Download citation
Download citation
link to html
The title complexes, [Co(C3H6NO)(C4H7N2O2)2(C8H11N)] and [Co(C4H8NO)(C4H7N2O2)2(C8H11N)]·H2O, were resolved from [(RS)-1-carbamoylethyl]bis­(dimethyl­glyoxim­ato)[(S)-1-phenyl­ethyl­amine]cobalt(III) and bis­(di­methyl­glyoximato)[(RS)-1-(N-methyl­carbamoyl)­ethyl][(R)-1-phenyl­ethyl­amine]cobalt(III), respectively, and their crystal structures were determined in order to reveal the absolute configuration of the major enantiomer produced in the photoisomerization of each series of 2-carbamoylethyl and 2-(N-methyl­carbamoyl)ethyl cobaloxime complexes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105004725/gd1367sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105004725/gd1367Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105004725/gd1367IIsup3.hkl
Contains datablock II

CCDC references: 269016; 269017

Comment top

Solid-state specific and unidirectional photoisomerization of 2-cyanoethyl, 2-methoxycarbonylethyl, 2-carbamoylethyl, 2-(N-methylcarbamoyl)ethyl and 3-substituted propyl cobaloximes have been reported previously (Ohgo & Takeuchi, 1985; Kurashima et al., 1995; Ohgo et al., 1994, 1996, 2000, 2001). Moreover, asymmetric induction was found to occur in the (β α) photoisomerization of various 2-substututed ethyl cobaloximes having chiral axial ligands as the chiral handle for forming the chiral lattice (Ohgo et al., 1994, 1996, 2000). However, the absolute configuration of the alkyl moiety of each chiral product has not yet been determined in the cases of the series of 2-carbamoylethyl and 2-(N-methylcarbamoyl)ethyl cobaloximes. The crystal structure analyses of the title complexes were undertaken to reveal the configurational correlation of asymmetric photoisomerization.

The crystal structure of the title 1-carbamoylethyl complex, (I), viewed along the c axis, and a stereoview of the crystal structure of the 1-(N-methylcarbamoyl)ethyl complex, (II), are shown in Figs. 1 and 2, respectively. The molecular structures of (I) and (II) are shown in Figs. 3 and 4, respectively. The absolute configuration (S) of the 1-carbamoylethyl group in (I) was set by reference to the known chirality of the axial base, (S)-1-phenylethylamine. Similarly, the absolute configuration (R) of the 1-(N-methylcarbamoyl)ethyl group in (II) was set by reference to that of the coordinated (R)-1-phenylethylamine. Selected bond distances and angles are given in Tables 1 and 3, respectively. The hydrogen bonds in (I) and (II) are given in Tables 2 and 4, respectively.

The molecular structures of (I) and (II) essentially maintain similar structural features except for their configurations. Each Calkyl—Co—Namine moiety is almost linear: the C9—Co—N5 and C9—Co—N6 angles in (I) and (II) are 177.3 (1) and 177.8 (2)°, respectively. Both the carbamoyl group and the phenylethyl group of the axial base of each complex are located on the same side, namely the O2—O3 side in (I) and the O1—O4 side in (II); the C12—N5—C9—C10 and C13—N6—C9—C10 torsion angles in (I) and (II) are −85.3 (2) and 70.7 (6)°, respectively. The N—H bond of each carbamoyl group is directed to one of the O atoms on the planar ligands to form an intramolecular hydrogen bond [N6—H6D···O3 in (I) and N5—H5···O4 in (II)]. The aromatic ring lies parallel with the Co–glyoxime plane, and the dihedral angles between the Co–glyoxime plane, Co/C3/C4/N3/N4, and the aromatic rings, C13–C18 in (I) and C14–C19 in (II), are 8.8 (2) and 12.7 (1)°, respectively.

Adjacent molecules in the structure of (I) are connected by intermolecular N5—H5B···O5i and N6—H6E···O1ii hydrogen bonds [symmetry codes: (i) 1/2 − x, 1/2 + y, − z; (ii) 1 − x, y − 1/2, − z], forming chains along the b axis. In the structure of (II), adjacent molecules are linked into a three-dimensional network by intermolecular hydrogen bonds involving the solvent water molecule, the coordinated amine group and the amide group in the 1-(N-methylcarbamoyl)ethyl moiety. Thus, the molecules are interconnected, forming chains along the a axis through intermolecular N6—H6E···O5ii hydrogen bonds [symmetry code: (ii) 1/2 + x, 1/2 − y, 1 − z]. Each chain so formed is connected to four neighbouring chains by bridging water molecules via three intermolecular hydrogen bonds, N6—H6D···O6ii, O6—H6G···O5 and O6—H6F···O4i [symmetry code: (i) 1/2 − x, − y, 1/2 + z], to form a three-dimensional hydrogen-bond network.

The axial base of (II) was displaced by methyldiphenylphosphine to afford bis(dimethylglyoximato-N,N')[(R)-1-(N-methylcarbamoyl)ethyl] (methyldiphenylphosphine)cobalt(III) {optical rotation [α]589 = +28.6, [α]578 = +23.7, [α]546 = +2.0 (c = 0.101, CHCl3)}, which was analyzed by high-performance liquid chromatography (HPLC) using a chiral column. The powdered sample of bis(dimethylglyoximato)[2-(N-methylcarbamoyl)ethyl] [methyl (S)-phenylalaninate-N]cobalt(III), complex (III) (Ohgo et al., 1996, 2000), was irradiated with a solar simulator (flux density 100 mW cm−2) to give a diastereomeric mixture of bis(dimethylglyoximato)[1-(N-methylcarbamoyl)ethyl] [methyl (S)-phenylalaninate-N]cobalt(III), which was also analyzed by HPLC after displacement of the axial ligand with methyldiphenylphosphine. From a comparison of the results of the HPLC analysis of these samples, the absolute configuration of the major enantiomer produced by photoisomerization of complex (III) was determined to be (S). On the other hand, the axial base of (I) was displaced by dimethylphenylphosphine to afford [(S)-1-carbamoylethyl]bis(dimethylglyoximato-N,N') (dimethylphenylphosphine)cobalt(III), complex (IV) {optical rotation [α]589 = −47.9, [α]578 = −47.9, [α]546 = −46.2 (CHCl3)}. The configuration of the major enantiomer produced by irradiation of the powdered crystals of a series of 2-carbamoylethyl cobaloximes was also revealed from a comparison of the optical rotation of complex (IV) with that of the photoisomerization products treated with dimethylphenylphosphine.

Experimental top

Complexes (I) and (II) were prepared according to the literature method of Ohgo et al. (1996). [(RS)-1-carbamoylethyl] bis(dimethylglyoximato-N,N')[(S)-1-phenylethylamine]cobalt(III) was recrystallized five times from dichloromethane–hexane to afford yellow crystals Red below of complex (I), with maximum optical rotation [α]589 = +27.6, [α]578 = +41.4, [α]546 = +100.5 (c = 0.102, CHCl3). Analysis found: C 47.1, H 6.4, N 17.2%; calculated for C19H31CoN6O5: C 47.3, H 6.5, N 17.4%. Bis(dimethylglyoximato-N,N')[(RS)-1-(N-methylcarbamoyl)ethyl] [(R)-1-phenylethylamine]cobalt(III) was recrystallized six times from benzene–hexane and finally from benzene [including 1% (R)-phenylethylamine]–hexane to afford dark-red crystals of complex (II) with maximum optical rotation [α]589 = −60.4, [α]578 = −82.5, [α]546 = −158.2 (c = 0.104, CHCl3). Analysis found: C 46.9, H 6.8, N 16.3%; calculated for C20H35CoN6O6: C 46.7, H 6.9, N 16.3%. Please give ratios of solvents used for both crystals.

Refinement top

Water H atoms were located in difference maps; O—H distances were constrained at 0.95 Å and Uiso(H) were set at 1.2Ueq(O). All other H atoms were refined using a riding model, with C—H distances of 0.96 for primary, 0.97 for secondary and 0.93 Å for aromatic, and with Uiso(H) = 1.2Ueq(C) (1.5 for methyl groups). The absolute structures were set by reference to the known chirality of the enantiopure amine coordinated in each complex and the Flack parameter is in agreement with each expected configuration.

Computing details top

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1992). Program(s) used to solve structure: MULTAN88 (Debaerdemaeker, 1988) for (I); SIR92 (Altomare et al., 1993) for (II). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SV (Nemoto & Ohashi, 1993) and ORTEP (Johnson, 1965); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Projection of the crystal structure of complex (I), viewed along the c axis. Dotted lines show the hydrogen bonds.
[Figure 2] Fig. 2. A stereoview of the crystal structure of complex (II). Dotted lines show the hydrogen bonds. H atoms bonded to C atoms have been omitted for clarity.
[Figure 3] Fig. 3. The molecular structure of complex (I) with the atomic numbering. Dashed lines show the hydrogen bonds. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4] Fig. 4. The molecular structure of complex (II), with the atomic numbering. Dashed lines show the hydrogen bonds. Displacement ellipsoids are drawn at the 50% probability level.
(I) [(S)-1-Carbamoylethyl]bis(dimethylglyoximato-κ2N,N')[(S)-1- phenylethylamine]cobalt(III) top
Crystal data top
[Co(C3H6NO)(C4H7N2O2)2(C8H11N)]F(000) = 508
Mr = 482.43Dx = 1.458 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P2ybCell parameters from 25 reflections
a = 8.743 (2) Åθ = 12.6–14.9°
b = 14.696 (3) ŵ = 0.82 mm1
c = 8.565 (3) ÅT = 223 K
β = 93.29 (2)°Needle, red
V = 1098.7 (5) Å30.23 × 0.18 × 0.17 mm
Z = 2
Data collection top
Rigaku AFC-7R
diffractometer
2404 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.027
Graphite monochromatorθmax = 27.5°, θmin = 2.7°
ω/2θ scansh = 611
Absorption correction: ψ scan
(North et al., 1968)
k = 019
Tmin = 0.789, Tmax = 0.869l = 1111
3200 measured reflections3 standard reflections every 100 reflections
2624 independent reflections intensity decay: 0.7%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0308P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.21(Δ/σ)max < 0.001
2624 reflectionsΔρmax = 0.22 e Å3
299 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983), with how many Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.004 (14)
Crystal data top
[Co(C3H6NO)(C4H7N2O2)2(C8H11N)]V = 1098.7 (5) Å3
Mr = 482.43Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.743 (2) ŵ = 0.82 mm1
b = 14.696 (3) ÅT = 223 K
c = 8.565 (3) Å0.23 × 0.18 × 0.17 mm
β = 93.29 (2)°
Data collection top
Rigaku AFC-7R
diffractometer
2404 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.027
Tmin = 0.789, Tmax = 0.8693 standard reflections every 100 reflections
3200 measured reflections intensity decay: 0.7%
2624 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066Δρmax = 0.22 e Å3
S = 1.21Δρmin = 0.23 e Å3
2624 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs
299 parametersAbsolute structure parameter: 0.004 (14)
1 restraint
Special details top

Experimental. 1H NMR (CDCl3, p.p.m.): 0.32 (3H, d), 1.23 (3H, d), 1.46 (1H, dd), 1.89 (1H, q), 2.20 (12H, d), 2.33 (1H, dd), 3.62 (1H, m), 7.04–7.33 (m).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.61819 (4)0.86456 (2)0.12322 (4)0.01723 (9)
O10.3405 (2)0.95407 (15)0.0257 (2)0.0271 (4)
O20.7967 (2)0.74302 (16)0.0571 (3)0.0341 (5)
H20.85100.75070.02450.051*
O30.8951 (2)0.77424 (15)0.2194 (3)0.0319 (5)
O40.4512 (2)0.99594 (15)0.2924 (3)0.0305 (5)
H40.40260.99290.20640.046*
O50.4061 (3)0.64932 (15)0.0388 (3)0.0341 (5)
N10.4449 (3)0.89254 (15)0.0103 (3)0.0210 (5)
N20.6636 (3)0.79086 (15)0.0487 (3)0.0224 (5)
N30.7875 (3)0.83271 (17)0.2599 (3)0.0231 (5)
N40.5724 (3)0.93830 (16)0.2935 (3)0.0219 (5)
N50.7316 (3)0.97004 (16)0.0171 (3)0.0204 (4)
H5A0.71490.96200.08780.024*
H5B0.68201.02210.04140.024*
N60.6284 (3)0.62084 (19)0.1761 (4)0.0336 (6)
H6D0.693 (5)0.651 (3)0.228 (5)0.051 (13)*
H6E0.643 (5)0.570 (4)0.115 (5)0.067 (15)*
C10.4327 (3)0.84861 (19)0.1424 (3)0.0252 (7)
C20.5623 (3)0.7880 (2)0.1649 (3)0.0253 (6)
C30.7924 (3)0.8704 (3)0.3982 (3)0.0259 (5)
C40.6636 (3)0.9328 (2)0.4177 (3)0.0243 (5)
C50.2974 (4)0.8593 (3)0.2565 (4)0.0419 (8)
H5C0.22230.89880.21200.063*
H5D0.25180.80020.27860.063*
H5E0.33030.88590.35260.063*
C60.5761 (4)0.7291 (2)0.3049 (4)0.0398 (8)
H6A0.68040.70680.30750.060*
H6B0.55040.76410.39880.060*
H6C0.50650.67790.29970.060*
C70.9182 (4)0.8545 (3)0.5213 (4)0.0370 (8)
H7A1.00930.83370.47250.056*
H7B0.88610.80870.59410.056*
H7C0.94070.91080.57710.056*
C80.6414 (4)0.9862 (2)0.5636 (3)0.0380 (8)
H8A0.54981.02320.54920.057*
H8B0.72941.02520.58580.057*
H8C0.63040.94470.65040.057*
C90.4943 (3)0.76118 (19)0.2266 (3)0.0224 (5)
H90.54480.75050.33140.027*
C100.5059 (3)0.67391 (19)0.1379 (3)0.0234 (5)
C110.3274 (3)0.7848 (2)0.2526 (4)0.0335 (7)
H11A0.32340.84050.31320.050*
H11B0.28090.73570.30880.050*
H11C0.27190.79340.15240.050*
C120.8995 (3)0.98892 (19)0.0453 (3)0.0233 (5)
H120.95450.93010.04390.028*
C130.9367 (3)1.03343 (19)0.2019 (3)0.0225 (5)
C140.8454 (3)1.1009 (2)0.2623 (3)0.0293 (6)
H140.75451.11880.20680.035*
C150.8879 (4)1.1416 (2)0.4038 (4)0.0352 (7)
H150.82371.18580.44520.042*
C161.0243 (4)1.1182 (3)0.4855 (4)0.0349 (8)
H161.05241.14630.58160.042*
C171.1172 (4)1.0538 (2)0.4245 (4)0.0367 (7)
H171.21061.03830.47760.044*
C181.0728 (3)1.0111 (2)0.2829 (3)0.0290 (6)
H181.13660.96650.24230.035*
C190.9574 (4)1.0485 (3)0.0862 (3)0.0363 (7)
H19A0.94121.01710.18540.054*
H19B1.06581.06050.06610.054*
H19C0.90161.10560.09020.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02021 (15)0.01547 (14)0.01575 (14)0.00054 (15)0.00113 (10)0.00037 (13)
O10.0223 (9)0.0268 (11)0.0318 (10)0.0049 (8)0.0024 (8)0.0025 (8)
O20.0336 (11)0.0317 (12)0.0378 (12)0.0095 (10)0.0078 (9)0.0055 (10)
O30.0268 (10)0.0277 (11)0.0404 (12)0.0101 (9)0.0049 (9)0.0021 (9)
O40.0279 (10)0.0310 (12)0.0325 (11)0.0093 (9)0.0004 (9)0.0061 (9)
O50.0360 (12)0.0285 (11)0.0365 (12)0.0066 (9)0.0090 (9)0.0054 (9)
N10.0241 (10)0.0178 (11)0.0210 (10)0.0022 (8)0.0000 (8)0.0028 (8)
N20.0293 (12)0.0172 (11)0.0210 (11)0.0006 (9)0.0056 (9)0.0005 (9)
N30.0221 (11)0.0186 (10)0.0280 (12)0.0014 (9)0.0020 (9)0.0024 (9)
N40.0240 (11)0.0203 (11)0.0215 (11)0.0004 (9)0.0008 (8)0.0016 (9)
N50.0220 (10)0.0176 (10)0.0212 (11)0.0025 (9)0.0019 (9)0.0005 (9)
N60.0376 (14)0.0234 (13)0.0391 (15)0.0028 (11)0.0037 (12)0.0011 (11)
C10.0321 (13)0.0232 (19)0.0196 (12)0.0071 (11)0.0054 (10)0.0026 (10)
C20.0362 (15)0.0210 (14)0.0188 (12)0.0080 (12)0.0029 (11)0.0013 (10)
C30.0318 (12)0.0229 (13)0.0223 (11)0.0043 (15)0.0058 (9)0.0035 (14)
C40.0327 (14)0.0235 (13)0.0166 (11)0.0066 (12)0.0005 (10)0.0005 (10)
C50.0457 (17)0.045 (2)0.0327 (15)0.001 (2)0.0192 (12)0.0008 (19)
C60.060 (2)0.0346 (18)0.0248 (15)0.0071 (16)0.0065 (14)0.0118 (13)
C70.0427 (16)0.0307 (19)0.0356 (15)0.0060 (16)0.0160 (12)0.0048 (15)
C80.053 (2)0.041 (2)0.0201 (14)0.0085 (16)0.0027 (13)0.0089 (13)
C90.0276 (13)0.0198 (13)0.0197 (12)0.0033 (11)0.0000 (10)0.0012 (10)
C100.0270 (13)0.0186 (12)0.0248 (12)0.0041 (11)0.0022 (10)0.0045 (10)
C110.0314 (15)0.0307 (16)0.0396 (16)0.0023 (13)0.0133 (13)0.0040 (13)
C120.0220 (12)0.0229 (14)0.0252 (13)0.0014 (10)0.0022 (10)0.0016 (10)
C130.0208 (12)0.0218 (13)0.0248 (13)0.0033 (10)0.0010 (10)0.0005 (10)
C140.0286 (14)0.0258 (15)0.0327 (15)0.0041 (12)0.0048 (12)0.0050 (12)
C150.0414 (17)0.0274 (15)0.0365 (16)0.0024 (13)0.0015 (13)0.0071 (13)
C160.046 (2)0.0319 (15)0.0254 (15)0.0088 (15)0.0075 (14)0.0002 (12)
C170.0321 (15)0.0403 (18)0.0358 (16)0.0049 (14)0.0134 (12)0.0049 (14)
C180.0231 (13)0.0315 (15)0.0319 (14)0.0002 (12)0.0024 (11)0.0003 (12)
C190.0323 (15)0.0474 (19)0.0293 (14)0.0093 (14)0.0039 (12)0.0002 (14)
Geometric parameters (Å, º) top
Co1—N41.879 (2)C6—H6A0.9700
Co1—N21.888 (2)C6—H6B0.9700
Co1—N11.890 (2)C6—H6C0.9700
Co1—N31.892 (2)C7—H7A0.9700
Co1—N52.077 (2)C7—H7B0.9700
Co1—C92.092 (3)C7—H7C0.9700
O1—N11.334 (3)C8—H8A0.9700
O2—N21.365 (3)C8—H8B0.9700
O2—H20.8300C8—H8C0.9700
O3—N31.334 (3)C9—C101.497 (4)
O4—N41.356 (3)C9—C111.529 (4)
O4—H40.8300C9—H90.9900
O5—C101.236 (3)C11—H11A0.9700
N1—C11.301 (4)C11—H11B0.9700
N2—C21.294 (4)C11—H11C0.9700
N3—C31.306 (4)C12—C131.511 (4)
N4—C41.294 (3)C12—C191.535 (4)
N5—C121.500 (3)C12—H120.9900
N5—H5A0.9100C13—C181.382 (4)
N5—H5B0.9100C13—C141.391 (4)
N6—C101.350 (4)C14—C151.383 (4)
N6—H6D0.83 (5)C14—H140.9400
N6—H6E0.92 (5)C15—C161.391 (5)
C1—C21.463 (4)C15—H150.9400
C1—C51.499 (4)C16—C171.371 (5)
C2—C61.490 (4)C16—H160.9400
C3—C41.469 (5)C17—C181.400 (4)
C3—C71.498 (4)C17—H170.9400
C4—C81.498 (4)C18—H180.9400
C5—H5C0.9700C19—H19A0.9700
C5—H5D0.9700C19—H19B0.9700
C5—H5E0.9700C19—H19C0.9700
N4—Co1—N2179.7 (1)H6A—C6—H6C109.5
N4—Co1—N198.4 (1)H6B—C6—H6C109.5
N2—Co1—N181.4 (1)C3—C7—H7A109.5
N4—Co1—N381.7 (1)C3—C7—H7B109.5
N2—Co1—N398.6 (1)H7A—C7—H7B109.5
N1—Co1—N3177.8 (1)C3—C7—H7C109.5
N4—Co1—N592.2 (1)H7A—C7—H7C109.5
N2—Co1—N587.7 (1)H7B—C7—H7C109.5
N1—Co1—N587.64 (9)C4—C8—H8A109.5
N3—Co1—N594.5 (1)C4—C8—H8B109.5
N4—Co1—C987.2 (1)H8A—C8—H8B109.5
N2—Co1—C992.9 (1)C4—C8—H8C109.5
N1—Co1—C989.9 (1)H8A—C8—H8C109.5
N3—Co1—C988.0 (1)H8B—C8—H8C109.5
N5—Co1—C9177.3 (1)C10—C9—C11111.2 (2)
N2—O2—H2109.5C10—C9—Co1110.8 (2)
N4—O4—H4109.5C11—C9—Co1114.7 (2)
C1—N1—O1121.0 (2)C10—C9—H9106.5
C1—N1—Co1116.2 (2)C11—C9—H9106.5
O1—N1—Co1122.9 (2)Co1—C9—H9106.5
C2—N2—O2119.3 (2)O5—C10—N6121.1 (3)
C2—N2—Co1117.0 (2)O5—C10—C9122.2 (3)
O2—N2—Co1123.7 (2)N6—C10—C9116.6 (3)
C3—N3—O3121.4 (2)C9—C11—H11A109.5
C3—N3—Co1116.1 (2)C9—C11—H11B109.5
O3—N3—Co1122.4 (2)H11A—C11—H11B109.5
C4—N4—O4119.3 (2)C9—C11—H11C109.5
C4—N4—Co1116.9 (2)H11A—C11—H11C109.5
O4—N4—Co1123.8 (2)H11B—C11—H11C109.5
C12—N5—Co1123.7 (2)N5—C12—C13112.4 (2)
C12—N5—H5A106.4N5—C12—C19110.4 (2)
Co1—N5—H5A106.4C13—C12—C19109.9 (2)
C12—N5—H5B106.4N5—C12—H12108.0
Co1—N5—H5B106.4C13—C12—H12108.0
H5A—N5—H5B106.5C19—C12—H12108.0
C10—N6—H6D109 (3)C18—C13—C14118.6 (3)
C10—N6—H6E118 (3)C18—C13—C12118.6 (3)
H6D—N6—H6E128 (4)C14—C13—C12122.7 (2)
N1—C1—C2113.0 (2)C15—C14—C13120.2 (3)
N1—C1—C5122.4 (3)C15—C14—H14119.9
C2—C1—C5124.5 (3)C13—C14—H14119.9
N2—C2—C1112.3 (2)C14—C15—C16120.9 (3)
N2—C2—C6123.7 (3)C14—C15—H15119.6
C1—C2—C6124.0 (3)C16—C15—H15119.6
N3—C3—C4112.5 (2)C17—C16—C15119.2 (3)
N3—C3—C7123.8 (3)C17—C16—H16120.4
C4—C3—C7123.7 (3)C15—C16—H16120.4
N4—C4—C3112.7 (2)C16—C17—C18120.0 (3)
N4—C4—C8123.3 (3)C16—C17—H17120.0
C3—C4—C8124.0 (2)C18—C17—H17120.0
C1—C5—H5C109.5C13—C18—C17121.1 (3)
C1—C5—H5D109.5C13—C18—H18119.5
H5C—C5—H5D109.5C17—C18—H18119.5
C1—C5—H5E109.5C12—C19—H19A109.5
H5C—C5—H5E109.5C12—C19—H19B109.5
H5D—C5—H5E109.5H19A—C19—H19B109.5
C2—C6—H6A109.5C12—C19—H19C109.5
C2—C6—H6B109.5H19A—C19—H19C109.5
H6A—C6—H6B109.5H19B—C19—H19C109.5
C2—C6—H6C109.5
N4—Co1—N1—C1176.5 (2)Co1—N2—C2—C6176.2 (2)
N2—Co1—N1—C13.6 (2)N1—C1—C2—N20.4 (4)
N5—Co1—N1—C191.6 (2)C5—C1—C2—N2179.5 (3)
C9—Co1—N1—C189.4 (2)N1—C1—C2—C6179.2 (3)
N4—Co1—N1—O14.0 (2)C5—C1—C2—C60.1 (5)
N2—Co1—N1—O1175.8 (2)O3—N3—C3—C4179.6 (2)
N5—Co1—N1—O187.8 (2)Co1—N3—C3—C41.3 (4)
C9—Co1—N1—O191.2 (2)O3—N3—C3—C71.7 (5)
N1—Co1—N2—C23.9 (2)Co1—N3—C3—C7179.2 (3)
N3—Co1—N2—C2173.9 (2)O4—N4—C4—C3177.6 (2)
N5—Co1—N2—C291.8 (2)Co1—N4—C4—C32.2 (3)
C9—Co1—N2—C285.5 (2)O4—N4—C4—C81.0 (4)
N1—Co1—N2—O2174.8 (2)Co1—N4—C4—C8179.2 (2)
N3—Co1—N2—O27.5 (2)N3—C3—C4—N40.6 (4)
N5—Co1—N2—O286.8 (2)C7—C3—C4—N4177.4 (3)
C9—Co1—N2—O295.8 (2)N3—C3—C4—C8179.2 (3)
N4—Co1—N3—C31.9 (2)C7—C3—C4—C81.3 (5)
N2—Co1—N3—C3178.2 (2)N4—Co1—C9—C10174.4 (2)
N5—Co1—N3—C393.4 (2)N2—Co1—C9—C105.9 (2)
C9—Co1—N3—C385.6 (2)N1—Co1—C9—C1087.3 (2)
N4—Co1—N3—O3179.0 (2)N3—Co1—C9—C1092.5 (2)
N2—Co1—N3—O30.9 (2)N4—Co1—C9—C1158.7 (2)
N5—Co1—N3—O387.5 (2)N2—Co1—C9—C11121.1 (2)
C9—Co1—N3—O393.5 (2)N1—Co1—C9—C1139.7 (2)
N1—Co1—N4—C4175.5 (2)N3—Co1—C9—C11140.5 (2)
N3—Co1—N4—C42.3 (2)C11—C9—C10—O532.0 (4)
N5—Co1—N4—C496.6 (2)Co1—C9—C10—O596.9 (3)
C9—Co1—N4—C486.0 (2)C11—C9—C10—N6145.2 (3)
N1—Co1—N4—O44.7 (2)Co1—C9—C10—N685.9 (3)
N3—Co1—N4—O4177.5 (2)Co1—N5—C12—C1375.4 (3)
N5—Co1—N4—O483.2 (2)Co1—N5—C12—C19161.4 (2)
C9—Co1—N4—O494.1 (2)N5—C12—C13—C18144.5 (3)
N4—Co1—N5—C1289.8 (2)C19—C12—C13—C1892.1 (3)
N2—Co1—N5—C1290.4 (2)N5—C12—C13—C1440.5 (4)
N1—Co1—N5—C12171.9 (2)C19—C12—C13—C1482.9 (3)
N3—Co1—N5—C128.0 (2)C18—C13—C14—C152.6 (5)
O1—N1—C1—C2176.7 (2)C12—C13—C14—C15177.6 (3)
Co1—N1—C1—C22.7 (3)C13—C14—C15—C162.1 (5)
O1—N1—C1—C54.2 (4)C14—C15—C16—C170.1 (5)
Co1—N1—C1—C5176.4 (3)C15—C16—C17—C181.3 (5)
O2—N2—C2—C1175.3 (2)C14—C13—C18—C171.3 (4)
Co1—N2—C2—C13.4 (3)C12—C13—C18—C17176.5 (3)
O2—N2—C2—C65.1 (4)C16—C17—C18—C130.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.831.732.515 (3)158
O4—H4···O10.831.712.506 (3)160
N5—H5B···O5i0.912.122.925 (3)147
N6—H6D···O30.83 (5)2.53 (5)3.249 (4)145 (4)
N6—H6E···O1ii0.92 (5)2.10 (5)3.021 (4)176 (4)
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+1, y1/2, z.
(II) bis(dimethylglyoximato-κ2N,N')[(R)-1-(N-methylcarbamoyl)ethyl][(R)- 1-phenylethylamine]cobalt(III) monohydrate top
Crystal data top
[Co(C4H8NO)(C4H7N2O2)2(C8H11N)]·H2OF(000) = 1088
Mr = 514.47Dx = 1.380 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P2ac2abCell parameters from 25 reflections
a = 14.1206 (19) Åθ = 12.8–14.7°
b = 14.169 (2) ŵ = 0.74 mm1
c = 12.372 (2) ÅT = 293 K
V = 2475.3 (6) Å3Needle, red
Z = 40.25 × 0.15 × 0.12 mm
Data collection top
Rigaku AFC-7R
diffractometer
1749 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.039
Graphite monochromatorθmax = 27.5°, θmin = 2.6°
ω/2θ scansh = 1018
Absorption correction: ψ scan
(North et al., 1968)
k = 018
Tmin = 0.838, Tmax = 0.917l = 916
4662 measured reflections3 standard reflections every 100 reflections
3581 independent reflections intensity decay: 0.8%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.029P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
3581 reflectionsΔρmax = 0.43 e Å3
317 parametersΔρmin = 0.80 e Å3
2 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (3)
Crystal data top
[Co(C4H8NO)(C4H7N2O2)2(C8H11N)]·H2OV = 2475.3 (6) Å3
Mr = 514.47Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 14.1206 (19) ŵ = 0.74 mm1
b = 14.169 (2) ÅT = 293 K
c = 12.372 (2) Å0.25 × 0.15 × 0.12 mm
Data collection top
Rigaku AFC-7R
diffractometer
1749 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.039
Tmin = 0.838, Tmax = 0.9173 standard reflections every 100 reflections
4662 measured reflections intensity decay: 0.8%
3581 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105Δρmax = 0.43 e Å3
S = 0.98Δρmin = 0.80 e Å3
3581 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs
317 parametersAbsolute structure parameter: 0.02 (3)
2 restraints
Special details top

Experimental. 1H NMR (CDCl3, p.p.m.): 0.33 (3H, d), 1.23 (3H, d), 1.44 (1H, dd), 1.85 (1H, q), 2.17 (12H, d), 2.25 (1H, dd), 2.52 (3H, d), 3.62 (1H, m), 5.32 (1H, q), 7.05–7.37 (m).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.42129 (6)0.26852 (6)0.32901 (7)0.0319 (2)
O10.4301 (4)0.0758 (3)0.4031 (3)0.0452 (12)
H10.42320.07040.33760.068*
O20.4526 (3)0.4341 (3)0.4552 (4)0.0550 (15)
O30.4225 (4)0.4594 (3)0.2582 (4)0.0550 (13)
H30.43490.46330.32280.082*
O40.4000 (3)0.1035 (3)0.2035 (3)0.0431 (13)
O50.2098 (3)0.1949 (3)0.4989 (4)0.0516 (14)
O60.2008 (4)0.0629 (3)0.6684 (5)0.0693 (15)
H6F0.156 (4)0.014 (4)0.650 (6)0.083*
H6G0.201 (5)0.096 (5)0.601 (4)0.083*
N10.4319 (4)0.1690 (4)0.4298 (4)0.0372 (14)
N20.4416 (4)0.3403 (4)0.4557 (4)0.0397 (16)
N30.4104 (4)0.3685 (4)0.2313 (4)0.0362 (15)
N40.3993 (3)0.1970 (4)0.2021 (4)0.0315 (14)
N50.2240 (4)0.1159 (4)0.3431 (5)0.0411 (13)
H50.23600.11890.27500.049*
N60.5669 (3)0.2641 (3)0.3100 (3)0.0360 (12)
H6D0.58510.32260.29100.043*
H6E0.59150.25320.37600.043*
C10.4424 (5)0.1925 (5)0.5307 (6)0.0374 (17)
C20.4483 (5)0.2935 (5)0.5466 (5)0.0405 (19)
C30.3893 (5)0.3468 (5)0.1328 (5)0.0375 (18)
C40.3844 (4)0.2456 (4)0.1147 (5)0.0316 (16)
C50.4486 (5)0.1210 (5)0.6200 (5)0.059 (2)
H5A0.47940.06520.59380.089*
H5B0.38600.10530.64430.089*
H5C0.48430.14690.67910.089*
C60.4635 (5)0.3421 (5)0.6533 (5)0.058 (2)
H6A0.43670.40430.65050.087*
H6B0.53010.34650.66780.087*
H6C0.43330.30650.70960.087*
C70.3748 (5)0.4193 (5)0.0462 (5)0.057 (2)
H7A0.41200.47420.06230.085*
H7B0.30910.43620.04290.085*
H7C0.39420.39370.02220.085*
C80.3672 (5)0.2002 (5)0.0070 (5)0.055 (2)
H8A0.33790.13980.01740.082*
H8B0.42650.19210.02990.082*
H8C0.32630.23970.03540.082*
C90.2752 (4)0.2786 (4)0.3471 (5)0.0377 (16)
H90.24890.27810.27380.045*
C100.2342 (5)0.1939 (5)0.4035 (6)0.0358 (17)
C110.1930 (5)0.0255 (5)0.3894 (5)0.056 (2)
H11A0.17100.01510.33250.084*
H11B0.14260.03650.43990.084*
H11C0.24520.00390.42590.084*
C120.2403 (5)0.3703 (5)0.3996 (6)0.058 (2)
H12A0.27230.42310.36760.087*
H12B0.25330.36870.47570.087*
H12C0.17330.37660.38840.087*
C130.6150 (4)0.1976 (5)0.2341 (5)0.0374 (18)
H130.58310.13620.23840.045*
C140.6111 (4)0.2314 (5)0.1186 (5)0.0352 (16)
C150.6140 (5)0.3244 (5)0.0864 (6)0.0416 (19)
H150.61530.37170.13860.050*
C160.6151 (5)0.3490 (6)0.0212 (7)0.060 (2)
H160.61520.41230.04120.073*
C170.6160 (5)0.2807 (8)0.0981 (6)0.069 (3)
H170.61660.29770.17080.082*
C180.6161 (6)0.1875 (7)0.0704 (7)0.067 (3)
H180.61830.14110.12350.081*
C190.6129 (5)0.1629 (5)0.0371 (6)0.054 (2)
H190.61200.09940.05600.065*
C200.7181 (5)0.1843 (6)0.2658 (6)0.069 (3)
H20A0.72140.15670.33650.103*
H20B0.74940.24440.26620.103*
H20C0.74850.14330.21460.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0353 (4)0.0307 (4)0.0296 (4)0.0015 (4)0.0001 (5)0.0016 (4)
O10.055 (3)0.031 (2)0.050 (3)0.003 (3)0.003 (3)0.001 (2)
O20.067 (4)0.038 (3)0.060 (3)0.011 (3)0.006 (3)0.008 (2)
O30.080 (4)0.030 (3)0.055 (3)0.007 (3)0.002 (3)0.005 (2)
O40.056 (3)0.031 (3)0.042 (3)0.001 (2)0.007 (2)0.006 (2)
O50.068 (4)0.052 (3)0.036 (3)0.006 (3)0.017 (3)0.000 (3)
O60.093 (4)0.062 (4)0.053 (3)0.017 (3)0.006 (4)0.014 (3)
N10.032 (4)0.035 (3)0.044 (3)0.000 (3)0.008 (3)0.003 (3)
N20.042 (4)0.045 (4)0.032 (3)0.004 (3)0.004 (3)0.002 (3)
N30.041 (4)0.030 (3)0.038 (4)0.003 (3)0.001 (3)0.007 (3)
N40.026 (3)0.028 (3)0.041 (3)0.002 (2)0.000 (2)0.007 (2)
N50.041 (3)0.047 (3)0.035 (3)0.000 (3)0.005 (3)0.006 (3)
N60.037 (3)0.040 (3)0.031 (3)0.000 (3)0.002 (3)0.005 (3)
C10.024 (4)0.048 (4)0.041 (4)0.002 (3)0.003 (3)0.010 (3)
C20.037 (5)0.059 (5)0.026 (4)0.010 (4)0.002 (3)0.001 (4)
C30.033 (4)0.049 (5)0.030 (4)0.001 (4)0.003 (3)0.010 (3)
C40.028 (3)0.042 (5)0.024 (3)0.004 (3)0.002 (3)0.000 (3)
C50.072 (6)0.060 (5)0.046 (5)0.005 (4)0.010 (4)0.019 (4)
C60.052 (5)0.095 (6)0.026 (4)0.015 (4)0.008 (4)0.007 (4)
C70.058 (5)0.058 (5)0.053 (5)0.008 (4)0.011 (4)0.021 (4)
C80.045 (4)0.082 (6)0.038 (4)0.013 (4)0.005 (3)0.019 (4)
C90.027 (3)0.040 (4)0.046 (4)0.004 (3)0.006 (3)0.004 (4)
C100.028 (4)0.044 (4)0.035 (4)0.004 (3)0.004 (3)0.002 (4)
C110.059 (5)0.046 (5)0.063 (5)0.005 (4)0.009 (4)0.007 (4)
C120.045 (5)0.047 (5)0.082 (6)0.016 (4)0.016 (5)0.005 (4)
C130.033 (4)0.036 (4)0.044 (4)0.007 (3)0.002 (3)0.003 (3)
C140.027 (3)0.046 (4)0.032 (3)0.004 (4)0.005 (3)0.007 (4)
C150.044 (5)0.042 (5)0.039 (4)0.002 (4)0.002 (3)0.003 (3)
C160.045 (5)0.072 (6)0.064 (6)0.001 (4)0.010 (4)0.023 (5)
C170.053 (5)0.119 (8)0.033 (4)0.009 (6)0.000 (4)0.012 (6)
C180.053 (6)0.101 (7)0.047 (5)0.013 (5)0.007 (4)0.015 (5)
C190.062 (6)0.050 (5)0.052 (5)0.000 (4)0.001 (4)0.004 (4)
C200.053 (5)0.104 (7)0.049 (5)0.026 (5)0.002 (4)0.002 (5)
Geometric parameters (Å, º) top
Co1—N31.868 (5)C6—H6B0.9600
Co1—N11.889 (5)C6—H6C0.9600
Co1—N21.890 (5)C7—H7A0.9600
Co1—N41.894 (5)C7—H7B0.9600
Co1—N62.070 (4)C7—H7C0.9600
Co1—C92.080 (5)C8—H8A0.9600
O1—N11.362 (6)C8—H8B0.9600
O1—H10.8200C8—H8C0.9600
O2—N21.339 (6)C9—C101.504 (8)
O3—N31.342 (6)C9—C121.534 (8)
O3—H30.8200C9—H90.9800
O4—N41.326 (6)C11—H11A0.9600
O5—C101.229 (7)C11—H11B0.9600
O6—H6F0.97 (3)C11—H11C0.9600
O6—H6G0.96 (3)C12—H12A0.9600
N1—C11.300 (8)C12—H12B0.9600
N2—C21.310 (8)C12—H12C0.9600
N3—C31.292 (7)C13—C141.508 (8)
N4—C41.298 (7)C13—C201.519 (8)
N5—C101.342 (8)C13—H130.9800
N5—C111.470 (8)C14—C151.377 (9)
N5—H50.8600C14—C191.400 (8)
N6—C131.494 (7)C15—C161.376 (9)
N6—H6D0.9000C15—H150.9300
N6—H6E0.9000C16—C171.357 (10)
C1—C21.447 (9)C16—H160.9300
C1—C51.501 (8)C17—C181.365 (11)
C2—C61.504 (8)C17—H170.9300
C3—C41.453 (9)C18—C191.375 (10)
C3—C71.498 (8)C18—H180.9300
C4—C81.500 (8)C19—H190.9300
C5—H5A0.9600C20—H20A0.9600
C5—H5B0.9600C20—H20B0.9600
C5—H5C0.9600C20—H20C0.9600
C6—H6A0.9600
N3—Co1—N1179.0 (3)C3—C7—H7A109.5
N3—Co1—N298.1 (2)C3—C7—H7B109.5
N1—Co1—N280.9 (2)H7A—C7—H7B109.5
N3—Co1—N481.7 (2)C3—C7—H7C109.5
N1—Co1—N499.3 (2)H7A—C7—H7C109.5
N2—Co1—N4179.3 (2)H7B—C7—H7C109.5
N3—Co1—N691.8 (2)C4—C8—H8A109.5
N1—Co1—N688.5 (2)C4—C8—H8B109.5
N2—Co1—N687.7 (2)H8A—C8—H8B109.5
N4—Co1—N693.0 (2)C4—C8—H8C109.5
N3—Co1—C986.3 (3)H8A—C8—H8C109.5
N1—Co1—C993.4 (3)H8B—C8—H8C109.5
N2—Co1—C991.4 (3)C10—C9—C12110.8 (5)
N4—Co1—C987.9 (2)C10—C9—Co1112.1 (4)
N6—Co1—C9177.8 (2)C12—C9—Co1115.0 (4)
N1—O1—H1109.5C10—C9—H9106.0
N3—O3—H3109.5C12—C9—H9106.0
H6F—O6—H6G99 (6)Co1—C9—H9106.0
C1—N1—O1118.9 (5)O5—C10—N5120.9 (6)
C1—N1—Co1116.9 (5)O5—C10—C9123.0 (7)
O1—N1—Co1124.2 (4)N5—C10—C9116.1 (6)
C2—N2—O2119.9 (6)N5—C11—H11A109.5
C2—N2—Co1116.8 (5)N5—C11—H11B109.5
O2—N2—Co1123.2 (4)H11A—C11—H11B109.5
C3—N3—O3119.5 (6)N5—C11—H11C109.5
C3—N3—Co1116.7 (5)H11A—C11—H11C109.5
O3—N3—Co1123.8 (4)H11B—C11—H11C109.5
C4—N4—O4122.8 (5)C9—C12—H12A109.5
C4—N4—Co1115.7 (4)C9—C12—H12B109.5
O4—N4—Co1121.5 (4)H12A—C12—H12B109.5
C10—N5—C11122.2 (5)C9—C12—H12C109.5
C10—N5—H5118.9H12A—C12—H12C109.5
C11—N5—H5118.9H12B—C12—H12C109.5
C13—N6—Co1122.8 (4)N6—C13—C14112.2 (5)
C13—N6—H6D106.6N6—C13—C20110.6 (5)
Co1—N6—H6D106.6C14—C13—C20108.6 (5)
C13—N6—H6E106.6N6—C13—H13108.4
Co1—N6—H6E106.6C14—C13—H13108.4
H6D—N6—H6E106.6C20—C13—H13108.4
N1—C1—C2112.9 (6)C15—C14—C19117.1 (6)
N1—C1—C5122.7 (7)C15—C14—C13125.3 (6)
C2—C1—C5124.3 (7)C19—C14—C13117.4 (7)
N2—C2—C1112.3 (6)C16—C15—C14121.5 (7)
N2—C2—C6122.1 (6)C16—C15—H15119.3
C1—C2—C6125.5 (7)C14—C15—H15119.3
N3—C3—C4113.0 (6)C17—C16—C15119.9 (8)
N3—C3—C7122.9 (7)C17—C16—H16120.1
C4—C3—C7124.1 (6)C15—C16—H16120.1
N4—C4—C3112.8 (6)C16—C17—C18120.9 (8)
N4—C4—C8122.6 (6)C16—C17—H17119.6
C3—C4—C8124.6 (6)C18—C17—H17119.6
C1—C5—H5A109.5C17—C18—C19119.2 (8)
C1—C5—H5B109.5C17—C18—H18120.4
H5A—C5—H5B109.5C19—C18—H18120.4
C1—C5—H5C109.5C18—C19—C14121.4 (7)
H5A—C5—H5C109.5C18—C19—H19119.3
H5B—C5—H5C109.5C14—C19—H19119.3
C2—C6—H6A109.5C13—C20—H20A109.5
C2—C6—H6B109.5C13—C20—H20B109.5
H6A—C6—H6B109.5H20A—C20—H20B109.5
C2—C6—H6C109.5C13—C20—H20C109.5
H6A—C6—H6C109.5H20A—C20—H20C109.5
H6B—C6—H6C109.5H20B—C20—H20C109.5
N2—Co1—N1—C13.1 (5)N1—C1—C2—N20.1 (10)
N4—Co1—N1—C1176.2 (5)C5—C1—C2—N2179.6 (6)
N6—Co1—N1—C191.0 (5)N1—C1—C2—C6178.0 (6)
C9—Co1—N1—C187.8 (6)C5—C1—C2—C61.5 (12)
N2—Co1—N1—O1176.2 (6)O3—N3—C3—C4176.4 (6)
N4—Co1—N1—O14.5 (6)Co1—N3—C3—C44.1 (8)
N6—Co1—N1—O188.3 (6)O3—N3—C3—C71.7 (11)
C9—Co1—N1—O192.9 (6)Co1—N3—C3—C7177.8 (5)
N3—Co1—N2—C2176.7 (5)O4—N4—C4—C3178.6 (5)
N1—Co1—N2—C23.0 (5)Co1—N4—C4—C31.0 (7)
N6—Co1—N2—C291.8 (5)O4—N4—C4—C80.5 (9)
C9—Co1—N2—C290.2 (5)Co1—N4—C4—C8179.1 (4)
N3—Co1—N2—O25.8 (5)N3—C3—C4—N42.0 (9)
N1—Co1—N2—O2174.5 (6)C7—C3—C4—N4180.0 (6)
N6—Co1—N2—O285.6 (5)N3—C3—C4—C8176.0 (6)
C9—Co1—N2—O292.3 (5)C7—C3—C4—C82.0 (10)
N2—Co1—N3—C3175.6 (6)N3—Co1—C9—C10166.1 (5)
N4—Co1—N3—C33.7 (5)N1—Co1—C9—C1014.8 (5)
N6—Co1—N3—C396.5 (6)N2—Co1—C9—C1095.8 (5)
C9—Co1—N3—C384.7 (6)N4—Co1—C9—C1084.3 (5)
N2—Co1—N3—O33.9 (6)N3—Co1—C9—C1266.0 (5)
N4—Co1—N3—O3176.8 (6)N1—Co1—C9—C12113.0 (5)
N6—Co1—N3—O384.1 (6)N2—Co1—C9—C1232.0 (5)
C9—Co1—N3—O394.7 (6)N4—Co1—C9—C12147.8 (5)
N3—Co1—N4—C42.5 (4)C11—N5—C10—O56.5 (10)
N1—Co1—N4—C4177.2 (5)C11—N5—C10—C9174.4 (5)
N6—Co1—N4—C493.9 (5)C12—C9—C10—O526.9 (8)
C9—Co1—N4—C484.1 (5)Co1—C9—C10—O5103.2 (7)
N3—Co1—N4—O4177.1 (5)C12—C9—C10—N5152.2 (6)
N1—Co1—N4—O43.2 (5)Co1—C9—C10—N577.8 (6)
N6—Co1—N4—O485.7 (4)Co1—N6—C13—C1479.4 (6)
C9—Co1—N4—O496.3 (4)Co1—N6—C13—C20159.2 (4)
N3—Co1—N6—C1396.2 (4)N6—C13—C14—C1534.0 (9)
N1—Co1—N6—C1384.7 (5)C20—C13—C14—C1588.5 (8)
N2—Co1—N6—C13165.7 (5)N6—C13—C14—C19151.9 (6)
N4—Co1—N6—C1314.5 (5)C20—C13—C14—C1985.5 (8)
O1—N1—C1—C2176.8 (6)C19—C14—C15—C162.4 (10)
Co1—N1—C1—C22.6 (8)C13—C14—C15—C16176.5 (6)
O1—N1—C1—C52.7 (11)C14—C15—C16—C171.9 (11)
Co1—N1—C1—C5177.9 (5)C15—C16—C17—C180.2 (12)
O2—N2—C2—C1175.1 (6)C16—C17—C18—C191.6 (13)
Co1—N2—C2—C12.5 (8)C17—C18—C19—C141.0 (13)
O2—N2—C2—C63.0 (10)C15—C14—C19—C181.0 (11)
Co1—N2—C2—C6179.4 (5)C13—C14—C19—C18175.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.821.752.536 (6)159
O3—H3···O20.821.712.499 (6)162
O6—H6F···O4i0.97 (3)1.96 (5)2.787 (6)143 (6)
O6—H6G···O50.96 (3)1.89 (4)2.813 (7)162 (7)
N5—H5···O40.862.493.030 (7)122
N6—H6D···O6ii0.902.363.108 (7)141
N6—H6E···O5ii0.902.393.163 (6)143
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1/2, y+1/2, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Co(C3H6NO)(C4H7N2O2)2(C8H11N)][Co(C4H8NO)(C4H7N2O2)2(C8H11N)]·H2O
Mr482.43514.47
Crystal system, space groupMonoclinic, P21Orthorhombic, P212121
Temperature (K)223293
a, b, c (Å)8.743 (2), 14.696 (3), 8.565 (3)14.1206 (19), 14.169 (2), 12.372 (2)
α, β, γ (°)90, 93.29 (2), 9090, 90, 90
V3)1098.7 (5)2475.3 (6)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.820.74
Crystal size (mm)0.23 × 0.18 × 0.170.25 × 0.15 × 0.12
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Rigaku AFC-7R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
Tmin, Tmax0.789, 0.8690.838, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
3200, 2624, 2404 4662, 3581, 1749
Rint0.0270.039
(sin θ/λ)max1)0.6490.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.066, 1.21 0.038, 0.105, 0.98
No. of reflections26243581
No. of parameters299317
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.230.43, 0.80
Absolute structureFlack (1983), with how many Friedel pairsFlack (1983), with how many Friedel pairs
Absolute structure parameter0.004 (14)0.02 (3)

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1992), MULTAN88 (Debaerdemaeker, 1988), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), SV (Nemoto & Ohashi, 1993) and ORTEP (Johnson, 1965), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
Co1—N41.879 (2)Co1—C92.092 (3)
Co1—N21.888 (2)O5—C101.236 (3)
Co1—N11.890 (2)N6—C101.350 (4)
Co1—N31.892 (2)C9—C101.497 (4)
Co1—N52.077 (2)C9—C111.529 (4)
N5—Co1—C9177.3 (1)O5—C10—N6121.1 (3)
C10—C9—C11111.2 (2)O5—C10—C9122.2 (3)
C10—C9—Co1110.8 (2)N6—C10—C9116.6 (3)
C11—C9—Co1114.7 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.831.732.515 (3)158
O4—H4···O10.831.712.506 (3)160
N5—H5B···O5i0.912.122.925 (3)147
N6—H6D···O30.83 (5)2.53 (5)3.249 (4)145 (4)
N6—H6E···O1ii0.92 (5)2.10 (5)3.021 (4)176 (4)
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+1, y1/2, z.
Selected geometric parameters (Å, º) for (II) top
Co1—N31.868 (5)O5—C101.229 (7)
Co1—N11.889 (5)N5—C101.342 (8)
Co1—N21.890 (5)N5—C111.470 (8)
Co1—N41.894 (5)C9—C101.504 (8)
Co1—N62.070 (4)C9—C121.534 (8)
Co1—C92.080 (5)
N6—Co1—C9177.8 (2)C12—C9—Co1115.0 (4)
C10—N5—C11122.2 (5)O5—C10—N5120.9 (6)
C10—C9—C12110.8 (5)O5—C10—C9123.0 (7)
C10—C9—Co1112.1 (4)N5—C10—C9116.1 (6)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.821.752.536 (6)159
O3—H3···O20.821.712.499 (6)162
O6—H6F···O4i0.97 (3)1.96 (5)2.787 (6)143 (6)
O6—H6G···O50.96 (3)1.89 (4)2.813 (7)162 (7)
N5—H5···O40.862.493.030 (7)122
N6—H6D···O6ii0.902.363.108 (7)141
N6—H6E···O5ii0.902.393.163 (6)143
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1/2, y+1/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds