Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, 2Na+·C20H14N2O42-·10H2O, is an inter­mediate in the industrial synthesis of red and violet quinacridone pigments. The structure is remarkable for two reasons. First, one of the Na+ ions is surrounded octa­hedrally by five water mol­ecules and a phenyl group, although the crystal contains many more water mol­ecules than are required for complete coordination of both Na+ ions with six water mol­ecules each. Secondly, although the anion has almost exact mol­ecular inversion symmetry, it is positioned on a general position; this is one of the very few exceptions to the observation of Kitajgorodskij [Advances in Structure Research by Diffraction Methods - Fortschritte der Strukturforschung mit Beugungsmethoden (1970), Vol. 3, pp. 173-247] that mol­ecules with inversion centres always lie on crystallographic inversion centres.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105040114/gd1425sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105040114/gd1425Isup2.hkl
Contains datablock I

CCDC reference: 299617

Comment top

Quinacridone (VII), worldwide registered as C·I. Pigment Violet 19, is the most important pigment for red–violet shades (Herbst & Hunger, 2004). The pigment is produced in an amount of several thousand tons per year; the annual sales are more than 100 million euros. It is used for automotive finishes, powder coatings, paints, plastics and high-grade printing inks. The industrially most common synthetic route starts with a condensation of aniline (II) and succinylosuccinic ester (dimethyl 1,4-cyclohexanedione-2,5-dicarboxylate, III) (see scheme), followed by oxidation and alkali treatment, yielding disodium 2,5-bis(phenylamino)terephthalate decahydrate, (I), as intermediate. This intermediate is converted to the corresponding acid (VI) and treated with molten polyphosphoric acid to yield the quinacridone (VII) in the α, β or γ phase, depending on the synthetic conditions (Urban et al., 1998; Urban et al., 2000; Herbst & Hunger, 2004). The violet β phase and the red γ phase are commercially used as pigments.

Quinacridone has been known since 1935 (Liebermann et al., 1935) and industrially produced since 1958 (Reeve & Botti, 1958). The crystal structures of β and γquinacridone are known (Paulus et al., 1989; Potts et al., 1994), but – despite their industrial relevance – not one solitary crystal structure of any intermediate has been determined hitherto (Cambridge Crystallographic Database; Version 5.26 of November 2004 plus three updates; Allen, 2002). We report here the crystal structure of the intermediate (I), also called `anilic acid sodium salt'. The molecular structure is shown in Fig. 1.

The crystal structure consists of 2,5-bis(phenylamino)terephthalate di-anions and sodium cations, which are coordinated by water molecules (see Fig. 2). There is no direct sodium–carboxylate contact.

The anion shows two intramolecular hydrogen bonds from the NH groups to the carboxylate moieties. The total bis(amino)terephthalate unit is almost planar (the r.m.s. deviation for all non H atoms is 0.0706 Å). In contrast, the two phenyl rings are twisted against the central terephthalate unit by 58.44 (6) and 51.08 (6)° for the rings C21–C26 and C51–C56, respectively. For the final synthetic step, i.e. the ring closure, the intramolecular hydrogen bonds have to be broken and the phenylamine moiety must be rotated by about approximately 150° (Table 1). Under the applied synthetic conditions (molten polyphosphoric acid at 373–473 K) these rotations are easily possible.

The anion adopts almost exact inversion symmetry. According to the observation of Kitajgorodskij (1970), all molecules with molecular inversion symmetry maintain this symmetry in the crystal, i.e. they are always positioned on crystallographic inversion centres. Hence the 2,5-bis(phenylamino)terephthalate di-anions should be on an inversion centre, and there should be either one Na atom on a general position or, for example, two Na atoms on inversion centres. Astonishingly, in the present structure the anion is not situated on an inversion centre, but on a general position. This is one of the very few exceptions to Kitajgorodski's rule.

A thorough examination of the Cambridge Structural Database shows that 99% of all molecules with point group 1 are actually situated on crystallographic inversion centres (Pidcock et al., 2003). If the molecules have even higher symmetry, e.g. 2/m, then the occupancy of 1 drops to 97% as other special positions (e.g. 2 or m) are possible. The remaining 3% may include some structures with overlooked symmetry, but there are a few accurately determined structures where a molecule with inversion symmetry is definitely situated on a general position, e.g. 1,5-dimethylnaphthalene (P21/c, Z = 4, Z' = 1; Beintema, 1965; Ferraris et al., 1972; Wilson, 1997) or 2,2'-diaminodibenzyl (P212121, Z = 4, Z' = 1; Narasegowda et al., 2005). In these cases, the intramolecular inversion centre is only a local symmetry element, not a crystallographic one; this situation is comparable to the case of an asymmetric unit containing two crystallographically independent molecules, which are connected only by a local symmetry operation.

In the crystal structure of (I) we carefully checked that there is no erroneously missed crystallographic symmetry. A further indication is the existence of two symmetrically and chemically inequivalent sodium cations; atom Na1 is coordinated octahedrally by six water molecules (Fig. 2), whereas Na2 is octahedrally surrounded by five water molecules and a phenyl ring at a longer distance, which is bound only by van der Waals forces (Fig. 3). Sodium–phenyl contacts are also known for other compounds; these compounds contain either no water or only one water molecule per Na+ ion (e.g. Hu et al., 2002). It is very surprising that in compound (I) the Na2 atom prefers the neighbourhood of a phenyl group instead of being surrounded by water molecules only. Compound (I) is a decahydrate and contains many more water molecules than necessary for a complete coordination of both Na+ ions; there is even one water molecule not bonded to any Na atoms. The reason for this unexpected coordination of Na2 remains obscure.

The structure is a double-layered structure (Fig. 4). The non-polar layer is formed by the phenyl rings; the polar layer contains the cations, the water molecules and the carboxy groups. The water molecules show a variety of coordination modes. Seven water molecules are coordinated to just one Na atom, two water molecules are shared between the sodium ions, and the tenth water molecule is not directly bound to any cation. Two (O2 and O3) of the nine water molecules that are coordinated to the Na cations bridge two anions via hydrogen bonds, four (O1, O5, O6 and O8) form hydrogen bonds between an anion and a water molecule, atom O4 is hydrogen bonded to the anion and to the water molecule that is not bonded to an Na atom, atom O7 forms hydrogen bonds to two Na-coordinating water molecules, and atom O9 is hydrogen bonded to a water molecule coordinating a sodium cation and the water molecule that is not bonded to a sodium cation. The water molecule (O1W) that is not coordinating a sodium cation forms hydrogen bonds to an anion and an Na-coordinating water molecule (Table 1).

Experimental top

Industrially produced 2,5-bis(phenylamino)terephthalic acid (`anilic acid'), (VI), from the quinacridone plant of Clariant GmbH at Frankfurt–Höchst was converted into the sodium salt (I) by stirring anilic acid (50 g) in a solution of NaHCO3 (50 g) and water (450 ml) water for 2 h. The mixture was filtrated through a 20 µ filter to remove all particles. The solution was allowed to stand at room temperature in a open one litre Erlenmeyer flask for several weeks. The resulting small pale-brown crystals were isolated from the solution and carefully dried with tissue paper.

Refinement top

All H atoms were located in a difference map. Those bonded to C atoms were refined with fixed individual displacement parameters [Uiso(H) = 1.2Ueq(C)] using a riding model with C—H = 0.95 Å. H atoms bonded to N atoms were refined isotropically. H atoms bonded to O atoms were refined with restraints of 0.84 (1) Å for O—H and 1.40 (1) Å for H···H distances. One of the H atoms bonded to O7 could not be clearly located and was omitted from the refinement.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991) and SCHAKAL (Keller, 1980); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. A perspective view of the title compound, with the atom numbering; displacement ellipsoids are shown at the 50% probability level. One of the H atoms bonded to O7 is not drawn because it could not be clearly located and was therefore omitted from the refinement.
[Figure 2] Fig. 2. The coordination of Na1.
[Figure 3] Fig. 3. The coordination of Na2 [Na2···C21i = 4.7320 (19) Å, Na2···C22i = 4.072 (2) Å, Na2···C23i = 3.240 (3) Å, Na2···C24i = 3.162 (2) Å, Na2···C25i = 3.943 (2) Å, Na···C26i = 4.654 (2) Å, Na2···cogi = 3.765 Å; symmetry code: (i) −x, 1 − y, 1 − z].
[Figure 4] Fig. 4. : A projection of the layer structure of (I). The view direction is [010], with [100] vertical.
Disodium 2,5-dianilinoterephthalate decahydrate top
Crystal data top
2Na+·C20H14N2O42·10H2OZ = 2
Mr = 572.47F(000) = 604
Triclinic, P1Dx = 1.438 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7638 (7) ÅCell parameters from 21410 reflections
b = 12.4371 (10) Åθ = 3.6–27.2°
c = 13.5720 (11) ŵ = 0.15 mm1
α = 110.550 (6)°T = 173 K
β = 97.483 (7)°Block, brown
γ = 101.857 (6)°0.19 × 0.11 × 0.09 mm
V = 1322.14 (19) Å3
Data collection top
Stoe IPDS-II two-circle
diffractometer
5789 independent reflections
Radiation source: fine-focus sealed tube4837 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
ω scansθmax = 27.2°, θmin = 3.6°
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
h = 1111
Tmin = 0.973, Tmax = 0.981k = 1515
21410 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0765P)2 + 0.5265P]
where P = (Fo2 + 2Fc2)/3
5789 reflections(Δ/σ)max = 0.001
427 parametersΔρmax = 0.37 e Å3
28 restraintsΔρmin = 0.35 e Å3
Crystal data top
2Na+·C20H14N2O42·10H2Oγ = 101.857 (6)°
Mr = 572.47V = 1322.14 (19) Å3
Triclinic, P1Z = 2
a = 8.7638 (7) ÅMo Kα radiation
b = 12.4371 (10) ŵ = 0.15 mm1
c = 13.5720 (11) ÅT = 173 K
α = 110.550 (6)°0.19 × 0.11 × 0.09 mm
β = 97.483 (7)°
Data collection top
Stoe IPDS-II two-circle
diffractometer
5789 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
4837 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.981Rint = 0.078
21410 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05128 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.37 e Å3
5789 reflectionsΔρmin = 0.35 e Å3
427 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.53040 (8)0.26076 (6)1.00816 (5)0.01921 (17)
Na20.11567 (9)0.18887 (7)0.92297 (6)0.02589 (19)
O10.68370 (17)0.10616 (13)1.00759 (11)0.0272 (3)
H1A0.638 (3)0.059 (2)0.9435 (12)0.063 (10)*
H1B0.7835 (12)0.127 (2)1.015 (2)0.047 (8)*
O20.61030 (15)0.25796 (12)0.84887 (10)0.0211 (3)
H2A0.601 (3)0.3141 (14)0.8287 (19)0.037 (7)*
H2B0.565 (3)0.1911 (10)0.7992 (15)0.037 (7)*
O30.41397 (17)0.25111 (11)1.15494 (10)0.0232 (3)
H3A0.420 (3)0.1970 (14)1.1779 (18)0.036 (7)*
H3B0.455 (3)0.3194 (10)1.2043 (15)0.041 (7)*
O40.69974 (15)0.45652 (12)1.11449 (10)0.0226 (3)
H4A0.658 (3)0.465 (3)1.1683 (15)0.056 (9)*
H4B0.7989 (12)0.465 (2)1.1320 (19)0.037 (7)*
O50.32948 (16)0.37672 (11)0.99626 (10)0.0212 (3)
H5A0.349 (3)0.4215 (19)1.0624 (8)0.047 (8)*
H5B0.322 (3)0.4160 (19)0.9573 (15)0.035 (7)*
O60.32014 (15)0.08084 (11)0.89872 (10)0.0203 (3)
H6A0.347 (3)0.061 (2)0.8389 (13)0.047 (8)*
H6B0.320 (3)0.0281 (19)0.9242 (19)0.044 (8)*
O70.09037 (19)0.22157 (14)1.10965 (12)0.0343 (3)
H7B0.1895 (14)0.236 (3)1.133 (2)0.049 (8)*
O80.07510 (18)0.00806 (14)0.87289 (14)0.0355 (4)
H8A0.048 (3)0.048 (2)0.886 (3)0.079 (12)*
H8B0.1679 (17)0.014 (2)0.8340 (19)0.039 (7)*
O90.05840 (17)0.30603 (14)0.91775 (13)0.0309 (3)
H9A0.029 (4)0.359 (3)0.893 (4)0.118 (18)*
H9B0.1598 (12)0.284 (2)0.904 (2)0.046 (8)*
O1W0.03178 (17)0.48841 (14)0.13037 (12)0.0307 (3)
H1WA0.1278 (17)0.508 (3)0.166 (2)0.052 (8)*
H1WB0.012 (4)0.424 (2)0.076 (2)0.121 (18)*
C10.49982 (19)0.84814 (14)0.59739 (12)0.0138 (3)
C20.39469 (19)0.83052 (14)0.50050 (13)0.0143 (3)
C30.39014 (19)0.73286 (14)0.40676 (13)0.0149 (3)
H30.31890.71940.34190.018*
C40.48525 (18)0.65437 (14)0.40403 (12)0.0133 (3)
C50.59294 (19)0.67363 (14)0.50066 (13)0.0145 (3)
C60.59442 (19)0.76949 (14)0.59452 (13)0.0148 (3)
H60.66350.78170.65980.018*
C110.51197 (19)0.94655 (14)0.70528 (13)0.0147 (3)
O110.44370 (16)1.02777 (11)0.70804 (10)0.0214 (3)
O120.58942 (16)0.94275 (11)0.78949 (9)0.0210 (3)
N210.30325 (17)0.90888 (13)0.49500 (12)0.0186 (3)
H210.325 (3)0.978 (2)0.554 (2)0.029 (6)*
C210.15037 (19)0.87519 (15)0.42758 (13)0.0158 (3)
C220.0993 (2)0.95982 (18)0.39655 (18)0.0279 (4)
H220.17091.03620.41570.033*
C230.0563 (2)0.93346 (19)0.33745 (19)0.0313 (5)
H230.09000.99250.31790.038*
C240.1618 (2)0.82185 (18)0.30719 (15)0.0249 (4)
H240.26740.80390.26680.030*
C250.1108 (2)0.73690 (17)0.33681 (17)0.0273 (4)
H250.18220.66020.31640.033*
C260.0433 (2)0.76245 (16)0.39595 (16)0.0230 (4)
H260.07630.70290.41510.028*
C410.46847 (19)0.55337 (14)0.29684 (13)0.0146 (3)
O410.55209 (15)0.48038 (11)0.29349 (10)0.0202 (3)
O420.37382 (15)0.54691 (11)0.21424 (10)0.0209 (3)
N510.68861 (18)0.59750 (13)0.50526 (12)0.0188 (3)
H510.661 (3)0.526 (3)0.450 (2)0.036 (7)*
C510.83863 (19)0.62940 (15)0.57529 (13)0.0155 (3)
C520.9415 (2)0.74526 (17)0.62019 (16)0.0255 (4)
H520.90760.80810.60780.031*
C531.0926 (2)0.76896 (18)0.68275 (18)0.0305 (4)
H531.16060.84800.71270.037*
C541.1457 (2)0.67906 (19)0.70221 (16)0.0271 (4)
H541.24920.69580.74500.032*
C551.0444 (2)0.56394 (18)0.65779 (16)0.0265 (4)
H551.07960.50140.66990.032*
C560.8916 (2)0.53892 (16)0.59562 (15)0.0218 (4)
H560.82330.46000.56700.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0218 (3)0.0168 (3)0.0137 (3)0.0013 (3)0.0035 (3)0.0021 (3)
Na20.0222 (4)0.0216 (4)0.0316 (4)0.0048 (3)0.0068 (3)0.0080 (3)
O10.0288 (7)0.0285 (7)0.0182 (6)0.0071 (6)0.0033 (5)0.0030 (6)
O20.0252 (6)0.0179 (6)0.0154 (6)0.0009 (5)0.0020 (5)0.0047 (5)
O30.0352 (7)0.0146 (6)0.0168 (6)0.0038 (5)0.0052 (5)0.0046 (5)
O40.0197 (6)0.0248 (7)0.0171 (6)0.0024 (5)0.0027 (5)0.0036 (5)
O50.0255 (6)0.0182 (6)0.0163 (6)0.0043 (5)0.0022 (5)0.0041 (5)
O60.0224 (6)0.0183 (6)0.0168 (6)0.0048 (5)0.0039 (5)0.0032 (5)
O70.0368 (8)0.0353 (8)0.0273 (7)0.0059 (7)0.0008 (6)0.0124 (6)
O80.0250 (7)0.0277 (8)0.0467 (9)0.0002 (6)0.0024 (6)0.0137 (7)
O90.0231 (7)0.0291 (8)0.0373 (8)0.0058 (6)0.0004 (6)0.0121 (6)
O1W0.0234 (7)0.0367 (8)0.0284 (7)0.0053 (6)0.0035 (6)0.0110 (7)
C10.0149 (7)0.0112 (7)0.0112 (7)0.0012 (6)0.0020 (6)0.0013 (6)
C20.0142 (7)0.0125 (7)0.0146 (7)0.0036 (6)0.0016 (6)0.0039 (6)
C30.0149 (7)0.0159 (8)0.0105 (7)0.0026 (6)0.0009 (6)0.0031 (6)
C40.0137 (7)0.0126 (7)0.0110 (7)0.0026 (6)0.0025 (5)0.0019 (6)
C50.0143 (7)0.0123 (7)0.0142 (7)0.0024 (6)0.0012 (6)0.0032 (6)
C60.0166 (7)0.0144 (7)0.0102 (7)0.0035 (6)0.0010 (6)0.0027 (6)
C110.0160 (7)0.0124 (7)0.0119 (7)0.0026 (6)0.0019 (6)0.0013 (6)
O110.0273 (6)0.0164 (6)0.0151 (6)0.0099 (5)0.0001 (5)0.0007 (5)
O120.0294 (7)0.0189 (6)0.0107 (5)0.0086 (5)0.0001 (5)0.0015 (5)
N210.0195 (7)0.0133 (7)0.0160 (7)0.0068 (6)0.0037 (5)0.0011 (6)
C210.0164 (7)0.0173 (8)0.0122 (7)0.0063 (6)0.0016 (6)0.0036 (6)
C220.0207 (9)0.0217 (9)0.0412 (11)0.0010 (7)0.0039 (8)0.0188 (9)
C230.0227 (9)0.0316 (11)0.0445 (12)0.0070 (8)0.0039 (8)0.0247 (10)
C240.0178 (8)0.0286 (10)0.0239 (9)0.0059 (7)0.0032 (7)0.0078 (8)
C250.0192 (9)0.0189 (9)0.0356 (11)0.0017 (7)0.0003 (7)0.0050 (8)
C260.0206 (8)0.0160 (8)0.0308 (10)0.0057 (7)0.0015 (7)0.0083 (7)
C410.0153 (7)0.0130 (7)0.0117 (7)0.0011 (6)0.0026 (6)0.0019 (6)
O410.0245 (6)0.0165 (6)0.0151 (6)0.0098 (5)0.0008 (5)0.0003 (5)
O420.0255 (6)0.0193 (6)0.0118 (5)0.0070 (5)0.0020 (5)0.0006 (5)
N510.0197 (7)0.0143 (7)0.0163 (7)0.0074 (6)0.0028 (6)0.0002 (6)
C510.0165 (7)0.0182 (8)0.0108 (7)0.0060 (6)0.0020 (6)0.0040 (6)
C520.0233 (9)0.0166 (8)0.0323 (10)0.0056 (7)0.0025 (7)0.0073 (7)
C530.0231 (9)0.0197 (9)0.0378 (11)0.0011 (7)0.0049 (8)0.0053 (8)
C540.0195 (8)0.0306 (10)0.0253 (9)0.0059 (7)0.0054 (7)0.0082 (8)
C550.0258 (9)0.0269 (10)0.0294 (10)0.0095 (8)0.0012 (7)0.0152 (8)
C560.0223 (8)0.0172 (8)0.0249 (9)0.0036 (7)0.0002 (7)0.0096 (7)
Geometric parameters (Å, º) top
Na1—O22.3487 (14)C3—C41.402 (2)
Na1—O32.3815 (15)C3—H30.9500
Na1—O42.3882 (15)C4—C51.426 (2)
Na1—O62.4224 (14)C4—C411.517 (2)
Na1—O52.5178 (15)C5—N511.399 (2)
Na1—O12.5605 (17)C5—C61.403 (2)
Na1—Na23.4915 (11)C6—H60.9500
Na1—H4A2.60 (3)C11—O111.268 (2)
Na2—O82.3237 (16)C11—O121.272 (2)
Na2—O92.3266 (17)N21—C211.410 (2)
Na2—O62.4407 (15)N21—H210.91 (3)
Na2—O52.4582 (15)C21—C221.393 (2)
Na2—O72.4685 (18)C21—C261.401 (2)
Na2—H7B2.66 (3)C22—C231.399 (3)
O1—H1A0.846 (10)C22—H220.9500
O1—H1B0.841 (10)C23—C241.387 (3)
O2—H2A0.85 (2)C23—H230.9500
O2—H2B0.840 (9)C24—C251.387 (3)
O3—H3A0.84 (2)C24—H240.9500
O3—H3B0.844 (10)C25—C261.390 (3)
O4—H4A0.845 (10)C25—H250.9500
O4—H4B0.845 (10)C26—H260.9500
O5—H5A0.846 (10)C41—O411.271 (2)
O5—H5B0.84 (2)C41—O421.272 (2)
O6—H6A0.844 (10)N51—C511.409 (2)
O6—H6B0.84 (3)N51—H510.90 (3)
O7—H7B0.843 (10)C51—C561.399 (2)
O8—H8A0.85 (3)C51—C521.402 (2)
O8—H8B0.843 (10)C52—C531.390 (3)
O9—H9A0.85 (4)C52—H520.9500
O9—H9B0.849 (10)C53—C541.388 (3)
O1W—H1WA0.851 (10)C53—H530.9500
O1W—H1WB0.84 (3)C54—C551.391 (3)
C1—C61.400 (2)C54—H540.9500
C1—C21.423 (2)C55—C561.397 (3)
C1—C111.517 (2)C55—H550.9500
C2—N211.398 (2)C56—H560.9500
C2—C31.406 (2)
O2—Na1—O3172.29 (5)Na2—O8—H8A119 (2)
O2—Na1—O493.61 (5)Na2—O8—H8B127.7 (17)
O3—Na1—O492.21 (5)H8A—O8—H8B112.7 (17)
O2—Na1—O687.91 (5)Na2—O9—H9A115 (3)
O3—Na1—O685.44 (5)Na2—O9—H9B126.8 (19)
O4—Na1—O6169.36 (6)H9A—O9—H9B109.2 (16)
O2—Na1—O595.27 (5)H1WA—O1W—H1WB111.1 (17)
O3—Na1—O580.58 (5)C6—C1—C2118.91 (14)
O4—Na1—O581.63 (5)C6—C1—C11117.82 (14)
O6—Na1—O587.75 (5)C2—C1—C11123.25 (15)
O2—Na1—O187.81 (5)N21—C2—C3119.86 (14)
O3—Na1—O194.99 (5)N21—C2—C1122.52 (15)
O4—Na1—O1109.64 (5)C3—C2—C1117.56 (15)
O6—Na1—O180.93 (5)C4—C3—C2123.42 (14)
O5—Na1—O1168.17 (5)C4—C3—H3118.3
O2—Na1—Na2100.70 (4)C2—C3—H3118.3
O3—Na1—Na271.77 (4)C3—C4—C5118.94 (14)
O4—Na1—Na2125.15 (4)C3—C4—C41117.61 (14)
O6—Na1—Na244.32 (4)C5—C4—C41123.45 (15)
O5—Na1—Na244.75 (3)N51—C5—C6120.07 (14)
O1—Na1—Na2123.45 (4)N51—C5—C4122.39 (15)
O2—Na1—H4A112.1 (4)C6—C5—C4117.45 (15)
O3—Na1—H4A73.4 (3)C1—C6—C5123.69 (15)
O4—Na1—H4A18.9 (3)C1—C6—H6118.2
O6—Na1—H4A155.4 (3)C5—C6—H6118.2
O5—Na1—H4A76.7 (6)O11—C11—O12122.92 (15)
O1—Na1—H4A112.7 (6)O11—C11—C1119.06 (14)
Na2—Na1—H4A114.9 (5)O12—C11—C1118.01 (14)
O8—Na2—O997.88 (6)C2—N21—C21124.85 (14)
O8—Na2—O688.77 (6)C2—N21—H21116.2 (16)
O9—Na2—O6167.29 (6)C21—N21—H21115.0 (16)
O8—Na2—O5172.95 (7)C22—C21—C26118.32 (16)
O9—Na2—O585.88 (5)C22—C21—N21118.73 (15)
O6—Na2—O588.70 (5)C26—C21—N21122.82 (15)
O8—Na2—O786.00 (6)C21—C22—C23120.66 (17)
O9—Na2—O788.40 (6)C21—C22—H22119.7
O6—Na2—O7102.93 (6)C23—C22—H22119.7
O5—Na2—O788.15 (6)C24—C23—C22120.56 (18)
O8—Na2—Na1129.74 (5)C24—C23—H23119.7
O9—Na2—Na1132.02 (5)C22—C23—H23119.7
O6—Na2—Na143.91 (3)C25—C24—C23118.93 (17)
O5—Na2—Na146.14 (4)C25—C24—H24120.5
O7—Na2—Na189.35 (5)C23—C24—H24120.5
O8—Na2—H7B97.2 (6)C24—C25—C26120.92 (17)
O9—Na2—H7B101.3 (5)C24—C25—H25119.5
O6—Na2—H7B88.5 (5)C26—C25—H25119.5
O5—Na2—H7B76.2 (6)C25—C26—C21120.59 (17)
O7—Na2—H7B18.5 (3)C25—C26—H26119.7
Na1—Na2—H7B70.9 (3)C21—C26—H26119.7
Na1—O1—H1A95 (2)O41—C41—O42123.09 (15)
Na1—O1—H1B118 (2)O41—C41—C4118.32 (14)
H1A—O1—H1B111.3 (16)O42—C41—C4118.58 (15)
Na1—O2—H2A117.9 (18)C5—N51—C51126.27 (14)
Na1—O2—H2B108.8 (18)C5—N51—H51115.9 (17)
H2A—O2—H2B111.0 (15)C51—N51—H51116.6 (17)
Na1—O3—H3A120.5 (18)C56—C51—C52118.36 (16)
Na1—O3—H3B103.7 (18)C56—C51—N51117.98 (15)
H3A—O3—H3B111.2 (15)C52—C51—N51123.53 (16)
Na1—O4—H4A95 (2)C53—C52—C51120.57 (17)
Na1—O4—H4B118.4 (19)C53—C52—H52119.7
H4A—O4—H4B110.9 (15)C51—C52—H52119.7
Na2—O5—Na189.11 (5)C54—C53—C52121.09 (18)
Na2—O5—H5A120.1 (19)C54—C53—H53119.5
Na1—O5—H5A98.0 (19)C52—C53—H53119.5
Na2—O5—H5B110.8 (17)C53—C54—C55118.61 (17)
Na1—O5—H5B127.0 (18)C53—C54—H54120.7
H5A—O5—H5B111.0 (15)C55—C54—H54120.7
Na1—O6—Na291.77 (5)C54—C55—C56120.98 (17)
Na1—O6—H6A102 (2)C54—C55—H55119.5
Na2—O6—H6A118.0 (18)C56—C55—H55119.5
Na1—O6—H6B110.5 (19)C55—C56—C51120.38 (17)
Na2—O6—H6B119.8 (18)C55—C56—H56119.8
H6A—O6—H6B111.2 (16)C51—C56—H56119.8
Na2—O7—H7B94 (2)
O2—Na1—Na2—O8101.00 (8)C6—C1—C2—C31.0 (2)
O3—Na1—Na2—O877.29 (8)C11—C1—C2—C3177.39 (14)
O4—Na1—Na2—O8156.79 (8)N21—C2—C3—C4176.04 (15)
O6—Na1—Na2—O825.28 (8)C1—C2—C3—C41.2 (2)
O5—Na1—Na2—O8172.32 (9)C2—C3—C4—C50.1 (2)
O1—Na1—Na2—O86.52 (9)C2—C3—C4—C41179.55 (15)
O2—Na1—Na2—O987.49 (8)C3—C4—C5—N51178.21 (15)
O3—Na1—Na2—O994.22 (8)C41—C4—C5—N512.4 (2)
O4—Na1—Na2—O914.72 (9)C3—C4—C5—C61.6 (2)
O6—Na1—Na2—O9163.21 (9)C41—C4—C5—C6179.05 (14)
O5—Na1—Na2—O90.81 (7)C2—C1—C6—C50.5 (2)
O1—Na1—Na2—O9178.03 (7)C11—C1—C6—C5178.96 (15)
O2—Na1—Na2—O675.72 (6)N51—C5—C6—C1178.52 (15)
O3—Na1—Na2—O6102.57 (6)C4—C5—C6—C11.8 (2)
O4—Na1—Na2—O6177.93 (7)C6—C1—C11—O11171.11 (15)
O5—Na1—Na2—O6162.40 (7)C2—C1—C11—O1110.5 (2)
O1—Na1—Na2—O618.76 (6)C6—C1—C11—O129.7 (2)
O2—Na1—Na2—O586.68 (6)C2—C1—C11—O12168.70 (15)
O3—Na1—Na2—O595.03 (6)C3—C2—N21—C2135.5 (2)
O4—Na1—Na2—O515.53 (6)C1—C2—N21—C21147.42 (17)
O6—Na1—Na2—O5162.40 (7)C2—N21—C21—C22154.71 (18)
O1—Na1—Na2—O5178.84 (6)C2—N21—C21—C2629.5 (3)
O2—Na1—Na2—O7174.75 (6)C26—C21—C22—C231.5 (3)
O3—Na1—Na2—O76.97 (5)N21—C21—C22—C23174.51 (19)
O4—Na1—Na2—O772.53 (6)C21—C22—C23—C241.0 (4)
O6—Na1—Na2—O7109.53 (6)C22—C23—C24—C250.2 (3)
O5—Na1—Na2—O788.06 (6)C23—C24—C25—C260.1 (3)
O1—Na1—Na2—O790.77 (6)C24—C25—C26—C210.4 (3)
O9—Na2—O5—Na1179.40 (6)C22—C21—C26—C251.2 (3)
O6—Na2—O5—Na112.11 (5)N21—C21—C26—C25174.65 (17)
O7—Na2—O5—Na190.87 (5)C3—C4—C41—O41178.91 (14)
O2—Na1—O5—Na299.89 (5)C5—C4—C41—O411.7 (2)
O3—Na1—O5—Na273.55 (5)C3—C4—C41—O422.4 (2)
O4—Na1—O5—Na2167.22 (5)C5—C4—C41—O42177.02 (15)
O6—Na1—O5—Na212.20 (5)C6—C5—N51—C5132.0 (2)
O1—Na1—O5—Na24.7 (3)C4—C5—N51—C51151.39 (17)
O2—Na1—O6—Na2107.66 (5)C5—N51—C51—C56158.36 (17)
O3—Na1—O6—Na268.43 (5)C5—N51—C51—C5225.7 (3)
O4—Na1—O6—Na29.2 (3)C56—C51—C52—C530.4 (3)
O5—Na1—O6—Na212.30 (5)N51—C51—C52—C53175.51 (18)
O1—Na1—O6—Na2164.23 (5)C51—C52—C53—C540.1 (3)
O8—Na2—O6—Na1160.82 (6)C52—C53—C54—C550.0 (3)
O9—Na2—O6—Na177.3 (3)C53—C54—C55—C560.6 (3)
O5—Na2—O6—Na112.59 (5)C54—C55—C56—C511.1 (3)
O7—Na2—O6—Na175.21 (6)C52—C51—C56—C551.0 (3)
C6—C1—C2—N21176.15 (15)N51—C51—C56—C55175.13 (17)
C11—C1—C2—N215.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O12i0.85 (1)2.01 (1)2.8328 (18)165 (3)
O1—H1B···O8ii0.84 (1)2.61 (2)3.130 (2)121 (2)
O2—H2A···O42iii0.85 (2)1.99 (1)2.8275 (18)168 (3)
O2—H2B···O11i0.84 (1)1.95 (1)2.7740 (18)168 (2)
O3—H3A···O12iv0.84 (2)1.93 (1)2.7632 (18)171 (2)
O3—H3B···O41v0.84 (1)1.88 (1)2.7123 (18)170 (2)
O4—H4A···O41v0.85 (1)2.01 (1)2.8522 (19)178 (3)
O4—H4B···O1Wvi0.85 (1)2.01 (1)2.824 (2)163 (2)
O5—H5A···O42v0.85 (1)2.05 (1)2.8895 (18)170 (2)
O5—H5B···O4iv0.84 (2)2.16 (1)2.9889 (19)169 (2)
O6—H6A···O11i0.84 (1)2.01 (1)2.8513 (18)172 (3)
O6—H6B···O1vii0.84 (3)2.17 (1)3.014 (2)178 (2)
O7—H7B···O30.84 (1)1.91 (1)2.741 (2)168 (3)
O8—H8A···O7viii0.85 (3)2.15 (2)2.925 (2)154 (3)
O8—H8B···O12ix0.84 (1)2.04 (1)2.845 (2)161 (3)
O9—H9A···O1Wx0.85 (4)2.03 (2)2.826 (2)155 (4)
O9—H9B···O2xi0.85 (1)1.98 (1)2.8015 (19)164 (3)
O1W—H1WA···O420.85 (1)2.07 (1)2.9059 (19)166 (3)
O1W—H1WB···O9xii0.84 (3)2.05 (2)2.858 (2)159 (4)
N21—H21···O110.91 (3)2.03 (3)2.7176 (19)132 (2)
N51—H51···O410.90 (3)2.03 (3)2.6950 (19)130 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z+2; (v) x, y, z+1; (vi) x+1, y, z+1; (vii) x+1, y, z+2; (viii) x, y, z+2; (ix) x1, y1, z; (x) x, y+1, z+1; (xi) x1, y, z; (xii) x, y, z1.

Experimental details

Crystal data
Chemical formula2Na+·C20H14N2O42·10H2O
Mr572.47
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.7638 (7), 12.4371 (10), 13.5720 (11)
α, β, γ (°)110.550 (6), 97.483 (7), 101.857 (6)
V3)1322.14 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.19 × 0.11 × 0.09
Data collection
DiffractometerStoe IPDS-II two-circle
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 2003; Blessing, 1995)
Tmin, Tmax0.973, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
21410, 5789, 4837
Rint0.078
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.141, 1.06
No. of reflections5789
No. of parameters427
No. of restraints28
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.35

Computer programs: X-AREA (Stoe & Cie, 2001), X-AREA, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP in SHELXTL-Plus (Sheldrick, 1991) and SCHAKAL (Keller, 1980), SHELXL97 and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O12i0.846 (10)2.007 (13)2.8328 (18)165 (3)
O1—H1B···O8ii0.841 (10)2.61 (2)3.130 (2)121 (2)
O2—H2A···O42iii0.85 (2)1.990 (11)2.8275 (18)168 (3)
O2—H2B···O11i0.840 (9)1.947 (10)2.7740 (18)168 (2)
O3—H3A···O12iv0.84 (2)1.927 (10)2.7632 (18)171 (2)
O3—H3B···O41v0.844 (10)1.878 (10)2.7123 (18)170 (2)
O4—H4A···O41v0.845 (10)2.007 (10)2.8522 (19)178 (3)
O4—H4B···O1Wvi0.845 (10)2.006 (11)2.824 (2)163 (2)
O5—H5A···O42v0.846 (10)2.052 (11)2.8895 (18)170 (2)
O5—H5B···O4iv0.84 (2)2.159 (11)2.9889 (19)169 (2)
O6—H6A···O11i0.844 (10)2.013 (10)2.8513 (18)172 (3)
O6—H6B···O1vii0.84 (3)2.172 (10)3.014 (2)178 (2)
O7—H7B···O30.843 (10)1.911 (12)2.741 (2)168 (3)
O8—H8A···O7viii0.85 (3)2.145 (17)2.925 (2)154 (3)
O8—H8B···O12ix0.843 (10)2.036 (13)2.845 (2)161 (3)
O9—H9A···O1Wx0.85 (4)2.03 (2)2.826 (2)155 (4)
O9—H9B···O2xi0.849 (10)1.975 (13)2.8015 (19)164 (3)
O1W—H1WA···O420.851 (10)2.073 (13)2.9059 (19)166 (3)
O1W—H1WB···O9xii0.84 (3)2.054 (18)2.858 (2)159 (4)
N21—H21···O110.91 (3)2.03 (3)2.7176 (19)132 (2)
N51—H51···O410.90 (3)2.03 (3)2.6950 (19)130 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z+2; (v) x, y, z+1; (vi) x+1, y, z+1; (vii) x+1, y, z+2; (viii) x, y, z+2; (ix) x1, y1, z; (x) x, y+1, z+1; (xi) x1, y, z; (xii) x, y, z1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds