Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Cu(C16H19N2O)(N3)], was synthesized by the reaction of equimolar quanti­ties of 2-hydr­oxy-1-naphthaldehyde, N-propyl­ethane-1,2-diamine, sodium azide and copper(II) acetate in a methanol solution. The CuII ion in the compound is four-coordinated by one imine N, one amine N, and one phenolate O atoms of the Schiff base ligand 1-[2-(propyl­amino)ethyl­imino­meth­yl]naphthalen-2-ol and by one terminal N atom of an azide anion, forming a square-planar coordination. The propyl group and attached NH are disordered over two positions; the site occupancy factors are ca 0.6 and 0.4.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807062514/gd2027sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807062514/gd2027Isup2.hkl
Contains datablock I

CCDC reference: 672777

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.013 Å
  • Disorder in main residue
  • R factor = 0.069
  • wR factor = 0.214
  • Data-to-parameter ratio = 17.2

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT201_ALERT_2_B Isotropic non-H Atoms in Main Residue(s) ....... 4 PLAT220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.75 Ratio PLAT222_ALERT_3_B Large Non-Solvent H Ueq(max)/Ueq(min) ... 4.39 Ratio PLAT241_ALERT_2_B Check High Ueq as Compared to Neighbors for C13 PLAT241_ALERT_2_B Check High Ueq as Compared to Neighbors for C14' PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for C15' PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for C15
Alert level C PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C8 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N2' PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N4 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C14 PLAT301_ALERT_3_C Main Residue Disorder ......................... 15.00 Perc. PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 13 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 1
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 12
0 ALERT level A = In general: serious problem 7 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 10 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

During the last few years, there has been a great effort to identify the biological role of copper (Collinson & Fenton, 1996; Hossain et al., 1996; Tarafder et al., 2002). It appears that the biological role of copper is primarily in redox reactions and as a biological catalyst, although much remains to be understood (Musie et al., 2003; García-Raso et al., 2003). The peculiarity of copper lies in its ability to form complexes with coordination number four, five, and six (Ray et al., 2003; Arnold et al., 2003; Raptopoulou et al., 1998). Recently, we have reported several Schiff base copper(II) complexes with azide ligand (Zhu et al., 2006; Wei & Wang, 2006). Here the structure of the title complex (I), Fig. 1, is reported.

Complex (I) is a mononuclear copper(II) compound. The CuII ion is four-coordinated by one imine N, one amine N, and one phenolate O atoms of a Schiff base ligand, and by one terminal N atom of an azide anion, forming a square planar coordination. All the bond lengths are in normal ranges (Allen et al., 1987). The bond lengths (Table 1) related to the CuII ion are comparable to the values of the complexes we reported previously corresponding, and also comparable to the values of other Schiff base copper(II) complexes (Hebbachi & Benali-Cherif, 2005; Butcher et al., 2003). The bond angles around the central metal ion show somewhat deviations from ideal square planar geometry, ranging from 87.2 (2) to 93.8 (2) °. The two trans bond angles are 177.3 (2) and 177.8 (2) °, respectively.

Related literature top

For related literature, see: Allen et al. (1987); Arnold et al. (2003); Collinson & Fenton (1996); García-Raso et al. (2003); Hossain et al. (1996); Musie et al. (2003); Raptopoulou et al. (1998); Ray et al. (2003); Tarafder et al. (2002); Wei & Wang (2006); Zhu et al. (2006); Butcher (2003); Hebbachi & Benali-Cherif (2005).

Experimental top

2-Hydroxy-1-naphthaldehyde (1.0 mmol, 172.3 mg), N-propylethane-1,2-diamine (1.0 mmol, 102.2 mg), sodium azide (1.0 mmol, 65.0 mg), and copper acetate (1.0 mmol, 199.1 mg) were dissolved in a methanol solution (150 ml). The mixture was refluxed at 340 K for about 1 h to give a clear blue solution. After keeping the cooled resulting solution in dark for 12 days, blue block-shaped crystals were formed.

Refinement top

All the H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, N—H distances of 0.91 Å, and with Uiso(H) = 1.2Ueq(C/N) and 1.5Ueq(C16 and C16'). The propyl group is disordered and it was modelled using two sets of atom sites, refined isotropically with occupancies of 0.37 (3) and 0.63 (3), respectively.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Only the major orientation of the disordered propyl group is shown.
Azido{1-[2-(propylamino)ethyliminomethyl]naphthalen-2-olato}copper(II) top
Crystal data top
[Cu(C16H19N2O)(N3)]F(000) = 1496
Mr = 360.90Dx = 1.442 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 12.465 (4) ÅCell parameters from 1297 reflections
b = 24.772 (8) Åθ = 2.4–24.5°
c = 11.047 (4) ŵ = 1.33 mm1
β = 103.007 (4)°T = 298 K
V = 3323.7 (19) Å3Block, blue
Z = 80.20 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3452 independent reflections
Radiation source: fine-focus sealed tube1816 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ω scanθmax = 26.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.778, Tmax = 0.796k = 3131
13362 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.214H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0886P)2 + 3.7952P]
where P = (Fo2 + 2Fc2)/3
3452 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.53 e Å3
12 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cu(C16H19N2O)(N3)]V = 3323.7 (19) Å3
Mr = 360.90Z = 8
Monoclinic, C2/cMo Kα radiation
a = 12.465 (4) ŵ = 1.33 mm1
b = 24.772 (8) ÅT = 298 K
c = 11.047 (4) Å0.20 × 0.20 × 0.18 mm
β = 103.007 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3452 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1816 reflections with I > 2σ(I)
Tmin = 0.778, Tmax = 0.796Rint = 0.069
13362 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06912 restraints
wR(F2) = 0.214H-atom parameters constrained
S = 1.01Δρmax = 0.53 e Å3
3452 reflectionsΔρmin = 0.30 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.12391 (5)0.23867 (3)0.35451 (7)0.0733 (4)
O10.1921 (3)0.19640 (17)0.2615 (4)0.0785 (11)
N10.0746 (4)0.1811 (2)0.4326 (4)0.0701 (13)
N30.1703 (5)0.2997 (2)0.2755 (6)0.0891 (16)
N40.2368 (4)0.2975 (2)0.2131 (5)0.0789 (14)
N50.2984 (5)0.2977 (3)0.1539 (6)0.120 (2)
C10.1459 (5)0.1089 (3)0.3270 (6)0.0715 (16)
C20.1936 (5)0.1440 (3)0.2545 (6)0.0739 (16)
C30.2508 (6)0.1221 (3)0.1681 (7)0.098 (2)
H30.28320.14500.12000.117*
C40.2585 (7)0.0675 (4)0.1554 (8)0.114 (3)
H40.29520.05400.09730.137*
C50.2128 (7)0.0310 (3)0.2272 (8)0.101 (2)
C60.2267 (8)0.0239 (4)0.2101 (11)0.136 (3)
H60.26660.03640.15400.163*
C70.1800 (12)0.0588 (4)0.2783 (14)0.158 (5)
H70.18820.09570.26750.190*
C80.1220 (11)0.0419 (5)0.3614 (12)0.156 (5)
H80.09070.06690.40600.187*
C90.1097 (7)0.0133 (4)0.3796 (8)0.118 (3)
H90.07050.02500.43710.142*
C100.1555 (6)0.0514 (3)0.3125 (7)0.0852 (19)
C110.0889 (5)0.1310 (3)0.4126 (6)0.0762 (17)
H110.05850.10650.45930.091*
C120.0082 (6)0.1975 (4)0.5219 (7)0.105 (2)
H12A0.06920.19090.48660.126*
H12B0.02970.17650.59770.126*
C130.0263 (8)0.2541 (4)0.5491 (9)0.128 (3)
H13A0.03770.26880.57380.154*
H13B0.08890.25810.61880.154*
N20.0461 (5)0.2847 (2)0.4465 (5)0.0914 (16)*0.37 (3)
H2A0.02230.28470.39550.110*0.37 (3)
C140.0697 (19)0.3422 (4)0.455 (3)0.081 (7)*0.37 (3)
H14A0.09460.35170.38010.097*0.37 (3)
H14B0.13240.34700.52380.097*0.37 (3)
C150.012 (2)0.3832 (10)0.469 (4)0.127 (11)*0.37 (3)
H15A0.01780.38320.55480.153*0.37 (3)
H15B0.08260.37270.41830.153*0.37 (3)
C160.012 (4)0.4387 (13)0.435 (6)0.27 (2)*0.37 (3)
H16A0.04580.46220.44640.399*0.37 (3)
H16B0.01730.43950.34960.399*0.37 (3)
H16C0.08080.45030.48690.399*0.37 (3)
N2'0.0461 (5)0.2847 (2)0.4465 (5)0.0914 (16)*0.63 (3)
H2'A0.02100.29110.39590.110*0.63 (3)
C14'0.0896 (14)0.3366 (5)0.492 (2)0.138 (8)*0.63 (3)
H14C0.11010.35590.42390.166*0.63 (3)
H14D0.15620.33100.55540.166*0.63 (3)
C15'0.0149 (12)0.3708 (5)0.5433 (19)0.107 (6)*0.63 (3)
H15C0.02870.36470.63220.129*0.63 (3)
H15D0.06030.35980.50760.129*0.63 (3)
C16'0.0258 (16)0.4291 (6)0.520 (2)0.158 (8)*0.63 (3)
H16D0.02820.44870.55230.236*0.63 (3)
H16E0.01460.43540.43260.236*0.63 (3)
H16F0.09820.44100.56120.236*0.63 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0607 (5)0.0843 (6)0.0809 (6)0.0013 (3)0.0286 (4)0.0000 (4)
O10.086 (3)0.072 (3)0.092 (3)0.001 (2)0.050 (2)0.001 (2)
N10.061 (3)0.090 (4)0.063 (3)0.012 (3)0.023 (2)0.002 (3)
N30.092 (4)0.071 (3)0.115 (4)0.001 (3)0.048 (3)0.008 (3)
N40.071 (3)0.067 (3)0.105 (4)0.007 (3)0.034 (3)0.009 (3)
N50.119 (5)0.110 (5)0.157 (6)0.005 (4)0.085 (5)0.026 (4)
C10.058 (3)0.072 (4)0.079 (4)0.011 (3)0.004 (3)0.006 (3)
C20.067 (4)0.073 (4)0.087 (4)0.001 (3)0.028 (3)0.001 (3)
C30.099 (5)0.100 (6)0.105 (5)0.003 (4)0.046 (4)0.007 (4)
C40.108 (6)0.098 (6)0.142 (7)0.014 (5)0.042 (5)0.034 (6)
C50.098 (5)0.071 (5)0.124 (7)0.002 (4)0.007 (5)0.004 (5)
C60.146 (8)0.085 (7)0.163 (9)0.020 (6)0.005 (7)0.004 (6)
C70.176 (12)0.079 (7)0.189 (13)0.019 (7)0.025 (9)0.005 (8)
C80.189 (13)0.085 (8)0.178 (12)0.026 (7)0.006 (9)0.038 (7)
C90.122 (7)0.106 (7)0.118 (6)0.017 (5)0.011 (5)0.029 (5)
C100.080 (4)0.077 (5)0.090 (5)0.008 (4)0.002 (4)0.011 (4)
C110.069 (4)0.090 (5)0.071 (4)0.019 (3)0.017 (3)0.013 (4)
C120.102 (5)0.144 (7)0.087 (5)0.032 (5)0.061 (4)0.015 (5)
C130.160 (7)0.133 (6)0.109 (5)0.024 (5)0.068 (5)0.002 (5)
Geometric parameters (Å, º) top
Cu1—O11.808 (4)C11—H110.9300
Cu1—N11.843 (5)C12—C131.441 (11)
Cu1—N31.900 (5)C12—H12A0.9700
Cu1—N21.928 (6)C12—H12B0.9700
O1—C21.301 (7)C13—N21.430 (9)
N1—C111.278 (8)C13—H13A0.9700
N1—C121.480 (7)C13—H13B0.9700
N3—N41.193 (7)N2—C141.454 (9)
N4—N51.116 (7)N2—H2A0.9100
C1—C21.402 (8)C14—C151.468 (10)
C1—C111.414 (9)C14—H14A0.9700
C1—C101.442 (9)C14—H14B0.9700
C2—C31.421 (9)C15—C161.471 (10)
C3—C41.365 (10)C15—H15A0.9700
C3—H30.9300C15—H15B0.9700
C4—C51.405 (11)C16—H16A0.9600
C4—H40.9300C16—H16B0.9600
C5—C61.390 (11)C16—H16C0.9600
C5—C101.398 (10)C14'—C15'1.465 (9)
C6—C71.360 (15)C14'—H14C0.9700
C6—H60.9300C14'—H14D0.9700
C7—C81.357 (15)C15'—C16'1.478 (9)
C7—H70.9300C15'—H15C0.9700
C8—C91.397 (14)C15'—H15D0.9700
C8—H80.9300C16'—H16D0.9600
C9—C101.398 (10)C16'—H16E0.9600
C9—H90.9300C16'—H16F0.9600
O1—Cu1—N193.8 (2)C13—C12—H12B109.9
O1—Cu1—N388.3 (2)N1—C12—H12B109.9
N1—Cu1—N3177.8 (2)H12A—C12—H12B108.3
O1—Cu1—N2177.3 (2)N2—C13—C12113.4 (7)
N1—Cu1—N287.2 (2)N2—C13—H13A108.9
N3—Cu1—N290.7 (2)C12—C13—H13A108.9
C2—O1—Cu1128.8 (4)N2—C13—H13B108.9
C11—N1—C12120.2 (5)C12—C13—H13B108.9
C11—N1—Cu1126.6 (4)H13A—C13—H13B107.7
C12—N1—Cu1113.2 (5)C13—N2—C14122.7 (12)
N4—N3—Cu1123.4 (5)C13—N2—Cu1107.6 (5)
N5—N4—N3176.9 (7)C14—N2—Cu1119.5 (9)
C2—C1—C11118.9 (6)C13—N2—H2A100.7
C2—C1—C10119.5 (6)C14—N2—H2A100.7
C11—C1—C10121.6 (6)Cu1—N2—H2A100.7
O1—C2—C1124.9 (6)N2—C14—C15123.3 (17)
O1—C2—C3115.9 (6)N2—C14—H14A106.5
C1—C2—C3119.2 (6)C15—C14—H14A106.5
C4—C3—C2120.3 (7)N2—C14—H14B106.5
C4—C3—H3119.8C15—C14—H14B106.5
C2—C3—H3119.8H14A—C14—H14B106.5
C3—C4—C5122.2 (7)C14—C15—C16116 (3)
C3—C4—H4118.9C14—C15—H15A108.3
C5—C4—H4118.9C16—C15—H15A108.3
C6—C5—C10122.9 (9)C14—C15—H15B108.3
C6—C5—C4118.3 (10)C16—C15—H15B108.3
C10—C5—C4118.8 (7)H15A—C15—H15B107.4
C7—C6—C5117.7 (11)C15—C16—H16A109.5
C7—C6—H6121.1C15—C16—H16B109.5
C5—C6—H6121.1H16A—C16—H16B109.5
C8—C7—C6122.6 (11)C15—C16—H16C109.5
C8—C7—H7118.7H16A—C16—H16C109.5
C6—C7—H7118.7H16B—C16—H16C109.5
C7—C8—C9119.5 (11)C15'—C14'—H14C108.4
C7—C8—H8120.3C15'—C14'—H14D108.4
C9—C8—H8120.3H14C—C14'—H14D107.5
C8—C9—C10120.9 (10)C14'—C15'—C16'114.0 (12)
C8—C9—H9119.6C14'—C15'—H15C108.8
C10—C9—H9119.6C16'—C15'—H15C108.8
C9—C10—C5116.5 (8)C14'—C15'—H15D108.8
C9—C10—C1123.6 (8)C16'—C15'—H15D108.8
C5—C10—C1120.0 (6)H15C—C15'—H15D107.6
N1—C11—C1127.0 (5)C15'—C16'—H16D109.5
N1—C11—H11116.5C15'—C16'—H16E109.5
C1—C11—H11116.5H16D—C16'—H16E109.5
C13—C12—N1108.8 (6)C15'—C16'—H16F109.5
C13—C12—H12A109.9H16D—C16'—H16F109.5
N1—C12—H12A109.9H16E—C16'—H16F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N3i0.912.353.233 (8)165
N2—H2A···N3i0.912.353.233 (8)162
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C16H19N2O)(N3)]
Mr360.90
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)12.465 (4), 24.772 (8), 11.047 (4)
β (°) 103.007 (4)
V3)3323.7 (19)
Z8
Radiation typeMo Kα
µ (mm1)1.33
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.778, 0.796
No. of measured, independent and
observed [I > 2σ(I)] reflections
13362, 3452, 1816
Rint0.069
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.214, 1.01
No. of reflections3452
No. of parameters201
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.30

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Selected geometric parameters (Å, º) top
Cu1—O11.808 (4)Cu1—N31.900 (5)
Cu1—N11.843 (5)Cu1—N21.928 (6)
O1—Cu1—N193.8 (2)O1—Cu1—N2177.3 (2)
O1—Cu1—N388.3 (2)N1—Cu1—N287.2 (2)
N1—Cu1—N3177.8 (2)N3—Cu1—N290.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2'—H2'A···N3i0.912.353.233 (8)165
N2—H2A···N3i0.912.353.233 (8)162
Symmetry code: (i) x, y, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds