Download citation
Download citation
link to html
The title compound, {(C12H13N2)2[Mo5O16]}n, was synthesized under hydro­thermal conditions. The structure contains a two-dimensional layer, constructed from [(Mo4O14)n]4n chains linked through MoO6 octahedra, which lie across twofold axes. The [(Mo4O14)n]4n chain consists of [Mo4O14]4− clusters connected to one another by sharing their MoO5 square-pyramidal and MoO6 octahedral vertices in an anti disposition. The layers are linked by the cation, to which they are connected via N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010401090X/gd1318sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010401090X/gd1318Isup2.hkl
Contains datablock I

CCDC reference: 245843

Comment top

From the structural point of view, Mo atoms are easy to condense into clusters, such as {Mo2O6} (Quintal, 2001), {Mo4O13} (Hagrman et al., 1998), {Mo5O15} (Burkholder et al., 2001; Finn et al., 2001), {Mo6O19} (Strong et al., 2000; Wang et al., 2003), {Mo7O22} (Zapf et al., 1997) and {Mo8O26} (Hagrman et al., 1999), up to giant polyoxomolybdates from the `basket' Mo116 anion (Müller et al., 1999a) to the capped cyclic Mo248 anion (Müller et al., 1999b). Polymolybdates are thus amongst the most complex compounds containing oxide polyanions; this complexity is a result of the flexible coordination of molybdenum, for example, fourfold (MoO4, tetrahedron), fivefold (MoO5, square pyramid) or sixfold (MoO6, octahedron). Inorganic frameworks constructed from Mo—O polyhedra and exhibiting discrete structures, one-dimensional chains (Xu et al., 2003), two-dimensional layers (Calin et al., 2003) or three-dimensional open structures (Wu et al., 2002) have been reported recently.

However, the structural design of organic–inorganic hybrid materials based on molybdenum oxides remains a challenge in solid-state chemistry. One approach to the design of novel materials is the introduction of organic molecules as structure-directing components to effect (affect?) the inorganic microstructure. As a continuation of our attempts to construct new molybdates by the common Mo—O clusters as fundamental building blocks, we recently demonstrated the strategy in the design of the new compound [(C12H13N2)2][Mo5O16], (I), containing monoprotonated benzidine. Although a large number of organodiamines have been used as structure-directing components in the design of organic–inorganic hybrid materials, to the best of our knowledge, it is the first time that benzidine has been used.

The title compound is composed of [C12H13N2]+ cations and [Mo5O16]2− anions (Fig. 1). There are three kinds of crystallographically independent molybdenum sites in the Mo5O16 polyoxomolybdate unit. The Mo1 octahedron is completed by two doubly bridging O atoms, two µ3-O atoms and two terminal O atoms, with Mo1—O bond distances in the range 1.717 (15)–2.245 (15) Å and O—Mo1—O bond angles in the range 98.6 (6)–147.7 (7)°. The Mo2 square pyramid involves three µ3-O atoms and two terminal O atoms, with Mo2—O bond distances in the range 1.706 (16)–2.194 (14) Å and O—Mo2—O bond angles in the range 102.9 (8)–157.2 (7)°. The Mo3 octahedron involves two µ3-O atoms, two terminal O atoms and two doubly bridging O atoms, with Mo3—O bond distances in the range 1.688 (17)–2.480 (16) Å and O—Mo(3)—O bond angles in the range 98.1 (7)–144.1 (6)° (Table 1).

The structure contains a two-dimensional layer, which is constructed from molybdenum oxide chains {Mo4O14}n4n- linked through {MoO6} octahedra (Fig. 2a). The Mo1 atoms lie on twofold axes, and the {Mo4O14}n4n- chains lie on each sides of the Mo1 octahedron and are connected to it through edge-sharing modes. The {Mo4O14}n4n- chain is composed of {Mo4O14}4− clusters, which may be described in terms of binuclear {Mo2O8} subunits of edge-sharing {MoO5} square pyramids and {MoO6} octahedra, linked through corner-sharing of oxo groups in an anti disposition (Fig. 2 b).

The benzidine cations participate in a number of N—H···O hydrogen bonds (Table 2), and the cations thereby link adjacent sheets, so forming a pillared-layer framework (Fig. 3).

Additionally, there is a ππ stacking interaction between near-parallel benzidine molecules at (x, y, z) and (−0.5 − x,-0.5 − y, z); the ring separation is ca 3.48 (3) Å, which is close to the sum of the van der Waals radii of two C atoms (Bondi, 1964).

Experimental top

Compound (I) was synthesized under hydrothermal conditions. A mixture of (NH4)6Mo7O24·4H2O (0.309 g, 0.25 mmol), CdCl2·2.5H2O (0.144 g, 0.50 mmol), benzidine (0.069 g, 0.375 mmol) and H2O (10 ml) was stirred mechanically at room temperature in air at pH 5.0. The mixture was then transferred and sealed in to a 37.5 ml Teflon-lined reactor, and heated at 443 K for 3 d. After cooling to room temperature, red prismatic crystals were isolated. The IR spectrum of (I) exhibits characteristic bands at 3368 and 1497 cm−1 for the terminal N—H (NH3) stretch, and at 3660–3382 cm−1 for the O—H stretch. The powder X-ray diffraction pattern of the bulk product is in a good agreement with the calculated pattern based on the present crystal structure, indicating the phase purity of the sample. Thermogravimetric analysis (TGA) was performed in air from 303 to 1273 K, with a heating rate of 10 K min−1. The TGA of (I) exhibits no weight loss below 623 K; there is only one step (623–773 K) for loss of the organodiamine, where the weight loss is 33.3% (calculated 33.5%).

Refinement top

All H atoms were clearly visible in difference maps and their parameters were all refined independently, giving C—H distances of 0.86 (3)–0.95 (3) Å and N—H distances of 0.81 (5)–0.96 (3) Å.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT and XPREP in SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular components of the title compound, with the atom-numbering scheme. Displacement ellipsoids are shown at the 30% probability level. Symmetry code: (i) −x, y, 0.5 − z. (ii) −x, −y, 1 − z.
[Figure 2] Fig. 2. (a). The structure of the two-dimensional layer, viewed down the b axis. (b). A view of the structure of the {Mo4O14}n4n- chains.
[Figure 3] Fig. 3. A packing diagram of the title compound, viewed down the b axis, showing N—H···O hydrogen bonds. The broken lines indicate hydrogen-bonding interactions.
Benzidine penta-molybdate, 2[(C12H13N2)+]·(Mo5O16)2− top
Crystal data top
(C12H13N2)2[Mo5O16]F(000) = 2144
Mr = 1106.19Dx = 2.476 Mg m3
Monoclinic, C2/CMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4134 reflections
a = 38.5070 (3) Åθ = 1.5–28.3°
b = 5.6800 (3) ŵ = 2.14 mm1
c = 14.2961 (8) ÅT = 293 K
β = 108.366 (2)°Prism, red
V = 2967.6 (2) Å30.25 × 0.15 × 0.10 mm
Z = 4
Data collection top
Siemems SMART CCD
diffractometer
3681 independent reflections
Radiation source: fine-focus sealed tube3535 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 4850
Tmin = 0.687, Tmax = 0.807k = 75
11442 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049All H-atom parameters refined
S = 0.90 w = 1/[σ2(Fo2) + (0.0261P)2 + 12.9482P]
where P = (Fo2 + 2Fc2)/3
3681 reflections(Δ/σ)max = 0.001
274 parametersΔρmax = 0.44 e Å3
1 restraintΔρmin = 0.67 e Å3
Crystal data top
(C12H13N2)2[Mo5O16]V = 2967.6 (2) Å3
Mr = 1106.19Z = 4
Monoclinic, C2/CMo Kα radiation
a = 38.5070 (3) ŵ = 2.14 mm1
b = 5.6800 (3) ÅT = 293 K
c = 14.2961 (8) Å0.25 × 0.15 × 0.10 mm
β = 108.366 (2)°
Data collection top
Siemems SMART CCD
diffractometer
3681 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3535 reflections with I > 2σ(I)
Tmin = 0.687, Tmax = 0.807Rint = 0.019
11442 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0191 restraint
wR(F2) = 0.049All H-atom parameters refined
S = 0.90 w = 1/[σ2(Fo2) + (0.0261P)2 + 12.9482P]
where P = (Fo2 + 2Fc2)/3
3681 reflectionsΔρmax = 0.44 e Å3
274 parametersΔρmin = 0.67 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.00000.62822 (4)0.25000.00962 (6)
Mo20.029815 (4)0.17549 (3)0.419086 (11)0.00925 (5)
Mo30.053835 (4)0.27524 (3)0.416964 (12)0.01033 (5)
O10.07243 (4)0.1378 (3)0.33597 (11)0.0185 (3)
O20.04955 (4)0.5324 (3)0.32735 (10)0.0130 (3)
O30.01371 (4)0.8148 (3)0.17393 (10)0.0146 (3)
O40.00389 (4)0.3195 (3)0.15577 (10)0.0119 (3)
O50.02799 (4)0.0971 (3)0.49534 (10)0.0120 (3)
O60.03610 (4)0.4022 (3)0.49033 (11)0.0173 (3)
O70.06553 (5)0.0513 (3)0.35531 (11)0.0205 (3)
O80.09381 (4)0.3308 (3)0.51012 (12)0.0210 (3)
C60.15484 (7)0.5028 (5)0.1756 (2)0.0309 (6)
C90.31204 (7)0.1193 (5)0.1034 (2)0.0294 (6)
C100.33152 (6)0.3072 (4)0.04937 (18)0.0233 (5)
C50.19268 (7)0.4985 (5)0.1391 (2)0.0309 (6)
C110.31156 (7)0.4990 (5)0.0333 (2)0.0300 (6)
N10.09680 (6)0.3214 (4)0.27505 (18)0.0248 (4)
C40.21338 (6)0.3142 (4)0.15894 (16)0.0194 (4)
C20.15581 (7)0.1330 (5)0.2546 (2)0.0297 (6)
C80.27434 (7)0.1221 (5)0.1377 (2)0.0277 (5)
C120.27384 (7)0.4998 (5)0.0685 (2)0.0284 (5)
C70.25380 (6)0.3120 (4)0.12137 (16)0.0197 (4)
C10.13684 (6)0.3187 (4)0.23297 (17)0.0204 (4)
C30.19363 (7)0.1312 (5)0.2180 (2)0.0297 (6)
N20.36922 (7)0.3066 (5)0.0165 (2)0.0397 (6)
H80.2617 (9)0.012 (6)0.172 (2)0.041 (9)*
H90.3244 (8)0.000 (6)0.112 (2)0.035 (8)*
H120.2619 (9)0.626 (7)0.059 (3)0.049 (10)*
H110.3229 (10)0.633 (7)0.004 (3)0.055 (11)*
H20.1434 (9)0.016 (6)0.293 (2)0.041 (9)*
H2B0.3819 (11)0.196 (7)0.029 (3)0.061 (13)*
H1C0.0850 (9)0.368 (6)0.236 (2)0.036 (9)*
H50.2027 (10)0.631 (7)0.104 (3)0.060 (12)*
H1A0.0869 (8)0.165 (6)0.276 (2)0.029 (8)*
H30.2060 (10)0.013 (7)0.235 (3)0.055 (11)*
H2A0.3799 (11)0.431 (5)0.015 (3)0.076 (14)*
H60.1416 (10)0.630 (7)0.159 (3)0.048 (10)*
H1B0.0891 (12)0.389 (9)0.327 (3)0.077 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01114 (11)0.00879 (11)0.00840 (10)0.0000.00229 (8)0.000
Mo20.00948 (8)0.00944 (9)0.00869 (8)0.00002 (6)0.00265 (6)0.00212 (6)
Mo30.00975 (8)0.01099 (9)0.01000 (8)0.00009 (6)0.00277 (6)0.00238 (6)
O10.0129 (7)0.0228 (8)0.0172 (7)0.0014 (6)0.0011 (6)0.0011 (6)
O20.0122 (6)0.0144 (7)0.0121 (6)0.0011 (5)0.0035 (5)0.0029 (5)
O30.0169 (7)0.0137 (7)0.0120 (6)0.0012 (6)0.0030 (5)0.0013 (5)
O40.0140 (7)0.0120 (7)0.0094 (6)0.0006 (5)0.0034 (5)0.0027 (5)
O50.0133 (7)0.0114 (7)0.0115 (6)0.0006 (5)0.0042 (5)0.0042 (5)
O60.0206 (8)0.0162 (8)0.0165 (7)0.0002 (6)0.0080 (6)0.0012 (6)
O70.0264 (8)0.0176 (8)0.0194 (7)0.0030 (7)0.0098 (6)0.0006 (6)
O80.0141 (7)0.0239 (9)0.0203 (8)0.0022 (6)0.0012 (6)0.0021 (6)
C60.0225 (12)0.0277 (14)0.0413 (15)0.0028 (10)0.0081 (11)0.0148 (11)
C90.0238 (12)0.0222 (13)0.0402 (14)0.0047 (10)0.0072 (11)0.0064 (11)
C100.0184 (11)0.0239 (12)0.0274 (12)0.0007 (9)0.0069 (9)0.0019 (9)
C50.0226 (12)0.0261 (13)0.0402 (14)0.0015 (10)0.0047 (11)0.0166 (11)
C110.0247 (12)0.0240 (13)0.0392 (14)0.0044 (10)0.0070 (11)0.0119 (11)
N10.0180 (10)0.0299 (12)0.0281 (11)0.0002 (8)0.0095 (8)0.0072 (9)
C40.0200 (11)0.0188 (11)0.0193 (10)0.0003 (8)0.0058 (8)0.0007 (8)
C20.0198 (11)0.0249 (13)0.0436 (15)0.0038 (10)0.0087 (11)0.0143 (11)
C80.0222 (12)0.0209 (12)0.0362 (13)0.0017 (9)0.0038 (10)0.0085 (10)
C120.0231 (12)0.0222 (12)0.0399 (14)0.0017 (10)0.0099 (10)0.0112 (11)
C70.0188 (10)0.0197 (11)0.0206 (10)0.0012 (8)0.0064 (8)0.0012 (8)
C10.0157 (10)0.0248 (12)0.0218 (10)0.0006 (9)0.0074 (8)0.0026 (9)
C30.0208 (12)0.0238 (13)0.0444 (15)0.0002 (10)0.0101 (11)0.0127 (11)
N20.0189 (11)0.0318 (14)0.0627 (18)0.0010 (10)0.0047 (11)0.0071 (12)
Geometric parameters (Å, º) top
Mo1—O3i1.7167 (15)C9—C101.390 (4)
Mo1—O31.7167 (15)C9—H90.86 (3)
Mo1—O21.9572 (14)C10—N21.378 (3)
Mo1—O2i1.9572 (14)C10—C111.393 (4)
Mo1—O42.2445 (14)C5—C41.398 (3)
Mo1—O4i2.2445 (14)C5—H50.92 (4)
Mo2—O61.7056 (16)C11—C121.379 (4)
Mo2—O11.7094 (15)C11—H110.91 (4)
Mo2—O4i1.8669 (14)N1—C11.468 (3)
Mo2—O5ii1.9606 (14)N1—H1C0.86 (3)
Mo2—O52.1936 (14)N1—H1A0.96 (3)
Mo3—O71.6877 (16)N1—H1B0.81 (5)
Mo3—O81.7177 (15)C4—C31.403 (3)
Mo3—O21.9155 (14)C4—C71.478 (3)
Mo3—O51.9933 (14)C2—C11.373 (3)
Mo3—O4i2.1514 (14)C2—C31.384 (4)
Mo3—O6iii2.4800 (16)C2—H20.90 (3)
O4—Mo2i1.8669 (14)C8—C71.400 (3)
O4—Mo3i2.1514 (14)C8—H80.95 (3)
O5—Mo2ii1.9606 (14)C12—C71.392 (3)
O6—Mo3iii2.4800 (16)C12—H120.89 (4)
C6—C11.374 (3)C3—H30.90 (4)
C6—C51.384 (3)N2—H2B0.85 (4)
C6—H60.95 (4)N2—H2A0.868 (19)
C9—C81.378 (3)
O3i—Mo1—O3103.74 (10)Mo2—O6—Mo3iii172.59 (9)
O3i—Mo1—O2104.69 (6)C1—C6—C5119.0 (2)
O3—Mo1—O295.16 (6)C1—C6—H6121 (2)
O3i—Mo1—O2i95.16 (6)C5—C6—H6120 (2)
O3—Mo1—O2i104.69 (6)C8—C9—C10120.8 (2)
O2—Mo1—O2i147.71 (9)C8—C9—H9122 (2)
O3i—Mo1—O4162.65 (7)C10—C9—H9117 (2)
O3—Mo1—O490.58 (6)N2—C10—C9120.9 (2)
O2—Mo1—O483.36 (6)N2—C10—C11121.5 (2)
O2i—Mo1—O471.41 (5)C9—C10—C11117.6 (2)
O3i—Mo1—O4i90.58 (6)C6—C5—C4122.5 (2)
O3—Mo1—O4i162.65 (7)C6—C5—H5114 (2)
O2—Mo1—O4i71.41 (5)C4—C5—H5124 (2)
O2i—Mo1—O4i83.36 (6)C12—C11—C10121.0 (2)
O4—Mo1—O4i77.27 (7)C12—C11—H11118 (2)
O6—Mo2—O1102.93 (8)C10—C11—H11121 (2)
O6—Mo2—O4i102.34 (7)C1—N1—H1C116 (2)
O1—Mo2—O4i103.07 (7)C1—N1—H1A110.9 (18)
O6—Mo2—O5ii101.97 (7)H1C—N1—H1A91 (3)
O1—Mo2—O5ii99.95 (7)C1—N1—H1B115 (3)
O4i—Mo2—O5ii141.56 (6)H1C—N1—H1B109 (4)
O6—Mo2—O599.74 (7)H1A—N1—H1B113 (4)
O1—Mo2—O5157.16 (7)C5—C4—C3116.2 (2)
O4i—Mo2—O574.44 (6)C5—C4—C7122.4 (2)
O5ii—Mo2—O572.44 (6)C3—C4—C7121.5 (2)
O7—Mo3—O8102.82 (8)C1—C2—C3119.5 (2)
O7—Mo3—O2101.91 (7)C1—C2—H2119 (2)
O8—Mo3—O2104.23 (7)C3—C2—H2121 (2)
O7—Mo3—O599.99 (7)C9—C8—C7122.5 (2)
O8—Mo3—O598.14 (7)C9—C8—H8119 (2)
O2—Mo3—O5144.11 (6)C7—C8—H8118 (2)
O7—Mo3—O4i103.94 (7)C11—C12—C7122.4 (2)
O8—Mo3—O4i152.90 (7)C11—C12—H12119 (2)
O2—Mo3—O4i74.30 (6)C7—C12—H12119 (2)
O5—Mo3—O4i73.04 (5)C12—C7—C8115.8 (2)
O7—Mo3—O6iii178.71 (7)C12—C7—C4122.1 (2)
O8—Mo3—O6iii77.31 (7)C8—C7—C4122.1 (2)
O2—Mo3—O6iii79.27 (6)C2—C1—C6121.0 (2)
O5—Mo3—O6iii78.72 (6)C2—C1—N1118.7 (2)
O4i—Mo3—O6iii75.84 (5)C6—C1—N1120.3 (2)
Mo3—O2—Mo1116.94 (7)C2—C3—C4121.9 (2)
Mo2i—O4—Mo3i109.23 (6)C2—C3—H3119 (2)
Mo2i—O4—Mo1146.64 (8)C4—C3—H3119 (2)
Mo3i—O4—Mo197.32 (6)C10—N2—H2B123 (3)
Mo2ii—O5—Mo3145.64 (8)C10—N2—H2A117 (3)
Mo2ii—O5—Mo2107.56 (6)H2B—N2—H2A120 (4)
Mo3—O5—Mo2103.05 (6)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z+1; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O8iv0.85 (4)2.26 (4)3.043 (3)155 (4)
N1—H1C···O2v0.86 (3)1.95 (3)2.797 (3)168 (3)
N1—H1A···O10.96 (3)1.92 (3)2.816 (3)153 (3)
N1—H1A···O7i0.96 (3)2.59 (3)3.289 (3)130 (2)
N2—H2A···O7vi0.87 (2)2.42 (3)3.147 (3)142 (4)
N2—H2A···O8vi0.87 (2)2.56 (3)3.289 (3)142 (4)
N1—H1B···O8ii0.81 (5)2.41 (5)3.037 (3)135 (4)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z+1; (iv) x1/2, y+1/2, z1/2; (v) x, y1, z+1/2; (vi) x1/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula(C12H13N2)2[Mo5O16]
Mr1106.19
Crystal system, space groupMonoclinic, C2/C
Temperature (K)293
a, b, c (Å)38.5070 (3), 5.6800 (3), 14.2961 (8)
β (°) 108.366 (2)
V3)2967.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.14
Crystal size (mm)0.25 × 0.15 × 0.10
Data collection
DiffractometerSiemems SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.687, 0.807
No. of measured, independent and
observed [I > 2σ(I)] reflections
11442, 3681, 3535
Rint0.019
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.049, 0.90
No. of reflections3681
No. of parameters274
No. of restraints1
H-atom treatmentAll H-atom parameters refined
w = 1/[σ2(Fo2) + (0.0261P)2 + 12.9482P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.44, 0.67

Computer programs: SMART (Siemens, 1996), SMART, SAINT and XPREP in SHELXTL (Siemens, 1994), SHELXTL.

Selected geometric parameters (Å, º) top
Mo1—O31.7167 (15)Mo2—O52.1936 (14)
Mo1—O21.9572 (14)Mo3—O71.6877 (16)
Mo1—O42.2445 (14)Mo3—O81.7177 (15)
Mo2—O61.7056 (16)Mo3—O21.9155 (14)
Mo2—O11.7094 (15)Mo3—O51.9933 (14)
Mo2—O4i1.8669 (14)Mo3—O4i2.1514 (14)
Mo2—O5ii1.9606 (14)Mo3—O6iii2.4800 (16)
O3—Mo1—O295.16 (6)O1—Mo2—O5157.16 (7)
O2—Mo1—O2i147.71 (9)O7—Mo3—O2101.91 (7)
O3—Mo1—O490.58 (6)O8—Mo3—O598.14 (7)
O6—Mo2—O1102.93 (8)O2—Mo3—O5144.11 (6)
O1—Mo2—O4i103.07 (7)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z+1; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O8iv0.85 (4)2.26 (4)3.043 (3)155 (4)
N1—H1C···O2v0.86 (3)1.95 (3)2.797 (3)168 (3)
N1—H1A···O10.96 (3)1.92 (3)2.816 (3)153 (3)
N1—H1A···O7i0.96 (3)2.59 (3)3.289 (3)130 (2)
N2—H2A···O7vi0.868 (19)2.42 (3)3.147 (3)142 (4)
N2—H2A···O8vi0.868 (19)2.56 (3)3.289 (3)142 (4)
N1—H1B···O8ii0.81 (5)2.41 (5)3.037 (3)135 (4)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z+1; (iv) x1/2, y+1/2, z1/2; (v) x, y1, z+1/2; (vi) x1/2, y1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds