metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

(η5-Cyclo­penta­dien­yl)(N,N-di­methyl­di­thio­carbamato-κ2S,S′)[η4-tetra­kis­(tri­fluoro­meth­yl)cyclo­butadien­yl]­molybdenum(IV)

CROSSMARK_Color_square_no_text.svg

aSchool of Engineering and Physical Sciences, Heriot–Watt University, Edinburgh EH14 4AS, Scotland, and bDepartment of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland
*Correspondence e-mail: ken@chem.gla.ac.uk

(Received 23 February 2005; accepted 24 February 2005; online 25 March 2005)

The title complex, [Mo(C8F12)(C5H5)(C3H6NS2)], contains both a η4-C4(CF3)4 cyclo­butadien­yl ligand with approximate C4v local symmetry and a η5-C5H5 cyclo­penta­dien­yl ring. The centroids of the rings and the S atoms of a chelating dithio­carbamate ligand define the pseudo-tetra­hedral coordination of the Mo atom. The Mo—C(cyclo­butadien­yl) bond lengths [2.189 (2)–2.211 (2) Å] are unusually short, probably reflecting strong electron withdrawal by the trifluoro­meth­yl groups. The molecules straddle crystallographic mirror planes.

Comment

Complexes with η4-C4R4 cyclo­butadien­yl ligands are known for many transition metals. For example, nine structures containing the (η4-C4R4)Mo moiety occur in the Cambridge Structural Database (CSD; Version 5.25 of November 2003; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) (structural searches were carried out locally using the QUEST and CONQUEST search programs). In most of these compounds, R = Ph (CSD refcodes GICGUU10, LUJZOF, LUKBAU, LUJZUL, PABPMO, PCBMOC10 and TPCBMO), but an R = p-CH3C6H4 complex (GIQTIJ) and a C4Ph3Me species (COXVIU) have also been characterized (see supplementary data for a list of references). We now describe the structure of the title compound, CpCbMo(S2CNMe2), (I)[link], where Cp = η5-C5H5 and Cb = η4-C4(CF3)4. Compound (I)[link] is the first structural example of a η4-C4(CF3)4 complex of any transition metal.

Mol­ecules of (I)[link] have exact Cs symmetry; atoms Mo1, N1, C1, C3, C8–C11, F4 and F7 all lie on a crystallographic mirror plane in space group P21m (Fig. 1[link]). The metal coordination is pseudo-tetra­hedral, being defined by Cp—Mo—Cb and S—Mo—Si angles of 136.6 (2) and 70.0 (1)° (here Cp and Cb are the centroids of the C5 and C4 rings; symmetry code as in Table 1[link]). The bonding in pseudo-tetra­hedral CpCbMoL2 species such as (I)[link] has been reviewed by Curnow et al. (1993[Curnow, O. J., Hirpo, W., Butler, W. M. & Curtis, M. D. (1993). Organo­metallics, 12, 4479-4484.]), who argue that the Cb ligand is best considered as a dianionic C4R42- six-electron donor isoelectronic with Cp, making (I)[link] a d2 MoIV complex. The metal lone pair in such complexes occupies a stereochemically active dz2-like orbital, compressing the LML angle. Thus, the Cl—Mo—Cl angle in Cp2MoCl2 (Prout et al., 1974[Prout, K., Cameron, T. S., Forder, R. A., Critchley, S. R., Denton, B. & Rees, G. V. (1974). Acta Cryst. B30, 2290-2304.]) is 82°, only 12° less acute than the S—Mo—Si angle in (I)[link].

[Scheme 1]

The Mo—S distance in (I)[link] (Table 1[link]) differs by only 0.002 (1) Å from the comparable mean of 2.472 Å in the isoelectronic MoIV cation [Mo(η5-In)2(S2CNEt2)]+ (In is inden­yl; Drew et al., 1998[Drew, M. G. B., Felix, V., Goncalves, I. S., Romao, C. C. & Royo, B. (1998). Organometallics, 17, 5782-5788.]). The Mo—C(Cp) bond lengths are also unexceptional and the displacement of the Mo atom from the Cp plane [2.012 (1) Å] is close to the average of 2.008 (1) Å for all CpMo compounds in the CSD. However, (i) variations in Cp ring C—C distances and angles [1.338 (9)–1.391 (4) Å and 105.9 (4)–109.2 (2)°] and (ii) Ueq values of Cp ring C atoms nearly three times that of the Mo atom both suggest substantial libration, possibly even some disorder, of the ring about the Mo—Cp vector.

The Cb ligand deviates only slightly from C4v symmetry. Thus, the ring C—C bond lengths differ by only 0.013 (4) Å. Atoms C7, C9 and C11 are displaced by 0.340 (2), 0.562 (4) and 0.504 (3) Å, respectively, to the opposite side of the C4 ring plane from the Mo atom, probably to relieve intra­ligand repulsions. Rotation of the C7F3 group from its ideal position by ca 8° is shown by F1—C7—C6—C8 and F1—C7—C6—C10 torsion angles of 84.1 (3) and −67.6 (3)°, respectively. The near equality of the Ueq values for the Mo and the Cb ring C atoms is consistent with the high barrier to libration about the Mo—Cb vector suggested by spectroscopic evidence (David­son, 1987[Davidson, J. L. (1987). J. Chem. Soc. Dalton Trans. pp. 2715-2722.]).

In other (η4-C4R4)Mo complexes the ring C—C bond lengths usually show little variation and their average value of 1.462 (2) Å agrees well with the individual values in (I)[link]. In contrast, the ring C—C bond lengths in C4R4 mol­ecules indicate fixed double and single bonds (Irmgartinger et al., 1988[Irmgartinger, H., Nixdorf, M., Riegler, N. H., Krebs, A., Kimling, H., Pocklington, J., Maier, G., Malsch, K.-D. & Schneider, K.-A. (1988). Chem. Ber. 121, 673-677.], and references therein).

The Mo—C(Cb) bond lengths in (I)[link] vary slightly and are on average 0.08 Å shorter than the mean value of 2.284 (7) Å for other (η4-C4R4)Mo complexes (where R = Me, Ph, etc.). The displacement of the Mo atom from the Cb ring plane in (I)[link] [1.944 (1) Å] is likewise less than the range of 1.995–2.074 Å found in other MoCb complexes.

Curnow et al. (1993[Curnow, O. J., Hirpo, W., Butler, W. M. & Curtis, M. D. (1993). Organo­metallics, 12, 4479-4484.]) substantiate their view of Cb as a C4R42- dianionic ligand from extended Hückel mol­ecular-orbital (EHMO) calculations, which show that in CpCbMoL2 species much more charge is transferred from Mo to Cb than to Cp. Electron-withdrawing CF3 substituents on the Cb C atoms might be expected to facilitate this transfer and thus to produce the very strong Mo—Cb π bonds found in (I)[link].

[Figure 1]
Figure 1
A view of the mol­ecule of (I)[link], showing 20% probability displacement ellipsoids. [Symmetry code: (i) x, −y + [{1\over 2}], z.]

Experimental

The preparation and spectroscopic characterization of (I)[link] have been described by Davidson (1987[Davidson, J. L. (1987). J. Chem. Soc. Dalton Trans. pp. 2715-2722.]).

Crystal data
  • [Mo(C8F12)(C5H5)(C3H6NS2)]

  • Mr = 605.32

  • Monoclinic, P 21 /m

  • a = 8.918 (1) Å

  • b = 12.185 (1) Å

  • c = 9.809 (2) Å

  • β = 106.28 (1)°

  • V = 1023.2 (3) Å3

  • Z = 2

  • Dx = 1.965 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 25 reflections

  • θ = 8.9–14.6°

  • μ = 0.96 mm−1

  • T = 295 K

  • Prism, yellow

  • 0.54 × 0.45 × 0.28 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Non–profiled ω scans

  • Absorption correction: Gaussian (ABSORB; Mallinson & Muir, 1985[Mallinson, P. R. & Muir, K. W. (1985). J. Appl. Cryst. 18, 51-53.])Tmin = 0.730, Tmax = 0.800

  • 5153 measured reflections

  • 3025 independent reflections

  • 2761 reflections with I > 2σ(I)

  • Rint = 0.020

  • θmax = 30.0°

  • h = —12 → 12

  • k = 0 → 17

  • l = −13 → 13

  • 2 standard reflections frequency: 120 min intensity decay: 0%

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.069

  • S = 1.06

  • 3025 reflections

  • 162 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.018P)2 + 0.018P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.35 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0188 (13)

Table 1
Selected geometric parameters (Å, °)[link]

Mo1—C3 2.309 (3)
Mo1—C4 2.324 (2)
Mo1—C5 2.324 (2)
Mo1—C6 2.198 (2)
Mo1—C8 2.189 (2)
Mo1—C10 2.211 (2)
Mo1—S1 2.4697 (5)
C6—C10 1.448 (2)
C6—C8 1.461 (2)
C6—C7 1.476 (3)
C8—C9 1.480 (3)
C10—C11 1.490 (4)
C10—C6—C8 88.85 (13)
C6—C8—C6i 90.61 (18)
C6—C10—C6i 91.67 (19)
C10—C6—C8—C6i −1.0 (2) 
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z].

The structure was solved by Patterson and Fourier methods. H atoms were located initially in difference maps. In the final refinement, the positions of the H atoms were determined by the HFIX instruction in SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997) SHELXL97. University of Göttingen, Germany.]) and they were then treated as riding on their parent C atoms [cyclopentadienyl C—H = 0.93 Å, meth­yl C—H = 0.96 Å and Uiso(H) = 1.3Ueq(C)]. A single parameter defining the orientation of the CH3 group about the N—C bond was refined freely.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: GX (Mallinson & Muir, 1985[Mallinson, P. R. & Muir, K. W. (1985). J. Appl. Cryst. 18, 51-53.]); program(s) used to solve structure: GX; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997) SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Complexes with η4-C4R4 cyclobutadienyl ligands are known for many transition metals. For example, nine structures containing the η4-C4R4–Mo moiety occur in the Cambridge Structural Database (CSD; Version 5.25 of November 2003; Allen, 2002) (structural searches were carried out locally using the QUEST and CONQUEST search programs). In most of these, R = Ph (CSD refcodes GICGUU10, LUJZOF, LUKBAU, LUJZUL, PABPMO, PCBMOC10 and TPCBMO), but an R = p-CH3C6H4 complex (GIQTIJ) and a C4Ph3Me species (COXVIU) have also been characterized (see supplementary data for a list of references). We now describe the structure of the title compound, CpCbMo(S2CNMe2), (I), where Cp = η5-C5H5, Cb = η4-C4R4 and R is the strongly electron-withdrawing CF3 group. Compound (I) is the first structural example of a η4-C4(CF3)4 complex of any transition metal.

Molecules of (1) have exact Cs symmetry; atoms Mo1, N1, C1, C3, C8–C11, F4 and F7 all lie on a crystallographic mirror plane in space group P21m, selected for the reference molecule as that at y = 1/4 (Fig. 1). The metal coordination is pseudo-tetrahedral, being defined by Cp—Mo—Cb and S—Mo—Si angles of 136.6 (2) and 70.0 (1)° (here Cp and Cb are the centroids of the C5 and C4 rings). The bonding in pseudo-tetrahedral CpCbMoL2 species such as (I) has been reviewed by Curnow et al. (1993), who argue that the Cb ligand is best considered as a dianionic C4R42− six-electron donor isoelectronic with Cp, making (I) a d2 MoIV complex. The metal lone pair in such complexes occupies a stereochemically active dz2-like orbital, compressing the LML angle. Thus, the Cl—Mo—Cl angle in Cp2MoCl2 (Prout et al., 1974) is 82°, only 12° less acute than the S—Mo—Si angle in (I).

The Mo—S distance in (I) (Table 1) differs by only 0.002 (1) Å from the comparable mean of 2.472 Å in the isoelectronic MoIV cation [(η5-In)2Mo(S2CNEt2]+ (In is indenyl; Drew et al., 1998). The Mo—C(Cp) bond lengths are also unexceptional and the displacement of Mo from the Cp plane [2.012 (1) Å] is close to the average of 2.008 (1) Å for all CpMo compounds in the CSD. However, variations in Cp ring C—C distances and angles [1.338 (9)–1.391 (4) Å and 105.9 (4)–109.2 (2)°], and Ueq values of Cp ring C atoms nearly three times that of the Mo atom, suggest substantial libration, possibly even some disorder, of the ring about the Mo—Cp vector.

The Cb ligand deviates only slightly from C4v symmetry. Thus, the ring C—C bond lengths differ by only 0.013 (4) Å. Atoms C7, C9 and C11 are displaced, by 0.340 (2), 0.562 (4) and 0.504 (3) Å, respectively, to the opposite side of the C4 ring plane from the Mo atom, probably to relieve intraligand repulsions. Rotation of the C7F3 group from its ideal position by ca 8° is shown by F1—C7—C6—C8 and F1—C7—C6—C10 torsion angles of 84.1 (3) and −67.6 (3)°. The near equality of the Ueq values for the Mo and the Cb ring C atoms is consistent with the high barrier to libration about the Mo—Cb vector suggested by spectroscopic evidence (Davidson, 1987).

In other (η4-C4R4)Mo complexes, the ring C—C bond lengths usually show little variation and their average value of 1.462 (2) Å agrees well with the individual values in (I). In contrast, the ring C—C bond lengths in C4R4 molecules indicate fixed double and single bonds (Irmgartinger et al., 1988, and references therein).

The Mo—C(Cb) bond lengths in (I) vary slightly and are on average 0.08 Å shorter than the mean value of 2.284 (7) Å for other (η4-C4R4)Mo complexes (where R = Me, Ph etc.). The displacement of the Mo atom from the Cb ring plane in (I) [1.944 (1) Å] is likewise less than the values of 1.995–2.074 Å found in other Mo—Cb complexes.

Curnow et al. (1993) substantiate their view of Cb as a C4R42− dianionic ligand from extended Hückel molecular-orbital (EHMO) calculations, which show that in CpCbMoL2 species much more charge is transferred from Mo to Cb than to Cp. Electron-withdrawing CF3 substituents on the Cb C atoms might be expected to facilitate this transfer and thus to produce the very strong Mo—Cb π-bonds found in (I).

Experimental top

The preparation and spectroscopic characterization of (I) have been described by Davidson (1987).

Refinement top

The structure was solved by Patterson and Fourier methods. Hydrogen atoms were located initially in difference maps. In the final refinement the positions of hydrogen atoms were determined by the HFIX instruction in SHELXL97 (Sheldrick, 1997) and they then rode on their parent carbon atoms with C5H5 C—H = 0.93 Å, methyl C—H = 0.96 Å and Uiso(H) = 1.3Ueq(C). A single parameter defining the orientation of the CH3 group about the N—C bond was freely refined.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1984); cell refinement: CAD-4 EXPRESS; data reduction: GX (Mallinson & Muir, 1985); program(s) used to solve structure: GX; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing 20% probability displacement ellipsoids. [Symmetry code: (i) x, 1/2 − y, z.]
(η5-Cyclopentadienyl)(N,N-dimethyldithiocarbamato-κ2S,S')(η4– tetrakis(trifluoromethyl)cyclobutadienyl)molybdenum(IV) top
Crystal data top
[Mo(C8F12)(C5H5)(C3H6NS2)]F(000) = 592
Mr = 605.32Dx = 1.965 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybCell parameters from 25 reflections
a = 8.918 (1) Åθ = 8.9–14.6°
b = 12.185 (1) ŵ = 0.96 mm1
c = 9.809 (2) ÅT = 295 K
β = 106.28 (1)°Prism, yellow
V = 1023.2 (3) Å30.54 × 0.45 × 0.28 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
2761 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 30.0°, θmin = 2.2°
non–profiled ω scansh = 012
Absorption correction: gaussian
Shape of crystal defined by six pairs of parallel faces.
k = 017
Tmin = 0.730, Tmax = 0.800l = 1313
5153 measured reflections2 standard reflections every 120 min
3025 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.018P)2 + 0.018P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3025 reflectionsΔρmax = 0.40 e Å3
162 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0188 (13)
Crystal data top
[Mo(C8F12)(C5H5)(C3H6NS2)]V = 1023.2 (3) Å3
Mr = 605.32Z = 2
Monoclinic, P21/mMo Kα radiation
a = 8.918 (1) ŵ = 0.96 mm1
b = 12.185 (1) ÅT = 295 K
c = 9.809 (2) Å0.54 × 0.45 × 0.28 mm
β = 106.28 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2761 reflections with I > 2σ(I)
Absorption correction: gaussian
Shape of crystal defined by six pairs of parallel faces.
Rint = 0.020
Tmin = 0.730, Tmax = 0.8002 standard reflections every 120 min
5153 measured reflections intensity decay: none
3025 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.06Δρmax = 0.40 e Å3
3025 reflectionsΔρmin = 0.35 e Å3
162 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.10164 (2)0.25000.13424 (2)0.03269 (7)
S10.25303 (6)0.36636 (4)0.01458 (6)0.05097 (12)
N10.4076 (3)0.25000.1351 (3)0.0618 (7)
F10.2789 (3)0.03042 (14)0.51023 (16)0.0987 (7)
F20.3169 (3)0.00554 (14)0.3107 (2)0.1026 (7)
F30.0885 (2)0.00517 (14)0.3329 (2)0.0955 (6)
F40.5589 (2)0.25000.4734 (3)0.0961 (9)
F50.53939 (18)0.3361 (2)0.2848 (2)0.1146 (8)
F60.0979 (2)0.16285 (17)0.4237 (2)0.0884 (5)
F70.0713 (3)0.25000.5844 (2)0.0995 (10)
C10.3180 (3)0.25000.0485 (3)0.0470 (6)
C20.4575 (3)0.1469 (3)0.1839 (3)0.0880 (10)
H2A0.51020.16160.25490.114*
H2B0.36790.10160.22370.114*
H2C0.52740.10960.10520.114*
C30.0826 (4)0.25000.0847 (4)0.0764 (12)
H30.04890.25000.16620.099*
C40.1129 (3)0.3411 (2)0.0112 (4)0.0870 (10)
H40.10500.41420.03580.113*
C50.1556 (3)0.3049 (4)0.1014 (4)0.1114 (17)
H50.18120.34910.16890.145*
C60.20957 (19)0.16477 (14)0.33535 (17)0.0378 (3)
C70.2248 (3)0.04708 (17)0.3723 (2)0.0549 (5)
C80.3148 (3)0.25000.3118 (3)0.0373 (4)
C90.4862 (3)0.25000.3359 (4)0.0563 (7)
C100.1078 (3)0.25000.3612 (3)0.0386 (4)
C110.0064 (4)0.25000.4467 (3)0.0582 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.03410 (10)0.02957 (10)0.03542 (11)0.0000.01143 (7)0.000
S10.0650 (3)0.0403 (2)0.0546 (3)0.0042 (2)0.0282 (2)0.00671 (19)
N10.0491 (13)0.099 (2)0.0422 (12)0.0000.0207 (10)0.000
F10.1639 (19)0.0582 (9)0.0547 (8)0.0013 (10)0.0014 (10)0.0188 (7)
F20.1489 (18)0.0526 (9)0.1235 (16)0.0446 (10)0.0667 (15)0.0170 (9)
F30.1058 (13)0.0514 (8)0.1157 (14)0.0289 (9)0.0087 (11)0.0163 (9)
F40.0453 (10)0.169 (3)0.0649 (13)0.0000.0003 (9)0.000
F50.0461 (7)0.1486 (19)0.1439 (18)0.0267 (10)0.0183 (9)0.0584 (15)
F60.0833 (10)0.1020 (13)0.0993 (12)0.0288 (10)0.0573 (9)0.0048 (10)
F70.0825 (15)0.179 (3)0.0455 (10)0.0000.0312 (10)0.000
C10.0470 (13)0.0589 (15)0.0382 (11)0.0000.0170 (10)0.000
C20.0700 (15)0.135 (3)0.0659 (15)0.0159 (17)0.0314 (13)0.0280 (17)
C30.0514 (17)0.129 (4)0.0409 (14)0.0000.0000 (12)0.000
C40.0507 (12)0.0576 (14)0.129 (3)0.0119 (11)0.0136 (15)0.0141 (16)
C50.0393 (10)0.203 (5)0.0824 (18)0.0244 (16)0.0011 (11)0.052 (2)
C60.0409 (7)0.0340 (7)0.0396 (7)0.0014 (6)0.0131 (6)0.0038 (6)
C70.0747 (13)0.0376 (9)0.0505 (10)0.0039 (9)0.0143 (9)0.0077 (8)
C80.0328 (10)0.0381 (11)0.0419 (11)0.0000.0116 (8)0.000
C90.0357 (12)0.074 (2)0.0590 (16)0.0000.0134 (11)0.000
C100.0394 (11)0.0415 (11)0.0385 (11)0.0000.0168 (9)0.000
C110.0522 (15)0.079 (2)0.0519 (15)0.0000.0283 (13)0.000
Geometric parameters (Å, º) top
Mo1—C32.309 (3)F7—C111.334 (4)
Mo1—C42.324 (2)C2—H2A0.9600
Mo1—C52.324 (2)C2—H2B0.9600
Mo1—C62.198 (2)C2—H2C0.9600
Mo1—C82.189 (2)C3—C41.391 (4)
Mo1—C102.211 (2)C3—H30.9300
Mo1—S12.4697 (5)C4—C51.340 (5)
S1—C11.712 (2)C4—H40.9300
N1—C11.320 (3)C5—C5i1.338 (9)
N1—C21.458 (3)C5—H50.9300
F1—C71.319 (2)C6—C101.448 (2)
F2—C71.314 (3)C6—C81.461 (2)
F3—C71.330 (3)C6—C71.476 (3)
F4—C91.323 (4)C8—C91.480 (3)
F5—C91.308 (3)C10—C111.490 (4)
F6—C111.320 (2)
C8—Mo1—C638.90 (6)H2B—C2—H2C109.5
C6i—Mo1—C656.39 (9)C4—C3—C4i105.9 (4)
C8—Mo1—C1055.12 (9)C4—C3—Mo173.10 (17)
C6—Mo1—C1038.33 (6)C4i—C3—Mo173.10 (17)
C8—Mo1—C3166.59 (11)C4—C3—H3127.0
C6—Mo1—C3148.53 (6)C4i—C3—H3127.0
C10—Mo1—C3138.29 (12)Mo1—C3—H3118.9
C8—Mo1—C5135.55 (9)C5—C4—C3107.8 (3)
C6i—Mo1—C598.94 (9)C5—C4—Mo173.25 (17)
C6—Mo1—C5115.31 (11)C3—C4—Mo171.95 (17)
C10—Mo1—C583.37 (11)C5—C4—H4126.1
C3—Mo1—C556.89 (12)C3—C4—H4126.1
C5i—Mo1—C533.5 (2)Mo1—C4—H4120.5
C8—Mo1—C4i150.52 (8)C5i—C5—C4109.2 (2)
C6i—Mo1—C4i148.74 (11)C5i—C5—Mo173.26 (12)
C6—Mo1—C4i113.78 (10)C4—C5—Mo173.25 (15)
C10—Mo1—C4i113.68 (12)C5i—C5—H5125.4
C3—Mo1—C4i34.95 (10)C4—C5—H5125.4
C5—Mo1—C4i56.04 (12)Mo1—C5—H5119.8
C8—Mo1—C4150.52 (8)C10—C6—C888.85 (13)
C6i—Mo1—C4113.78 (10)C10—C6—C7132.31 (17)
C6—Mo1—C4148.74 (11)C8—C6—C7135.27 (17)
C10—Mo1—C4113.68 (12)C10—C6—Mo171.33 (11)
C3—Mo1—C434.95 (10)C8—C6—Mo170.20 (11)
C5—Mo1—C433.50 (13)C7—C6—Mo1131.78 (13)
C4i—Mo1—C457.10 (15)F2—C7—F1107.5 (2)
C8—Mo1—S1i84.81 (5)F2—C7—F3105.7 (2)
C6i—Mo1—S1i122.52 (5)F1—C7—F3105.4 (2)
C6—Mo1—S1i89.72 (5)F2—C7—C6112.81 (19)
C10—Mo1—S1i128.02 (4)F1—C7—C6112.54 (18)
C3—Mo1—S1i84.21 (8)F3—C7—C6112.34 (19)
C5i—Mo1—S1i114.75 (12)C6—C8—C6i90.61 (18)
C5—Mo1—S1i138.53 (8)C6—C8—C9130.94 (12)
C4i—Mo1—S1i84.24 (9)C6i—C8—C9130.94 (12)
C4—Mo1—S1i116.64 (11)C6—C8—Mo170.89 (11)
C8—Mo1—S184.81 (5)C6i—C8—Mo170.89 (11)
C6i—Mo1—S189.72 (5)C9—C8—Mo1139.03 (19)
C6—Mo1—S1122.52 (5)C10—C8—Mo163.00 (9)
C10—Mo1—S1128.02 (4)F5—C9—F5i106.7 (3)
C3—Mo1—S184.21 (8)F5—C9—F4105.31 (19)
C5i—Mo1—S1138.53 (8)F5i—C9—F4105.31 (19)
C5—Mo1—S1114.75 (12)F5—C9—C8114.08 (17)
C4i—Mo1—S1116.64 (11)F5i—C9—C8114.08 (17)
C4—Mo1—S184.24 (9)F4—C9—C8110.6 (2)
S1i—Mo1—S170.07 (3)C6i—C10—C691.67 (19)
C1—S1—Mo188.95 (8)C6i—C10—C11131.28 (11)
C1—N1—C2i120.46 (16)C6—C10—C11131.28 (11)
C1—N1—C2120.46 (16)C6i—C10—Mo170.34 (11)
C2i—N1—C2119.1 (3)C6—C10—Mo170.34 (11)
N1—C1—S1124.06 (7)C11—C10—Mo1137.6 (2)
N1—C1—S1i124.06 (7)C8—C10—Mo161.87 (9)
S1—C1—S1i111.87 (15)F6—C11—F6i107.2 (3)
N1—C2—H2A109.5F6—C11—F7107.07 (19)
N1—C2—H2B109.5F6i—C11—F7107.07 (19)
H2A—C2—H2B109.5F6—C11—C10113.04 (17)
N1—C2—H2C109.5F6i—C11—C10113.04 (17)
H2A—C2—H2C109.5F7—C11—C10109.1 (3)
C8—Mo1—S1—C188.82 (10)C7—C6—C8—Mo1130.0 (2)
C6i—Mo1—S1—C1127.47 (10)C6i—Mo1—C8—C697.58 (18)
C6—Mo1—S1—C178.74 (11)C10—Mo1—C8—C648.79 (9)
C10—Mo1—S1—C1125.71 (11)C3—Mo1—C8—C6131.21 (9)
C3—Mo1—S1—C183.46 (11)C5i—Mo1—C8—C624.5 (2)
C5i—Mo1—S1—C1102.7 (2)C5—Mo1—C8—C673.07 (19)
C5—Mo1—S1—C1132.81 (13)C4i—Mo1—C8—C627.4 (3)
C4i—Mo1—S1—C170.00 (13)C4—Mo1—C8—C6125.0 (2)
C4—Mo1—S1—C1118.59 (13)S1i—Mo1—C8—C696.01 (9)
S1i—Mo1—S1—C12.47 (10)S1—Mo1—C8—C6166.41 (9)
C2i—N1—C1—S10.2 (4)C6—Mo1—C8—C6i97.58 (18)
C2—N1—C1—S1179.9 (2)C10—Mo1—C8—C6i48.79 (9)
C2i—N1—C1—S1i179.9 (2)C3—Mo1—C8—C6i131.21 (9)
C2—N1—C1—S1i0.2 (4)C5i—Mo1—C8—C6i73.07 (19)
Mo1—S1—C1—N1176.5 (3)C5—Mo1—C8—C6i24.5 (2)
Mo1—S1—C1—S1i3.61 (14)C4i—Mo1—C8—C6i125.0 (2)
C8—Mo1—C3—C4123.47 (19)C4—Mo1—C8—C6i27.4 (3)
C6i—Mo1—C3—C48.3 (3)S1i—Mo1—C8—C6i166.41 (9)
C6—Mo1—C3—C4121.37 (18)S1—Mo1—C8—C6i96.01 (9)
C10—Mo1—C3—C456.53 (19)C6i—Mo1—C8—C9131.21 (9)
C5i—Mo1—C3—C476.6 (3)C6—Mo1—C8—C9131.21 (9)
C5—Mo1—C3—C436.4 (2)C10—Mo1—C8—C9180.0
C4i—Mo1—C3—C4113.1 (4)C3—Mo1—C8—C90.0
S1i—Mo1—C3—C4158.7 (2)C5i—Mo1—C8—C9155.72 (18)
S1—Mo1—C3—C488.22 (19)C5—Mo1—C8—C9155.72 (18)
C8—Mo1—C3—C4i123.47 (19)C4i—Mo1—C8—C9103.8 (2)
C6i—Mo1—C3—C4i121.37 (18)C4—Mo1—C8—C9103.8 (2)
C6—Mo1—C3—C4i8.3 (3)S1i—Mo1—C8—C935.202 (14)
C10—Mo1—C3—C4i56.53 (19)S1—Mo1—C8—C935.202 (14)
C5i—Mo1—C3—C4i36.4 (2)C6i—Mo1—C8—C1048.79 (9)
C5—Mo1—C3—C4i76.6 (3)C6—Mo1—C8—C1048.79 (9)
C4—Mo1—C3—C4i113.1 (4)C3—Mo1—C8—C10180.0
S1i—Mo1—C3—C4i88.22 (19)C5i—Mo1—C8—C1024.28 (18)
S1—Mo1—C3—C4i158.7 (2)C5—Mo1—C8—C1024.28 (18)
C4i—C3—C4—C51.3 (4)C4i—Mo1—C8—C1076.2 (2)
Mo1—C3—C4—C565.0 (2)C4—Mo1—C8—C1076.2 (2)
C4i—C3—C4—Mo166.3 (2)S1i—Mo1—C8—C10144.798 (14)
C8—Mo1—C4—C587.4 (3)S1—Mo1—C8—C10144.798 (14)
C6i—Mo1—C4—C569.0 (2)C6—C8—C9—F5171.3 (2)
C6—Mo1—C4—C55.1 (3)C6i—C8—C9—F548.3 (4)
C10—Mo1—C4—C527.0 (2)C10—C8—C9—F5118.5 (2)
C3—Mo1—C4—C5115.7 (3)Mo1—C8—C9—F561.5 (2)
C5i—Mo1—C4—C536.4 (3)C6—C8—C9—F5i48.3 (4)
C4i—Mo1—C4—C576.8 (2)C6i—C8—C9—F5i171.3 (2)
S1i—Mo1—C4—C5139.5 (2)C10—C8—C9—F5i118.5 (2)
S1—Mo1—C4—C5156.2 (2)Mo1—C8—C9—F5i61.5 (2)
C8—Mo1—C4—C3156.8 (2)C6—C8—C9—F470.2 (2)
C6i—Mo1—C4—C3175.27 (18)C6i—C8—C9—F470.2 (2)
C6—Mo1—C4—C3120.8 (2)C10—C8—C9—F40.0
C10—Mo1—C4—C3142.69 (18)Mo1—C8—C9—F4180.0
C5i—Mo1—C4—C379.3 (2)C8—C6—C10—C6i1.05 (19)
C5—Mo1—C4—C3115.7 (3)C7—C6—C10—C6i161.54 (15)
C4i—Mo1—C4—C338.9 (2)Mo1—C6—C10—C6i68.42 (12)
S1i—Mo1—C4—C323.8 (2)C8—C6—C10—C11153.6 (3)
S1—Mo1—C4—C388.13 (19)C7—C6—C10—C116.9 (4)
C3—C4—C5—C5i0.8 (2)Mo1—C6—C10—C11136.9 (3)
Mo1—C4—C5—C5i64.9 (2)C7—C6—C10—C8160.5 (3)
C3—C4—C5—Mo164.1 (2)Mo1—C6—C10—C869.46 (11)
C8—Mo1—C5—C5i107.85 (14)C8—C6—C10—Mo169.46 (11)
C6i—Mo1—C5—C5i123.1 (2)C7—C6—C10—Mo1130.0 (2)
C6—Mo1—C5—C5i66.2 (2)C6—C8—C10—C6i178.5 (3)
C10—Mo1—C5—C5i88.0 (2)C9—C8—C10—C6i90.73 (13)
C3—Mo1—C5—C5i78.69 (10)Mo1—C8—C10—C6i89.27 (13)
C4i—Mo1—C5—C5i36.47 (13)C6i—C8—C10—C6178.5 (3)
C4—Mo1—C5—C5i116.7 (2)C9—C8—C10—C690.73 (13)
S1i—Mo1—C5—C5i55.6 (3)Mo1—C8—C10—C689.27 (13)
S1—Mo1—C5—C5i143.0 (2)C6—C8—C10—C1190.73 (13)
C8—Mo1—C5—C4135.42 (17)C6i—C8—C10—C1190.73 (13)
C6i—Mo1—C5—C4120.1 (2)C9—C8—C10—C110.000 (2)
C6—Mo1—C5—C4177.07 (19)Mo1—C8—C10—C11180.000 (2)
C10—Mo1—C5—C4155.3 (2)C6—C8—C10—Mo189.27 (13)
C3—Mo1—C5—C438.04 (18)C6i—C8—C10—Mo189.27 (13)
C5i—Mo1—C5—C4116.7 (2)C9—C8—C10—Mo1180.0
C4i—Mo1—C5—C480.3 (3)C8—Mo1—C10—C6i49.62 (9)
S1i—Mo1—C5—C461.1 (3)C6—Mo1—C10—C6i99.23 (19)
S1—Mo1—C5—C426.3 (2)C3—Mo1—C10—C6i130.38 (9)
C8—Mo1—C6—C1095.69 (14)C5i—Mo1—C10—C6i147.24 (15)
C6i—Mo1—C6—C1047.32 (11)C5—Mo1—C10—C6i113.53 (15)
C3—Mo1—C6—C10103.8 (2)C4i—Mo1—C10—C6i161.84 (12)
C5i—Mo1—C6—C1067.21 (16)C4—Mo1—C10—C6i98.93 (13)
C5—Mo1—C6—C1036.49 (15)S1i—Mo1—C10—C6i96.40 (8)
C4i—Mo1—C6—C1098.65 (14)S1—Mo1—C10—C6i2.84 (12)
C4—Mo1—C6—C1033.4 (2)C8—Mo1—C10—C649.62 (9)
S1i—Mo1—C6—C10177.77 (10)C6i—Mo1—C10—C699.23 (19)
S1—Mo1—C6—C10111.80 (9)C3—Mo1—C10—C6130.38 (9)
C6i—Mo1—C6—C848.37 (10)C5i—Mo1—C10—C6113.53 (15)
C10—Mo1—C6—C895.69 (14)C5—Mo1—C10—C6147.24 (15)
C3—Mo1—C6—C8160.47 (19)C4i—Mo1—C10—C698.93 (13)
C5i—Mo1—C6—C8162.90 (15)C4—Mo1—C10—C6161.84 (12)
C5—Mo1—C6—C8132.17 (14)S1i—Mo1—C10—C62.84 (12)
C4i—Mo1—C6—C8165.66 (13)S1—Mo1—C10—C696.40 (8)
C4—Mo1—C6—C8129.06 (18)C8—Mo1—C10—C11180.0
S1i—Mo1—C6—C882.08 (9)C6i—Mo1—C10—C11130.38 (9)
S1—Mo1—C6—C816.11 (11)C6—Mo1—C10—C11130.38 (9)
C8—Mo1—C6—C7133.7 (2)C3—Mo1—C10—C110.0
C6i—Mo1—C6—C7177.93 (17)C5i—Mo1—C10—C1116.85 (12)
C10—Mo1—C6—C7130.6 (2)C5—Mo1—C10—C1116.85 (12)
C3—Mo1—C6—C726.8 (3)C4i—Mo1—C10—C1131.46 (8)
C5i—Mo1—C6—C763.4 (2)C4—Mo1—C10—C1131.46 (8)
C5—Mo1—C6—C794.1 (2)S1i—Mo1—C10—C11133.22 (4)
C4i—Mo1—C6—C732.0 (2)S1—Mo1—C10—C11133.22 (4)
C4—Mo1—C6—C797.2 (2)C6i—Mo1—C10—C849.62 (9)
S1i—Mo1—C6—C751.62 (19)C6—Mo1—C10—C849.62 (9)
S1—Mo1—C6—C7117.59 (18)C3—Mo1—C10—C8180.0
C10—C6—C7—F2170.6 (2)C5i—Mo1—C10—C8163.15 (12)
C8—C6—C7—F237.7 (3)C5—Mo1—C10—C8163.15 (12)
Mo1—C6—C7—F267.1 (3)C4i—Mo1—C10—C8148.54 (8)
C10—C6—C7—F167.6 (3)C4—Mo1—C10—C8148.54 (8)
C8—C6—C7—F184.1 (3)S1i—Mo1—C10—C846.78 (4)
Mo1—C6—C7—F1171.05 (16)S1—Mo1—C10—C846.78 (4)
C10—C6—C7—F351.2 (3)C6i—C10—C11—F6168.3 (2)
C8—C6—C7—F3157.1 (2)C6—C10—C11—F646.4 (4)
Mo1—C6—C7—F352.2 (3)C8—C10—C11—F6119.0 (2)
C10—C6—C8—C6i1.0 (2)Mo1—C10—C11—F661.0 (2)
C7—C6—C8—C6i160.50 (16)C6i—C10—C11—F6i46.4 (4)
Mo1—C6—C8—C6i69.50 (12)C6—C10—C11—F6i168.3 (2)
C10—C6—C8—C9150.2 (3)C8—C10—C11—F6i119.0 (2)
C7—C6—C8—C99.2 (4)Mo1—C10—C11—F6i61.0 (2)
Mo1—C6—C8—C9139.2 (3)C6i—C10—C11—F772.6 (2)
C7—C6—C8—C10159.5 (3)C6—C10—C11—F772.6 (2)
Mo1—C6—C8—C1070.54 (12)C8—C10—C11—F70.000 (2)
C10—C6—C8—Mo170.54 (12)Mo1—C10—C11—F7180.0
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Mo(C8F12)(C5H5)(C3H6NS2)]
Mr605.32
Crystal system, space groupMonoclinic, P21/m
Temperature (K)295
a, b, c (Å)8.918 (1), 12.185 (1), 9.809 (2)
β (°) 106.28 (1)
V3)1023.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.54 × 0.45 × 0.28
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionGaussian
Shape of crystal defined by six pairs of parallel faces.
Tmin, Tmax0.730, 0.800
No. of measured, independent and
observed [I > 2σ(I)] reflections
5153, 3025, 2761
Rint0.020
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.069, 1.06
No. of reflections3025
No. of parameters162
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.35

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1984), CAD-4 EXPRESS, GX (Mallinson & Muir, 1985), GX, SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Mo1—C32.309 (3)Mo1—S12.4697 (5)
Mo1—C42.324 (2)C6—C101.448 (2)
Mo1—C52.324 (2)C6—C81.461 (2)
Mo1—C62.198 (2)C6—C71.476 (3)
Mo1—C82.189 (2)C8—C91.480 (3)
Mo1—C102.211 (2)C10—C111.490 (4)
C10—C6—C888.85 (13)C6—C8—C6i90.61 (18)
C10—C6—C8—C6i1.0 (2)
Symmetry code: (i) x, y+1/2, z.
 

Acknowledgements

The authors thank the EPSRC and Glasgow and Heriot–Watt Universities for support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCurnow, O. J., Hirpo, W., Butler, W. M. & Curtis, M. D. (1993). Organo­metallics, 12, 4479–4484.  CSD CrossRef CAS Web of Science Google Scholar
First citationDavidson, J. L. (1987). J. Chem. Soc. Dalton Trans. pp. 2715–2722.  CrossRef Web of Science Google Scholar
First citationDrew, M. G. B., Felix, V., Goncalves, I. S., Romao, C. C. & Royo, B. (1998). Organometallics, 17, 5782–5788.  Web of Science CSD CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationIrmgartinger, H., Nixdorf, M., Riegler, N. H., Krebs, A., Kimling, H., Pocklington, J., Maier, G., Malsch, K.-D. & Schneider, K.-A. (1988). Chem. Ber. 121, 673–677.  Google Scholar
First citationMallinson, P. R. & Muir, K. W. (1985). J. Appl. Cryst. 18, 51–53.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationProut, K., Cameron, T. S., Forder, R. A., Critchley, S. R., Denton, B. & Rees, G. V. (1974). Acta Cryst. B30, 2290–2304.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997) SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds