15B109.7
C15—N2—H22107.7H15A—C15—H15B108.2
C16—N2—H22107.7N2—C16—C17105.17 (14)
C21—N2—H22107.7N2—C16—H16A110.7
C2—C1—C6117.74 (15)C17—C16—H16A110.7
C2—C1—H1121.1N2—C16—H16B110.7
C6—C1—H1121.1C17—C16—H16B110.7
C1—C2—C3121.36 (17)H16A—C16—H16B108.8
C1—C2—H2119.3C16—C17—C7103.61 (13)
C3—C2—H2119.3C16—C17—H17A111.0
C4—C3—C2120.05 (18)C7—C17—H17A111.0
C4—C3—H3120.0C16—C17—H17B111.0
C2—C3—H3120.0C7—C17—H17B111.0
C5—C4—C3119.48 (16)H17A—C17—H17B109.0
C5—C4—H4120.3C8—C18—C11107.35 (13)
C3—C4—H4120.3C8—C18—C19113.27 (13)
C4—C5—C6120.33 (15)C11—C18—C19118.40 (14)
C4—C5—C7128.56 (14)C8—C18—H18105.6
C6—C5—C7110.87 (14)C11—C18—H18105.6
C1—C6—C5121.01 (16)C19—C18—H18105.6
C1—C6—N1129.30 (14)C14—C19—C20109.79 (14)
C5—C6—N1109.68 (13)C14—C19—C18114.01 (15)
C5—C7—C17111.39 (13)C20—C19—C18106.40 (13)
C5—C7—C21115.47 (14)C14—C19—H19108.8
C17—C7—C21101.57 (12)C20—C19—H19108.8
C5—C7—C8102.64 (11)C18—C19—H19108.8
C17—C7—C8111.79 (14)C21—C20—C19108.23 (14)
C21—C7—C8114.34 (13)C21—C20—H20A110.1
N1—C8—C18105.65 (13)C19—C20—H20A110.1
N1—C8—C7104.88 (12)C21—C20—H20B110.1
C18—C8—C7117.25 (14)C19—C20—H20B110.1
N1—C8—H8109.6H20A—C20—H20B108.4
C18—C8—H8109.6C20—C21—N2110.92 (13)
C7—C8—H8109.6C20—C21—C7115.43 (13)
O2—C9—N1122.06 (16)N2—C21—C7105.00 (14)
O2—C9—C10122.18 (14)C20—C21—H21108.4
N1—C9—C10115.73 (13)N2—C21—H21108.4
C9—C10—C11117.05 (14)C7—C21—H21108.4
C9—C10—H10A108.0O4—C22—O3124.74 (16)
C11—C10—H10A108.0O4—C22—C23118.90 (16)
C9—C10—H10B108.0O3—C22—C23116.36 (14)
C11—C10—H10B108.0C28—C23—C24119.32 (15)
H10A—C10—H10B107.3C28—C23—C22119.32 (15)
O1—C11—C18114.41 (13)C24—C23—C22121.34 (15)
O1—C11—C10105.54 (14)C23—C24—C25120.65 (16)
C18—C11—C10109.32 (14)C23—C24—H24119.7
O1—C11—H11109.1C25—C24—H24119.7
C18—C11—H11109.1C26—C25—C24118.46 (15)
C10—C11—H11109.1C26—C25—H25120.8
O1—C12—C13111.85 (14)C24—C25—H25120.8
O1—C12—H12A109.2C25—C26—C27122.06 (15)
C13—C12—H12A109.2C25—C26—Cl119.10 (13)
O1—C12—H12B109.2C27—C26—Cl118.79 (14)
C13—C12—H12B109.2C26—C27—C28118.73 (17)
H12A—C12—H12B107.9C26—C27—H27120.6
C14—C13—C12123.16 (16)C28—C27—H27120.6
C14—C13—H13118.4C23—C28—C27120.74 (16)
C12—C13—H13118.4C23—C28—H28119.6
C13—C14—C15121.50 (16)C27—C28—H28119.6
C6—C1—C2—C30.2 (3)C21—N2—C16—C1716.22 (17)
C1—C2—C3—C40.3 (3)N2—C16—C17—C736.10 (16)
C2—C3—C4—C50.4 (3)C5—C7—C17—C16164.84 (13)
C3—C4—C5—C61.5 (3)C21—C7—C17—C1641.36 (15)
C3—C4—C5—C7175.49 (19)C8—C7—C17—C1680.98 (15)
C2—C1—C6—C51.4 (3)N1—C8—C18—C1173.14 (15)
C2—C1—C6—N1179.80 (19)C7—C8—C18—C11170.48 (13)
C4—C5—C6—C12.1 (3)N1—C8—C18—C19154.27 (13)
C7—C5—C6—C1177.00 (16)C7—C8—C18—C1937.90 (19)
C4—C5—C6—N1178.90 (17)O1—C11—C18—C870.86 (16)
C7—C5—C6—N14.0 (2)C10—C11—C18—C847.23 (17)
C9—N1—C6—C120.7 (3)O1—C11—C18—C1958.9 (2)
C8—N1—C6—C1173.13 (17)C10—C11—C18—C19176.98 (15)
C9—N1—C6—C5158.19 (16)C13—C14—C19—C20175.93 (16)
C8—N1—C6—C55.81 (19)C15—C14—C19—C202.9 (2)
C4—C5—C7—C1766.0 (2)C13—C14—C19—C1856.7 (2)
C6—C5—C7—C17108.43 (16)C15—C14—C19—C18122.17 (16)
C4—C5—C7—C2149.2 (3)C8—C18—C19—C1460.86 (19)
C6—C5—C7—C21136.41 (15)C11—C18—C19—C1466.1 (2)
C4—C5—C7—C8174.26 (19)C8—C18—C19—C2060.30 (18)
C6—C5—C7—C811.33 (19)C11—C18—C19—C20172.72 (14)
C9—N1—C8—C1842.59 (19)C14—C19—C20—C2154.60 (17)
C6—N1—C8—C18111.86 (14)C18—C19—C20—C2169.23 (16)
C9—N1—C8—C7167.09 (15)C19—C20—C21—N262.16 (16)
C6—N1—C8—C712.64 (18)C19—C20—C21—C757.09 (18)
C5—C7—C8—N113.95 (17)C15—N2—C21—C209.97 (18)
C17—C7—C8—N1105.53 (15)C16—N2—C21—C20135.09 (14)
C21—C7—C8—N1139.76 (14)C15—N2—C21—C7115.36 (14)
C5—C7—C8—C18102.85 (15)C16—N2—C21—C79.76 (16)
C17—C7—C8—C18137.67 (14)C5—C7—C21—C2085.79 (17)
C21—C7—C8—C1822.96 (19)C17—C7—C21—C20153.56 (14)
C6—N1—C9—O220.0 (3)C8—C7—C21—C2033.0 (2)
C8—N1—C9—O2170.17 (15)C5—C7—C21—N2151.75 (13)
C6—N1—C9—C10161.72 (16)C17—C7—C21—N231.10 (15)
C8—N1—C9—C1011.6 (2)C8—C7—C21—N289.47 (16)
O2—C9—C10—C11143.61 (17)O4—C22—C23—C2811.7 (3)
N1—C9—C10—C1138.1 (2)O3—C22—C23—C28168.99 (17)
C12—O1—C11—C1869.76 (17)O4—C22—C23—C24166.89 (18)
C12—O1—C11—C10170.02 (13)O3—C22—C23—C2412.4 (3)
C9—C10—C11—O1129.63 (15)C28—C23—C24—C251.5 (3)
C9—C10—C11—C186.1 (2)C22—C23—C24—C25177.14 (15)
C11—O1—C12—C1387.25 (18)C23—C24—C25—C260.4 (2)
O1—C12—C13—C1463.1 (2)C24—C25—C26—C271.3 (3)
C12—C13—C14—C15175.89 (16)C24—C25—C26—Cl178.60 (13)
C12—C13—C14—C192.9 (3)C25—C26—C27—C281.8 (3)
C16—N2—C15—C1475.30 (17)Cl—C26—C27—C28179.14 (14)
C21—N2—C15—C1446.99 (19)C24—C23—C28—C270.9 (3)
C13—C14—C15—N2124.15 (18)C22—C23—C28—C27177.70 (16)
C19—C14—C15—N254.7 (2)C26—C27—C28—C230.7 (3)
C15—N2—C16—C17141.63 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H22···O30.931.662.589 (2)174
C17—H17B···O2i0.992.353.311 (2)164
C18—H18···O2ii1.002.463.374 (2)152
C17—H17A···O40.992.523.235 (3)129
C17—H17A···Cliii0.992.843.512 (2)126
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x+2, y+1/2, z+1; (iii) x+3, y1/2, z.
(II) strychninium 4-nitrobenzoate top
Crystal data top
C21H23N2O2+·C7H4NO4F(000) = 528
Mr = 501.53Dx = 1.433 Mg m3
MonoclinicP21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 6852 reflections
a = 10.976 (2) Åθ = 3.7–28.1°
b = 7.545 (1) ŵ = 0.10 mm1
c = 14.187 (2) ÅT = 100 K
β = 98.29 (3)°Needle, colourless
V = 1162.6 (3) Å30.35 × 0.15 × 0.15 mm
Z = 2
Data collection top
Kuma KM-4 CCD
diffractometer
2541 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 27.0°, θmin = 3.7°
ω scanh = 1414
7610 measured reflectionsk = 96
2666 independent reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.1263P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2666 reflectionsΔρmax = 0.19 e Å3
334 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Robertson & Beevers (1951)
Primary atom site location: structure-invariant direct methods
Crystal data top
C21H23N2O2+·C7H4NO4V = 1162.6 (3) Å3
Mr = 501.53Z = 2
MonoclinicP21Mo Kα radiation
a = 10.976 (2) ŵ = 0.10 mm1
b = 7.545 (1) ÅT = 100 K
c = 14.187 (2) Å0.35 × 0.15 × 0.15 mm
β = 98.29 (3)°
Data collection top
Kuma KM-4 CCD
diffractometer
2541 reflections with I > 2σ(I)
7610 measured reflectionsRint = 0.028
2666 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0311 restraint
wR(F2) = 0.079H-atom parameters constrained
S = 1.06Δρmax = 0.19 e Å3
2666 reflectionsΔρmin = 0.22 e Å3
334 parametersAbsolute structure: Robertson & Beevers (1951)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.70494 (11)0.3226 (2)0.33473 (9)0.0219 (3)
O21.01565 (13)0.3919 (2)0.60050 (9)0.0254 (3)
N11.04468 (14)0.3249 (2)0.44845 (10)0.0181 (3)
N21.01869 (13)0.3049 (2)0.11982 (10)0.0168 (3)
H221.06650.30390.07080.020*
C11.25802 (19)0.3983 (3)0.53523 (13)0.0263 (4)
H11.23500.39860.59730.032*
C21.3782 (2)0.4350 (4)0.52142 (15)0.0332 (5)
H21.43820.46190.57500.040*
C31.41273 (19)0.4360 (4)0.43050 (16)0.0352 (6)
H31.49570.46230.42290.042*
C41.32607 (18)0.4014 (3)0.35090 (13)0.0268 (4)
H41.34920.40360.28890.032*
C51.20550 (16)0.3666 (3)0.36345 (12)0.0194 (4)
C61.17255 (17)0.3638 (3)0.45484 (13)0.0195 (4)
C71.09824 (15)0.3141 (2)0.28971 (11)0.0154 (3)
C80.98714 (15)0.3199 (3)0.34674 (11)0.0156 (3)
H80.93670.20980.33430.019*
C90.97196 (18)0.3645 (3)0.51668 (12)0.0207 (4)
C100.83481 (17)0.3651 (3)0.48228 (12)0.0237 (4)
H10A0.79400.43080.52940.028*
H10B0.80520.24110.48190.028*
C110.79174 (17)0.4460 (3)0.38269 (13)0.0200 (4)
H110.74860.56050.39080.024*
C120.64050 (16)0.3858 (3)0.24551 (13)0.0233 (4)
H12A0.62900.51560.24930.028*
H12B0.55800.33010.23360.028*
C130.70980 (16)0.3440 (3)0.16375 (13)0.0209 (4)
H130.67380.26540.11530.025*
C140.81930 (16)0.4135 (3)0.15748 (12)0.0176 (4)
C150.89118 (16)0.3629 (3)0.07856 (12)0.0204 (4)
H15A0.84850.26530.04050.025*
H15B0.89610.46560.03590.025*
C161.02045 (17)0.1202 (3)0.16118 (13)0.0191 (4)
H16A1.04350.03190.11530.023*
H16B0.93880.08850.17810.023*
C171.11644 (17)0.1278 (3)0.24939 (13)0.0179 (4)
H17A1.20050.11380.23280.021*
H17B1.10190.03460.29560.021*
C180.90384 (17)0.4828 (2)0.33262 (12)0.0163 (4)
H180.95030.58010.36980.020*
C190.88096 (16)0.5476 (3)0.22863 (12)0.0170 (4)
H190.82890.65680.22530.020*
C201.00808 (16)0.5972 (3)0.20312 (13)0.0179 (4)
H20A0.99870.65850.14080.022*
H20B1.05120.67780.25200.022*
C211.08164 (15)0.4280 (2)0.19858 (12)0.0158 (4)
H211.16500.45990.18320.019*
O31.15883 (12)0.3375 (2)0.01537 (9)0.0244 (3)
O41.28248 (15)0.1596 (3)0.08134 (11)0.0392 (4)
O51.61925 (13)0.4210 (3)0.29814 (10)0.0340 (4)
O61.74092 (13)0.2673 (2)0.19560 (12)0.0342 (4)
N31.64096 (13)0.3356 (2)0.22444 (11)0.0219 (3)
C221.25924 (17)0.2548 (3)0.00992 (13)0.0200 (4)
C231.35792 (17)0.2739 (3)0.05452 (12)0.0169 (4)
C241.33963 (16)0.3825 (3)0.13482 (12)0.0173 (4)
H241.26350.44490.15090.021*
C251.43203 (16)0.4032 (3)0.19180 (12)0.0173 (4)
H251.42030.47900.24660.021*
C261.54151 (15)0.3127 (3)0.16594 (12)0.0178 (4)
C271.56160 (17)0.2005 (3)0.08775 (14)0.0202 (4)
H271.63710.14020.07270.024*
C281.46802 (16)0.1818 (3)0.03213 (13)0.0196 (4)
H281.47940.10740.02170.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0199 (6)0.0210 (7)0.0257 (6)0.0006 (6)0.0061 (5)0.0030 (6)
O20.0397 (8)0.0230 (7)0.0144 (6)0.0089 (6)0.0064 (6)0.0008 (6)
N10.0239 (7)0.0172 (7)0.0133 (7)0.0020 (7)0.0032 (6)0.0002 (6)
N20.0164 (7)0.0208 (8)0.0136 (6)0.0009 (6)0.0038 (6)0.0001 (6)
C10.0323 (10)0.0256 (10)0.0188 (8)0.0069 (9)0.0040 (8)0.0018 (8)
C20.0260 (10)0.0434 (14)0.0263 (10)0.0041 (10)0.0092 (9)0.0032 (10)
C30.0194 (9)0.0512 (16)0.0329 (11)0.0012 (10)0.0036 (9)0.0004 (11)
C40.0200 (9)0.0382 (12)0.0217 (9)0.0021 (9)0.0011 (8)0.0019 (9)
C50.0206 (8)0.0182 (10)0.0183 (8)0.0037 (7)0.0005 (7)0.0013 (7)
C60.0231 (9)0.0164 (9)0.0181 (8)0.0041 (7)0.0003 (7)0.0006 (7)
C70.0159 (8)0.0153 (9)0.0150 (7)0.0016 (7)0.0024 (6)0.0004 (7)
C80.0184 (8)0.0164 (8)0.0125 (7)0.0019 (7)0.0040 (6)0.0011 (7)
C90.0319 (10)0.0145 (9)0.0169 (8)0.0051 (8)0.0077 (7)0.0012 (7)
C100.0291 (10)0.0241 (11)0.0199 (8)0.0002 (9)0.0105 (8)0.0002 (8)
C110.0213 (9)0.0168 (9)0.0230 (9)0.0019 (8)0.0071 (8)0.0013 (7)
C120.0161 (8)0.0253 (10)0.0286 (9)0.0008 (8)0.0038 (7)0.0037 (9)
C130.0173 (8)0.0211 (9)0.0232 (9)0.0013 (8)0.0008 (7)0.0010 (8)
C140.0161 (8)0.0186 (9)0.0175 (8)0.0030 (7)0.0002 (7)0.0023 (7)
C150.0175 (8)0.0267 (10)0.0162 (8)0.0007 (8)0.0007 (7)0.0002 (8)
C160.0224 (9)0.0168 (9)0.0187 (8)0.0012 (7)0.0052 (8)0.0025 (7)
C170.0211 (9)0.0169 (9)0.0164 (8)0.0037 (7)0.0054 (7)0.0007 (7)
C180.0196 (8)0.0133 (9)0.0165 (8)0.0019 (7)0.0043 (7)0.0001 (7)
C190.0165 (8)0.0156 (9)0.0188 (8)0.0016 (7)0.0027 (7)0.0029 (7)
C200.0185 (9)0.0163 (9)0.0189 (8)0.0015 (7)0.0025 (7)0.0039 (7)
C210.0155 (8)0.0175 (9)0.0144 (7)0.0022 (7)0.0019 (7)0.0013 (7)
O30.0189 (6)0.0354 (8)0.0197 (6)0.0036 (6)0.0054 (5)0.0021 (6)
O40.0369 (9)0.0536 (11)0.0306 (8)0.0157 (9)0.0171 (7)0.0221 (8)
O50.0231 (7)0.0581 (11)0.0212 (7)0.0097 (8)0.0042 (6)0.0060 (7)
O60.0213 (7)0.0286 (8)0.0561 (10)0.0050 (6)0.0165 (7)0.0054 (8)
N30.0190 (7)0.0216 (8)0.0259 (8)0.0050 (7)0.0058 (6)0.0050 (7)
C220.0204 (9)0.0225 (10)0.0179 (8)0.0014 (8)0.0057 (7)0.0012 (8)
C230.0173 (8)0.0182 (9)0.0153 (8)0.0032 (7)0.0022 (7)0.0040 (7)
C240.0153 (8)0.0171 (9)0.0193 (8)0.0003 (7)0.0013 (7)0.0016 (7)
C250.0196 (8)0.0160 (9)0.0161 (7)0.0020 (8)0.0017 (7)0.0008 (7)
C260.0154 (8)0.0187 (9)0.0198 (8)0.0036 (7)0.0044 (7)0.0039 (7)
C270.0156 (8)0.0206 (9)0.0235 (9)0.0016 (7)0.0001 (7)0.0005 (8)
C280.0183 (9)0.0199 (10)0.0199 (9)0.0000 (8)0.0003 (7)0.0020 (7)
Geometric parameters (Å, º) top
O1—C111.432 (2)C13—C141.326 (3)
O1—C121.439 (2)C13—H130.9500
O2—C91.234 (2)C14—C151.509 (2)
N1—C91.373 (2)C14—C191.518 (3)
N1—C61.424 (2)C15—H15A0.9900
N1—C81.490 (2)C15—H15B0.9900
N2—C151.502 (2)C16—C171.516 (3)
N2—C161.511 (2)C16—H16A0.9900
N2—C211.538 (2)C16—H16B0.9900
N2—H220.9300C17—H17A0.9900
C1—C21.389 (3)C17—H17B0.9900
C1—C61.393 (3)C18—C191.540 (2)
C1—H10.9502C18—H181.0000
C2—C31.396 (3)C19—C201.537 (2)
C2—H20.9533C19—H191.0000
C3—C41.392 (3)C20—C211.517 (3)
C3—H30.9531C20—H20A0.9900
C4—C51.386 (3)C20—H20B0.9900
C4—H40.9499C21—H211.0000
C5—C61.396 (3)O3—C221.272 (2)
C5—C71.511 (2)O4—C221.238 (2)
C7—C211.541 (2)O5—N31.222 (2)
C7—C171.541 (3)O6—N31.228 (2)
C7—C81.558 (2)N3—C261.474 (2)
C8—C181.527 (2)C22—C231.522 (2)
C8—H81.0000C23—C281.390 (3)
C9—C101.514 (3)C23—C241.394 (3)
C10—C111.549 (3)C24—C251.394 (2)
C10—H10A0.9900C24—H240.9572
C10—H10B0.9900C25—C261.385 (3)
C11—C181.532 (2)C25—H250.9586
C11—H111.0000C26—C271.387 (3)
C12—C131.509 (3)C27—C281.390 (3)
C12—H12A0.9900C27—H270.9429
C12—H12B0.9900C28—H280.9414
C11—O1—C12114.30 (15)N2—C15—C14109.99 (14)
C9—N1—C6125.32 (15)N2—C15—H15A109.7
C9—N1—C8118.68 (15)C14—C15—H15A109.7
C6—N1—C8110.07 (13)N2—C15—H15B109.7
C15—N2—C16112.27 (14)C14—C15—H15B109.7
C15—N2—C21113.77 (14)H15A—C15—H15B108.2
C16—N2—C21107.18 (13)N2—C16—C17104.72 (14)
C15—N2—H22107.8N2—C16—H16A110.8
C16—N2—H22107.8C17—C16—H16A110.8
C21—N2—H22107.8N2—C16—H16B110.8
C2—C1—C6117.57 (18)C17—C16—H16B110.8
C2—C1—H1121.0H16A—C16—H16B108.9
C6—C1—H1121.4C16—C17—C7103.23 (14)
C1—C2—C3121.44 (19)C16—C17—H17A111.1
C1—C2—H2119.4C7—C17—H17A111.1
C3—C2—H2119.2C16—C17—H17B111.1
C4—C3—C2120.23 (19)C7—C17—H17B111.1
C4—C3—H3119.9H17A—C17—H17B109.1
C2—C3—H3119.8C8—C18—C11107.40 (14)
C5—C4—C3118.99 (18)C8—C18—C19113.15 (15)
C5—C4—H4120.7C11—C18—C19118.08 (15)
C3—C4—H4120.3C8—C18—H18105.8
C4—C5—C6120.17 (17)C11—C18—H18105.8
C4—C5—C7128.61 (16)C19—C18—H18105.8
C6—C5—C7111.03 (16)C14—C19—C20109.78 (15)
C1—C6—C5121.59 (18)C14—C19—C18114.88 (16)
C1—C6—N1129.19 (17)C20—C19—C18105.94 (14)
C5—C6—N1109.21 (15)C14—C19—H19108.7
C5—C7—C21114.87 (15)C20—C19—H19108.7
C5—C7—C17111.51 (15)C18—C19—H19108.7
C21—C7—C17101.73 (13)C21—C20—C19108.19 (15)
C5—C7—C8102.88 (13)C21—C20—H20A110.1
C21—C7—C8114.39 (14)C19—C20—H20A110.1
C17—C7—C8111.81 (15)C21—C20—H20B110.1
N1—C8—C18105.60 (14)C19—C20—H20B110.1
N1—C8—C7104.44 (13)H20A—C20—H20B108.4
C18—C8—C7116.95 (15)C20—C21—N2110.66 (14)
N1—C8—H8109.8C20—C21—C7115.65 (14)
C18—C8—H8109.8N2—C21—C7105.02 (14)
C7—C8—H8109.8C20—C21—H21108.4
O2—C9—N1122.09 (17)N2—C21—H21108.4
O2—C9—C10122.70 (16)C7—C21—H21108.4
N1—C9—C10115.17 (15)O5—N3—O6124.14 (16)
C9—C10—C11116.97 (15)O5—N3—C26118.34 (15)
C9—C10—H10A108.1O6—N3—C26117.52 (16)
C11—C10—H10A108.1O4—C22—O3125.68 (18)
C9—C10—H10B108.1O4—C22—C23117.79 (18)
C11—C10—H10B108.1O3—C22—C23116.53 (16)
H10A—C10—H10B107.3C28—C23—C24119.89 (16)
O1—C11—C18114.92 (15)C28—C23—C22119.06 (17)
O1—C11—C10105.78 (15)C24—C23—C22121.04 (17)
C18—C11—C10109.54 (15)C25—C24—C23120.57 (16)
O1—C11—H11108.8C25—C24—H24119.4
C18—C11—H11108.8C23—C24—H24120.1
C10—C11—H11108.8C26—C25—C24117.87 (16)
O1—C12—C13111.62 (15)C26—C25—H25121.3
O1—C12—H12A109.3C24—C25—H25120.8
C13—C12—H12A109.3C25—C26—C27122.98 (16)
O1—C12—H12B109.3C25—C26—N3118.56 (16)
C13—C12—H12B109.3C27—C26—N3118.46 (16)
H12A—C12—H12B108.0C26—C27—C28118.07 (17)
C14—C13—C12122.06 (18)C26—C27—H27120.6
C14—C13—H13119.0C28—C27—H27121.4
C12—C13—H13119.0C27—C28—C23120.58 (17)
C13—C14—C15121.70 (17)C27—C28—H28119.9
C13—C14—C19122.73 (17)C23—C28—H28119.5
C15—C14—C19115.56 (15)
C6—C1—C2—C30.5 (4)C5—C7—C17—C16165.50 (15)
C1—C2—C3—C40.6 (4)C21—C7—C17—C1642.58 (16)
C2—C3—C4—C50.2 (4)C8—C7—C17—C1679.92 (16)
C3—C4—C5—C61.0 (3)N1—C8—C18—C1173.03 (17)
C3—C4—C5—C7175.6 (2)C7—C8—C18—C11171.34 (14)
C2—C1—C6—C50.3 (3)N1—C8—C18—C19154.87 (14)
C2—C1—C6—N1179.2 (2)C7—C8—C18—C1939.2 (2)
C4—C5—C6—C11.1 (3)O1—C11—C18—C873.78 (18)
C7—C5—C6—C1176.53 (18)C10—C11—C18—C845.10 (19)
C4—C5—C6—N1179.84 (19)O1—C11—C18—C1955.6 (2)
C7—C5—C6—N14.4 (2)C10—C11—C18—C19174.45 (16)
C9—N1—C6—C120.6 (3)C13—C14—C19—C20178.22 (17)
C8—N1—C6—C1172.9 (2)C15—C14—C19—C201.5 (2)
C9—N1—C6—C5158.34 (18)C13—C14—C19—C1859.0 (2)
C8—N1—C6—C56.1 (2)C15—C14—C19—C18120.75 (17)
C4—C5—C7—C2147.8 (3)C8—C18—C19—C1460.3 (2)
C6—C5—C7—C21137.25 (16)C11—C18—C19—C1466.3 (2)
C4—C5—C7—C1767.3 (3)C8—C18—C19—C2061.05 (19)
C6—C5—C7—C17107.70 (17)C11—C18—C19—C20172.32 (16)
C4—C5—C7—C8172.8 (2)C14—C19—C20—C2155.54 (19)
C6—C5—C7—C812.3 (2)C18—C19—C20—C2169.05 (18)
C9—N1—C8—C1843.9 (2)C19—C20—C21—N262.25 (18)
C6—N1—C8—C18110.47 (16)C19—C20—C21—C757.0 (2)
C9—N1—C8—C7167.78 (16)C15—N2—C21—C2010.31 (19)
C6—N1—C8—C713.4 (2)C16—N2—C21—C20135.03 (15)
C5—C7—C8—N114.94 (18)C15—N2—C21—C7115.15 (15)
C21—C7—C8—N1140.21 (15)C16—N2—C21—C79.57 (17)
C17—C7—C8—N1104.84 (16)C5—C7—C21—C2085.37 (19)
C5—C7—C8—C18101.33 (17)C17—C7—C21—C20154.04 (15)
C21—C7—C8—C1823.9 (2)C8—C7—C21—C2033.3 (2)
C17—C7—C8—C18138.89 (15)C5—C7—C21—N2152.35 (14)
C6—N1—C9—O221.0 (3)C17—C7—C21—N231.75 (16)
C8—N1—C9—O2171.09 (18)C8—C7—C21—N288.97 (17)
C6—N1—C9—C10161.22 (18)O4—C22—C23—C281.4 (3)
C8—N1—C9—C1011.1 (3)O3—C22—C23—C28177.89 (18)
O2—C9—C10—C11142.26 (19)O4—C22—C23—C24178.32 (19)
N1—C9—C10—C1140.0 (3)O3—C22—C23—C242.4 (3)
C12—O1—C11—C1867.6 (2)C28—C23—C24—C251.6 (3)
C12—O1—C11—C10171.48 (14)C22—C23—C24—C25178.11 (17)
C9—C10—C11—O1133.52 (17)C23—C24—C25—C260.0 (3)
C9—C10—C11—C189.1 (2)C24—C25—C26—C271.5 (3)
C11—O1—C12—C1388.3 (2)C24—C25—C26—N3178.93 (16)
O1—C12—C13—C1464.4 (3)O5—N3—C26—C256.3 (3)
C12—C13—C14—C15176.42 (17)O6—N3—C26—C25173.57 (18)
C12—C13—C14—C193.3 (3)O5—N3—C26—C27173.26 (18)
C16—N2—C15—C1476.33 (19)O6—N3—C26—C276.8 (3)
C21—N2—C15—C1445.6 (2)C25—C26—C27—C281.4 (3)
C13—C14—C15—N2127.02 (19)N3—C26—C27—C28179.03 (17)
C19—C14—C15—N252.7 (2)C26—C27—C28—C230.2 (3)
C15—N2—C16—C17142.68 (14)C24—C23—C28—C271.7 (3)
C21—N2—C16—C1717.06 (17)C22—C23—C28—C27178.00 (17)
N2—C16—C17—C737.18 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H22···O30.931.722.6373 (19)171
C17—H17B···O2i0.992.353.270 (2)154
C18—H18···O2ii1.002.413.312 (2)150
C17—H17A···O40.992.473.212 (2)131
C17—H17A···O5iii0.992.523.279 (2)133
C2—H2···O5iv0.952.503.408 (3)159
C21—H21···O6v1.002.533.220 (2)126
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x+2, y+1/2, z+1; (iii) x+3, y1/2, z; (iv) x, y, z+1; (v) x+3, y+1/2, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC21H23N2O2+·C7H4ClO2C21H23N2O2+·C7H4NO4
Mr490.97501.53
Crystal system, space groupMonoclinicP21MonoclinicP21
Temperature (K)100100
a, b, c (Å)10.557 (4), 7.682 (2), 14.376 (8)10.976 (2), 7.545 (1), 14.187 (2)
β (°) 98.47 (4) 98.29 (3)
V3)1153.2 (8)1162.6 (3)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.210.10
Crystal size (mm)0.35 × 0.20 × 0.200.35 × 0.15 × 0.15
Data collection
DiffractometerKuma KM-4 CCD
diffractometer
Kuma KM-4 CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15981, 6470, 5047 7610, 2666, 2541
Rint0.0530.028
(sin θ/λ)max1)0.7250.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.084, 1.01 0.031, 0.079, 1.06
No. of reflections64702666
No. of parameters316334
No. of restraints11
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.270.19, 0.22
Absolute structureRobertson & Beevers (1951), Flack (1983), 2539 Friedel pairsRobertson & Beevers (1951)
Absolute structure parameter0.01 (5)?

Computer programs: CrysAlis CCD (Oxford Diffraction, 2001), CrysAlis RED (Oxford Diffraction, 2001), CrysAlis RED, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL-NT (Bruker, 1999), SHELXL97.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H22···O30.931.662.589 (2)174
C17—H17B···O2i0.992.353.311 (2)164
C18—H18···O2ii1.002.463.374 (2)152
C17—H17A···O40.992.523.235 (3)129
C17—H17A···Cliii0.992.843.512 (2)126
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x+2, y+1/2, z+1; (iii) x+3, y1/2, z.
C—H···π hydrogen bonds (Å, °) in (I). Cg1 and CG2 represent the centroids of the C1–C6 and C23–C28 rings. top
D—H···AD—HH···AD···AD—H···AOffset
C10—H10B···Cg1i0.993.003.939 (2)158.51.20
C12—H12A···Cg2iv0.992.933.705 (2)135.80.86
C28—H28···Cg2iii0.952.853.724 (2)154.10.74
Symmetry codes: (i) 2-x, -0.5+y, 1-z, (iv) 2-x, 0.5+y, -z, (iii) 3-x, -0.5+y, -z
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H22···O30.931.722.6373 (19)171
C17—H17B···O2i0.992.353.270 (2)154
C18—H18···O2ii1.002.413.312 (2)150
C17—H17A···O40.992.473.212 (2)131
C17—H17A···O5iii0.992.523.279 (2)133
C2—H2···O5iv0.952.503.408 (3)159
C21—H21···O6v1.002.533.220 (2)126
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x+2, y+1/2, z+1; (iii) x+3, y1/2, z; (iv) x, y, z+1; (v) x+3, y+1/2, z.
C—H···π hydrogen bonds (Å, °) in (II). Cg1 and Cg2 represent the centroids of the C1–C6 and C23–C28 rings. top
D—H···AD—HH···AD···AD—H···Aoffset
C10—H10B···Cg1i0.993.033.963 (2)158.31.41
C12—H12A···Cg2vi0.992.923.685 (2)134.80.48
C28—H28···Cg2iii0.942.743.600 (2)152.30.33
Symmetry codes: (i) 2-x, -0.5+y, 1-z, (iv) 2-x, 0.5+y, -z, (iii) 3-x, -0.5+y, -z
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds