Download citation
Download citation
link to html
In the crystal structure of (E)-8-(3-chloro­styr­yl)-1,3,7-trimethylxanthine (CSC) [systematic name: (E)-8-(3-chloro­styr­yl)-1,3,7-trimethyl-3,7-dihydro-1H-purine-2,6-dione], C16H15ClN4O2, the xanthine ring and the lateral styryl chain are coplanar. The crystal packing involves mainly parallel stacking of these planar mol­ecules. The electrostatic potential calculated on the crystal structure conformation confirms the pharmacophore elements associated with MAO-B inhibition.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105023140/gd1409sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105023140/gd1409Isup2.hkl
Contains datablock I

CCDC reference: 285653

Comment top

(E)-8-(3-Chlorostyryl)-1,3,7-trimethylxanthine (CSC) (Fig. 1) is a caffeinyl derivative that acts both as an antagonist of adenosine A2A receptors and as an inhibitor of MAO-B, offering novel therapeutic benefits in patients diagnosed with neurodegenerative disorders such as Parkinson's disease (Castagnoli et al., 2003; Petzer et al., 2003). The crystal structure reported here will be the starting point for three-dimensional quantitative structure–activity relationship and docking studies, which may aid in the future design of potent A2A receptor antagonists that also possess monoamine oxidase B (MAO-B) inhibitory activity.

The bond lengths (Table 1) within the xanthine ring are systematically intermediate between single and double C—C and/or C—N bonds. Analysis of the torsion angles revealed that the molecule adopts an almost planar conformation; the xanthine ring is coplanar with the lateral styryl moiety, which adopts an all trans conformation (Table 1).

Crystal cohesion of CSC is mainly assumed by stacking interactions involving the five-membered (imidazole-type) ring, C4/C5/N7/C8/N9, and the aryl ring, C17–C22. In particular, there are a pair of five-membered rings stacked across (0, 1,1/2) and a pair of phenyl rings stacked across (0,1/2, 1). The distance between the centroids of the C4/C5/N7/C8/N9 ring in the molecules at (x, y, z) and (−x, 2 − y, 1 − z) is 3.637 (2) Å, with an interplanar spacing of 3.402 (2) Å; the separation between the centroids of the aryl rings of the molecules at (x, y, z) and (−x, 1 − y, 2 − z) is 3.707 (2) Å, with an interplanar spacing of 3.551 (2) Å. Propagation of these stacking interactions by successive inversions then generates a chain along [01–1].

The coplanar conformation adopted by CSC is in agreement with our previously determined MAO-B pharmacophore (Wouters et al., 1997; Wouters, 1998; Ooms et al., 2003). The molecular electostatic potential (MEP) around the molecule (Fig. 2) was calculated (ab initio, RHF 6–31G* basis set) using the crystal structure conformation. The features of the MEP map conform with stereoelectronic elements already found among other families of reversible MAO-B inhibitors. In particular, the MEP map identifies three attractive potential wells that show a high degree of similarity compared with other MAO-B inhibitors. These attractive potential wells generated by the two carbonyls and atom N9 of the xanthine ring define a unique pharmacophoric pattern similar to that observed among diazoheterocyclic of reversible MAO-B inhibitors (Wouters et al., 1997; Wouters, 1998). This suggests that the heteroatoms of the xanthine ring can stabilize this new family of reversible MAO-B inhibitors with appropriate hydrogen donor residues found within the MAO-B active site.

Experimental top

CSC was obtained from 1,3-dimethyl-5,6-diaminouracil and (E)-3-chlorocinnamic acid according to the general procedure reported by Jacobson et al. (1993). M.p. 478 K, literature 478 K (Jacobson et al., 1993). Crystals were grown at room temperature by slow evaporation from a solution of CSC in methanol.

Refinement top

H atoms were refined using a riding model. For the methyl groups (C10, C12 and C14), C—H distances were fixed at 0.96 Å, with Uiso(H) = 1.5Ueq(C). All other C—H distances were fixed at 0.93 Å, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2001); software used to prepare material for publication: PLATON (Spek, 2001).

Figures top
[Figure 1] Fig. 1. The molecular conformation of CSC, with its atomic numbering scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Molecular electostatic potential (MEP) calculated around CSC (ab initio, RHF 6–31G* basis set) using the crystal structure conformation.
(E)-8-(3-chlorostyryl)-1,3,7-trimethyl-3,7-dihydro-1H-purine-2,6-dione top
Crystal data top
C16H15ClN4O2Z = 2
Mr = 330.77F(000) = 344
Triclinic, P1Dx = 1.423 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54175 Å
a = 8.244 (1) ÅCell parameters from 25 reflections
b = 8.319 (1) Åθ = 4–45°
c = 12.722 (1) ŵ = 2.33 mm1
α = 77.864 (7)°T = 298 K
β = 77.502 (6)°Prism, colourless
γ = 66.214 (5)°0.32 × 0.30 × 0.10 mm
V = 772.05 (15) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2776 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 71.8°, θmin = 3.6°
θ/2θ scansh = 100
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
k = 109
Tmin = 0.523, Tmax = 0.801l = 1515
3240 measured reflections3 standard reflections every 60 min
3015 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.132 1/[σ2(Fo2) + (0.0756P)2 + 0.2615P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.012
3015 reflectionsΔρmax = 0.33 e Å3
209 parametersΔρmin = 0.40 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0124 (13)
Crystal data top
C16H15ClN4O2γ = 66.214 (5)°
Mr = 330.77V = 772.05 (15) Å3
Triclinic, P1Z = 2
a = 8.244 (1) ÅCu Kα radiation
b = 8.319 (1) ŵ = 2.33 mm1
c = 12.722 (1) ÅT = 298 K
α = 77.864 (7)°0.32 × 0.30 × 0.10 mm
β = 77.502 (6)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2776 reflections with I > 2σ(I)
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
Rint = 0.016
Tmin = 0.523, Tmax = 0.8013 standard reflections every 60 min
3240 measured reflections intensity decay: 1%
3015 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.03Δρmax = 0.33 e Å3
3015 reflectionsΔρmin = 0.40 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. Conventional R-factors R are based on F, with F set to zero for negative F2.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl230.16218 (9)0.22491 (8)0.97197 (5)0.0806 (2)
O130.27332 (19)1.36092 (17)0.41146 (13)0.0615 (4)
O110.6358 (2)0.8922 (2)0.23024 (11)0.0656 (4)
N10.45156 (19)1.12513 (19)0.32115 (11)0.0426 (3)
N30.4474 (2)0.83708 (18)0.37860 (11)0.0448 (3)
N70.13513 (17)1.09412 (18)0.57147 (11)0.0404 (3)
N90.24140 (18)0.81028 (18)0.54338 (11)0.0412 (3)
C150.0150 (2)0.8930 (2)0.70531 (14)0.0447 (4)
H150.05880.98490.74510.054*
C80.1285 (2)0.9311 (2)0.60731 (13)0.0395 (4)
C40.3208 (2)0.9026 (2)0.46501 (12)0.0373 (3)
C50.2602 (2)1.0771 (2)0.47867 (13)0.0379 (4)
C170.0964 (2)0.6782 (2)0.83802 (14)0.0426 (4)
C180.2158 (2)0.7940 (3)0.90952 (15)0.0507 (4)
H180.22830.91240.89680.061*
C220.0796 (2)0.5016 (2)0.85981 (15)0.0483 (4)
H220.00150.42090.81440.058*
C160.0120 (2)0.7324 (2)0.74058 (14)0.0451 (4)
H160.08750.64390.69870.054*
C100.5132 (3)0.6491 (3)0.36641 (19)0.0662 (6)
H10A0.60910.58270.40840.099*
H10B0.55610.63500.29120.099*
H10C0.41740.60630.39170.099*
C20.5190 (2)0.9470 (2)0.30541 (13)0.0450 (4)
C200.3014 (3)0.5604 (3)1.01882 (15)0.0577 (5)
H200.37060.52121.07840.069*
C140.0255 (3)1.2595 (3)0.61581 (18)0.0597 (5)
H14A0.08911.30840.59110.090*
H14B0.08441.34240.59170.090*
H14C0.00911.23660.69380.090*
C120.5243 (3)1.2425 (3)0.24032 (15)0.0539 (5)
H12A0.43141.32780.20080.081*
H12B0.62011.17340.19080.081*
H12C0.56901.30300.27650.081*
C60.3219 (2)1.2032 (2)0.40571 (14)0.0414 (4)
C210.1834 (3)0.4460 (3)0.94899 (15)0.0515 (4)
C190.3158 (3)0.7346 (3)0.99910 (16)0.0600 (5)
H190.39370.81311.04670.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl230.1005 (5)0.0608 (4)0.0858 (4)0.0481 (3)0.0027 (3)0.0012 (3)
O130.0651 (8)0.0348 (7)0.0789 (10)0.0207 (6)0.0017 (7)0.0049 (6)
O110.0755 (9)0.0672 (9)0.0512 (8)0.0323 (8)0.0176 (7)0.0182 (7)
N10.0464 (7)0.0427 (7)0.0398 (7)0.0210 (6)0.0069 (6)0.0014 (6)
N30.0529 (8)0.0373 (7)0.0425 (7)0.0176 (6)0.0022 (6)0.0096 (6)
N70.0400 (7)0.0343 (7)0.0442 (7)0.0115 (5)0.0039 (6)0.0075 (5)
N90.0451 (7)0.0351 (7)0.0424 (7)0.0162 (6)0.0028 (6)0.0044 (5)
C150.0417 (8)0.0460 (9)0.0436 (9)0.0152 (7)0.0007 (7)0.0086 (7)
C80.0389 (8)0.0377 (8)0.0410 (8)0.0140 (6)0.0057 (6)0.0044 (6)
C40.0395 (8)0.0347 (8)0.0376 (8)0.0134 (6)0.0055 (6)0.0057 (6)
C50.0388 (8)0.0343 (8)0.0398 (8)0.0126 (6)0.0066 (6)0.0049 (6)
C170.0402 (8)0.0482 (9)0.0412 (8)0.0192 (7)0.0048 (6)0.0061 (7)
C180.0533 (10)0.0486 (10)0.0496 (10)0.0205 (8)0.0007 (8)0.0093 (8)
C220.0506 (9)0.0505 (10)0.0468 (9)0.0231 (8)0.0012 (7)0.0106 (8)
C160.0422 (8)0.0479 (9)0.0444 (9)0.0180 (7)0.0006 (7)0.0098 (7)
C100.0797 (14)0.0442 (10)0.0678 (13)0.0237 (10)0.0192 (10)0.0236 (9)
C20.0506 (9)0.0479 (9)0.0381 (8)0.0212 (8)0.0034 (7)0.0069 (7)
C200.0608 (11)0.0689 (13)0.0423 (9)0.0319 (10)0.0024 (8)0.0001 (8)
C140.0585 (11)0.0422 (10)0.0716 (13)0.0148 (8)0.0103 (9)0.0222 (9)
C120.0578 (11)0.0585 (11)0.0492 (10)0.0332 (9)0.0082 (8)0.0085 (8)
C60.0415 (8)0.0345 (8)0.0478 (9)0.0140 (6)0.0104 (7)0.0015 (6)
C210.0580 (10)0.0520 (10)0.0490 (10)0.0287 (9)0.0087 (8)0.0008 (8)
C190.0609 (11)0.0670 (13)0.0461 (10)0.0219 (10)0.0069 (8)0.0148 (9)
Geometric parameters (Å, º) top
Cl23—C211.743 (2)C17—C221.391 (2)
O11—C21.217 (2)C18—C191.381 (3)
O13—C61.221 (2)C19—C201.378 (3)
N1—C21.399 (2)C20—C211.370 (3)
N1—C61.399 (2)C21—C221.383 (3)
N1—C121.468 (3)C10—H10A0.9603
N3—C21.375 (2)C10—H10B0.9602
N3—C41.375 (2)C10—H10C0.9606
N3—C101.465 (3)C12—H12A0.9598
N7—C51.380 (2)C12—H12B0.9602
N7—C81.356 (2)C12—H12C0.9600
N7—C141.460 (3)C14—H14A0.9600
N9—C41.347 (2)C14—H14B0.9604
N9—C81.342 (2)C14—H14C0.9605
C4—C51.368 (2)C15—H150.9302
C5—C61.428 (2)C16—H160.9302
C8—C151.449 (2)C18—H180.9303
C15—C161.326 (2)C19—H190.9303
C16—C171.466 (2)C20—H200.9303
C17—C181.393 (3)C22—H220.9303
C2—N1—C6126.87 (14)Cl23—C21—C22118.69 (16)
C2—N1—C12116.55 (15)C20—C21—C22121.5 (2)
C6—N1—C12116.59 (15)C17—C22—C21120.01 (17)
C2—N3—C4119.84 (14)N3—C10—H10A109.48
C2—N3—C10119.46 (16)N3—C10—H10B109.49
C4—N3—C10120.64 (16)N3—C10—H10C109.47
C5—N7—C8106.29 (13)H10A—C10—H10B109.51
C5—N7—C14125.54 (15)H10A—C10—H10C109.44
C8—N7—C14128.05 (16)H10B—C10—H10C109.44
C4—N9—C8103.92 (13)N1—C12—H12A109.47
O11—C2—N1121.33 (16)N1—C12—H12B109.47
O11—C2—N3121.64 (15)N1—C12—H12C109.46
N1—C2—N3117.03 (14)H12A—C12—H12B109.47
N3—C4—N9126.28 (14)H12A—C12—H12C109.49
N3—C4—C5121.41 (15)H12B—C12—H12C109.48
N9—C4—C5112.32 (14)N7—C14—H14A109.47
N7—C5—C4105.14 (14)N7—C14—H14B109.48
N7—C5—C6131.68 (14)N7—C14—H14C109.51
C4—C5—C6123.18 (15)H14A—C14—H14B109.45
O13—C6—N1121.20 (16)H14A—C14—H14C109.49
O13—C6—C5127.17 (17)H14B—C14—H14C109.44
N1—C6—C5111.63 (14)C8—C15—H15118.71
N7—C8—N9112.34 (15)C16—C15—H15118.64
N7—C8—C15123.19 (14)C15—C16—H16116.22
N9—C8—C15124.46 (14)C17—C16—H16116.29
C8—C15—C16122.65 (15)C17—C18—H18119.69
C15—C16—C17127.49 (15)C19—C18—H18119.72
C16—C17—C18123.58 (15)C18—C19—H19119.61
C16—C17—C22118.11 (15)C20—C19—H19119.62
C18—C17—C22118.31 (17)C19—C20—H20120.64
C17—C18—C19120.6 (2)C21—C20—H20120.59
C18—C19—C20120.8 (2)C17—C22—H22120.01
C19—C20—C21118.8 (2)C21—C22—H22119.99
Cl23—C21—C20119.78 (17)
N7—C8—C15—C16178.8 (2)C14—N7—C8—C155.3 (3)
C8—C15—C16—C17179.9 (2)C8—N9—C4—N3179.30 (17)
C15—C16—C17—C180.0 (3)C8—N9—C4—C50.0 (2)
C6—N1—C2—O11177.97 (18)C4—N9—C8—N70.0 (2)
C6—N1—C2—N32.0 (3)C4—N9—C8—C15178.45 (17)
C12—N1—C2—O112.1 (3)N9—C4—C5—N70.0 (2)
C12—N1—C2—N3177.86 (17)N9—C4—C5—C6179.23 (16)
C2—N1—C6—O13179.78 (18)N3—C4—C5—N7179.33 (16)
C2—N1—C6—C50.3 (3)N3—C4—C5—C60.1 (3)
C12—N1—C6—O130.3 (3)C4—C5—C6—O13179.11 (19)
C12—N1—C6—C5179.58 (17)N7—C5—C6—O130.1 (3)
C4—N3—C2—O11177.34 (18)N7—C5—C6—N1179.78 (18)
C4—N3—C2—N12.7 (2)C4—C5—C6—N10.8 (2)
C10—N3—C2—O110.2 (3)N9—C8—C15—C160.5 (3)
C10—N3—C2—N1179.80 (18)C15—C16—C17—C22179.60 (19)
C2—N3—C4—N9179.03 (17)C16—C17—C18—C19179.07 (19)
C2—N3—C4—C51.7 (3)C22—C17—C18—C190.6 (3)
C10—N3—C4—N91.9 (3)C16—C17—C22—C21178.00 (19)
C10—N3—C4—C5178.84 (19)C18—C17—C22—C211.7 (3)
C8—N7—C5—C40.03 (19)C17—C18—C19—C200.9 (3)
C8—N7—C5—C6179.14 (19)C18—C19—C20—C211.2 (4)
C14—N7—C5—C4176.31 (18)C19—C20—C21—Cl23179.93 (19)
C14—N7—C5—C62.8 (3)C19—C20—C21—C220.1 (4)
C5—N7—C8—N90.0 (2)Cl23—C21—C22—C17178.61 (16)
C5—N7—C8—C15178.47 (16)C20—C21—C22—C171.4 (3)
C14—N7—C8—N9176.19 (18)

Experimental details

Crystal data
Chemical formulaC16H15ClN4O2
Mr330.77
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.244 (1), 8.319 (1), 12.722 (1)
α, β, γ (°)77.864 (7), 77.502 (6), 66.214 (5)
V3)772.05 (15)
Z2
Radiation typeCu Kα
µ (mm1)2.33
Crystal size (mm)0.32 × 0.30 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionAnalytical
(de Meulenaer & Tompa, 1965)
Tmin, Tmax0.523, 0.801
No. of measured, independent and
observed [I > 2σ(I)] reflections
3240, 3015, 2776
Rint0.016
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.132, 1.03
No. of reflections3015
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.40

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), HELENA (Spek, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2001).

Selected geometric parameters (Å, º) top
N1—C21.399 (2)N7—C51.380 (2)
N1—C61.399 (2)N7—C81.356 (2)
N3—C21.375 (2)N9—C41.347 (2)
N3—C41.375 (2)N9—C81.342 (2)
N7—C8—C15—C16178.8 (2)C15—C16—C17—C180.0 (3)
C8—C15—C16—C17179.9 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds