Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Fe(C5H5)(C21H16NO)], was synthesized from the coupling reaction of anthracene-9-carboxyl­ic acid and ferrocenyl­methyl­amine. The ferrocenyl (Fc) group and the anthracene ring system both lie approximately orthogonal to the amide moiety. An amide–amide interaction (along the a axis) is the principal interaction [N...O = 2.910 (2) Å]. A C—H...π(arene) interaction [C...centroid = 3.573 (2) Å] and a C—H...O interaction [C...O = 3.275 (3) Å] complete the hydrogen bonding; two short (Fc)C...C(anthracene) contacts are also present.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010302585X/gd1288sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010302585X/gd1288Isup2.hkl
Contains datablock I

CCDC reference: 229086

Comment top

Applications of novel redox-active ligands in diverse research fields, such as medicinal chemistry and materials science, have recently engaged scientists. Ferrocene continues to attract much interest as an electroactive group, with potential applications ranging from sensors to new optical materials to liquid crystals (Chesney et al., 1998; Zakaria et al., 2002; Gallagher et al., 1999; Kraatz et al., 1999; Hudson et al., 2001a,b; Seo et al., 2001). Our interest in ferrocene stems from its potential use in both novel sensors and biological systems. We have previously reported the crystal structures of three para-(ferrocenyl)benzoyl esters (Savage et al., 2002; Anderson et al., 2003), and the structure of N9-(ferrocenylmethyl)-9-anthracenecarboxamide, (I), is reported here. Selected geometric parameters are presented in Table 1, with hydrogen-bond and contact data in Table 2; the molecular and crystal structure are depicted in Figs. 1–3.

In (I), the ferrocenyl (Fc) group [Fc = (C5H5)Fe(C5H4)] is normal, with Fe1···Cg1/Cg2 distances of 1.6498 (10) and 1.6539 (11) Å, and a Cg1···Fe1···Cg2 angle of 178.51 (6)° (Cg1 and Cg2 are the ring centroids for the substituted and unsubstituted rings, respectively). The Fe1—C bond lengths for the substituted η5(C5H4) cyclopentadienyl ring are in the range 2.045 (2)–2.047 (2) Å and those in the unsubstituted η5(C5H5) ring are similar [2.034 (2)–2.060 (2) Å]; the C—C bond-length ranges are tight, viz. 1.414 (3)–1.428 (3) and 1.417 (3)–1.421 (4) Å for the η5(C5H4) and η5(C5H5) rings, respectively. The C atoms of the η5(C5) rings are essentially eclipsed, with the five C1n···Cg1···Cg2···C2n angles (n = 1–5) ranging from 0.2 (2)° (for the C14/C24 pair) to 0.57 (19)° (for the C13/C23 pair). The C2—C11—Fe1 angle is 126.92 (15)°, which is similar to the mean value (127.2°) for Fe—C—CH2 angles in the Cambridge Structural Database (CSD version of July 2003, update 5.24; Allen, 2002) (from 616 'hits' with coordinates and no disorder for Fe—CH2).

Two torsion angles describe the overall molecular geometry in (I); viz. the N1—C2—C11—C12 and N1—C1—C31—C32 angles are 79.6 (3) and 115.4 (2)°, such that the three major components in (I), i.e. the ferrocenyl, amide and anthracenyl groups, are all approximately orthogonal to one another (Fig. 1). The interplanar angle between the η5(C5H4) ring and the anthracenyl group is 88.45 (8)° (Fig. 1). The rings in the anthracene group are coplanar with the two external rings, at angles of 1.01 (9) and 1.95 (9)° to the central {C31–C36} ring. In the C14 system, the bond lengths can be arranged in specific groupings, with four from 1.353 (3) to 1.365 (3) Å (a in the scheme), four from 1.390 (3) to 1.412 (3) Å (b) and eight from 1.414 (3) to 1.441 (3) Å [mean 1.428 (3) Å] (c). These bond lengths correspond to the anthracenyl system as depicted in our scheme and are similar to those found in related anthracene-9-carboxamide structures in the CSD [e.g. CSD refcodes CABGAO (Adams et al., 2001) and MEYYOE (Kohmoto et al., 2001)].

The primary intermolecular interaction is the amide···amide interaction along the a axis [N···Oi = 2.910 (2) Å; symmetry code (i) x − 1/2, −y + 1/2, z; Table 2] [graph set C(4); Bernstein et al., 1995]. In tandem with the N—H···O=C hydrogen bond, a C—H···π(arene) interaction [C2—H2A···π(C31–C36)i, with C2···Cg3i = 3.573 (2) Å] generates an R22(8) ring, with the two donors on one molecule and two acceptors on the other (Figs. 2 and 3). The C15/H15 moiety also forms a C—H···π(arene) contact with the anthracene group [H15···Cg5 = 3.04 Å, some 0.4 Å longer than the C2···π(arene centroid) distance]. However, this contact is directed towards atom C40 atom [H15···C40i = 2.80 Å and C15—H15···C40i = 164°]. The C25/H25 group is involved in a similar contact with atom C37 [H25···C37 = 2.87 Å and C25—H25···C37i = 149°]. A second type of R22(8) ring can be considered to form from two C—H···π(arene) interactions involving atoms C2 and C15. A similar arrangement has been observed previously in the crystal structure of 2,4,6-tris(1'-Phenylthio-1-ferrocenyl)boroxin [CSD refcode BOQQAZ; Hua et al., 2001), in which a ferrocenyl group forms two contacts with a neighbouring C6 aromatic ring, with (cp)H···C6 distances of 2.78 and 2.87 Å and C—H···C angles of 164 and 160° (the two C6 atoms are para-related; cp is the cyclopentadienyl ring). In the structure of OBEWOH (Knoesen et al., 2001), the (cp)H···C distances are 2.73 and 2.81 Å, and the C—H···C angles are 161 and 147°; in PALZOR, bis(2-Ferrocenylmethyleneamino)benzenethiolato-S)- mercury(II), the relevant data are 2.84 and 2.71 Å, and 152 and 163° (Kawamoto & Kushi, 1992). Similar C—H···C contacts have been reported in ethynyl steroids (Lutz et al., 1998). A C—H···O hydrogen bond involving atoms C44 and O1ii completes the intermolecular interactions [symmetry code: (ii) −x + 1/2,y − 1/2,-z].

Examination of the structure with PLATON (Spek, 2002) showed that there were four niches, ?each with a volume of 17 Å3, but these are too small to contain even a water molecule (40 Å3).

The majority of ferrocene derivatives in the CSD that contain an amide group have the ferrocenyl group bonded directly to the amide functionality (usually derived from ferrocene carboxylic acid or acyl chloride reacted with an amino derivative). The combination of Fc and CH2NHCO moieties is unusual, a nd currently seven examples are available in the CSD. These include FAMFER (Hall & Brown, 1971), PULDUV (Gale et al., 1998), OHEPUM (Denuault et al., 2002), XULRIF (Laurent et al., 2002), XUZSIU and XUZSUG (Coles et al., 2003). By comparison, there are ten 'hits' for the Fc/NH/CO moiety and 79 'hits' for the Fc/CO/NH moiety. This result can be attributed to the difficulty of obtaining aminoferrocene as a starting a material and also the frequency with which ferrocene carboxylic acid or the acyl chloride are used in condensation reactions with amino derivatives.

Experimental top

For the synthesis of (I), ferrocenyl methyl amine (0.50 g, 2.3 mmol) was added to a solution of 9-anthracene carboxylic acid (0.56 g, 2.5 mmol), 1-hydroxybenzotriazole (0.38 g, 2.7 mmol) and 1,3-dicyclohexylcarbodiimide (0.55 g, 2.5 mmol) in CH2Cl2 (40 ml) at 273 K and stirred for 30 min. The reaction mixture was warmed to room temperature and stirred for a further 48 h. The precipitated N,N'-dicyclohexylcarbourea was removed by filtration and the residue was washed with CH2Cl2, with the solvent volume reduced in vacuo. The mixture was purified on a silica-gel column using a mobile phase of hexane:ethyl acetate (2:1). Recrystallization from methanol furnished (I) as orange needles (0.447 g, 48%). The UV–Vis transition is at 435 nm at a concentration of 1.01 mg ml−1 in CHCl3. IR (KBr, νCO cm−1): 161; 1H NMR (400 MHz, d6 DMSO): δ 4.19–4.20, 4.26, 4.36–4.37, 4.43–4.44, 7.54–7.58, 7.94–7.96, 8.12–8.15, 8.66, 9.12; 13C NMR (100 MHz, d6 DMSO): δ 38.75, 67.83, 68.44, 68.82, 86.33, 125.56, 125.93, 126.68, 127.46, 127.63, 128.76, 131.04, 133.61, 168.23. M.p. (uncorrected) 477–479 K.

Refinement top

Compound (I) crystallized in the monoclinic system; space group P21/a was assigned from the systematic absences and confirmed by the analysis. H atoms attached to C atoms were treated as riding, using SHELXL97 (Sheldrick, 1997) defaults, and the H atom attached to the N atom was refined with isotropic displacement parameters [N—H = 0.82 (3) Å].

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Johnson, 1976) and PLATON (Spek, 2002); software used to prepare material for publication: SHELXL97 and PREP8 (Ferguson, 1998).

Figures top
[Figure 1] Fig. 1. A view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A stereoview of the interactions in the crystal structure of (I) (with a labelled unit cell).
[Figure 3] Fig. 3. A stereoview of the interactions between the ferrocenyl moiety and the anthracene ring in (I), with atoms drawn as their van der Waals spheres.
N-(ferrocenylmethyl)anthracene-9-carboxamide top
Crystal data top
[Fe(C5H5)(C21H16NO)]F(000) = 872
Mr = 419.29Dx = 1.417 Mg m3
Monoclinic, P21/aMelting point: 476 K
Hall symbol: -p_2yabMo Kα radiation, λ = 0.71073 Å
a = 9.5904 (3) ÅCell parameters from 7412 reflections
b = 13.4903 (5) Åθ = 2.6–27.5°
c = 15.8568 (5) ŵ = 0.78 mm1
β = 106.603 (2)°T = 294 K
V = 1965.98 (11) Å3Block, orange
Z = 40.24 × 0.20 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
4481 independent reflections
Radiation source: fine-focus sealed X-ray tube3287 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ϕ, ω scans with κ offsetsθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
h = 1211
Tmin = 0.854, Tmax = 0.907k = 1717
13006 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0383P)2 + 1.1032P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4481 reflectionsΔρmax = 0.46 e Å3
267 parametersΔρmin = 0.43 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0024 (6)
Crystal data top
[Fe(C5H5)(C21H16NO)]V = 1965.98 (11) Å3
Mr = 419.29Z = 4
Monoclinic, P21/aMo Kα radiation
a = 9.5904 (3) ŵ = 0.78 mm1
b = 13.4903 (5) ÅT = 294 K
c = 15.8568 (5) Å0.24 × 0.20 × 0.20 mm
β = 106.603 (2)°
Data collection top
Nonius KappaCCD
diffractometer
4481 independent reflections
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
3287 reflections with I > 2σ(I)
Tmin = 0.854, Tmax = 0.907Rint = 0.057
13006 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.46 e Å3
4481 reflectionsΔρmin = 0.43 e Å3
267 parameters
Special details top

Experimental. 1H NMR (400 MHz, DMSO -δ6) 4.20 (2H, s, meta of C5H4) 4.26 (5H, s unsubstituted C5H5 ring) 4.36 (2H, s, ortho on C5H4) 4.43 (2H, d, CH2NH) 7.54–7.57 (4H, m, ArH) 7.93–7.96 (2H, m, ArH) 8.12–8.15 (2H, m, ArH) 8.66 (1H, s, ArH para to C=O) 9.11 (1H, t, NH)

Geometry. Specified hydrogen bonds (with e.s.d.'s except fixed and riding H) ##############################################################

D—H H···A D···A <(DHA)

0.82 (3) 2.10 (3) 2.910 (2) 169 (2) N1—H1···O1_$2 0.99 2.86 3.655 (3) 137.7 C2—H2A···C31_$2 0.99 3.01 3.752 (3) 132.9 C2—H2A···C32_$2 0.99 3.10 3.915 (3) 140.8 C2—H2A···C33_$2 0.99 3.07 3.997 (3) 157.2 C2—H2A···C34_$2 0.99 2.97 3.948 (3) 170.4 C2—H2A···C35_$2 0.99 2.86 3.772 (3) 153.6 C2—H2A···C36_$2 0.95 2.41 3.276 (3) 150.8 C44—H44···O1_$3

Planes data ###########

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

0.1859(0.0111)x + 13.4658(0.0011)y − 0.9552(0.0184)z = 5.2376(0.0072)

* 0.0024 (0.0014) C11 * −0.0006 (0.0014) C12 * −0.0015 (0.0015) C13 * 0.0029 (0.0014) C14 * −0.0033 (0.0014) C15 1.6498 (0.0011) Fe1 − 1.8764 (0.0048) C1 − 0.0130 (0.0039) C2 − 1.3580 (0.0043) N1 − 1.2291 (0.0048) O1

Rms deviation of fitted atoms = 0.0023

−0.0021(0.0117)x + 13.4284(0.0017)y − 1.4533(0.0195)z = 8.3007(0.0080)

Angle to previous plane (with approximate e.s.d.) = 2.49 (3)

* 0.0000 (0.0015) C21 * −0.0009 (0.0015) C22 * 0.0014 (0.0015) C23 * −0.0013 (0.0015) C24 * 0.0008 (0.0015) C25 − 1.6537 (0.0011) Fe1 − 5.0612 (0.0051) C1 − 3.2032 (0.0042) C2 − 4.5282 (0.0047) N1 − 4.4420 (0.0051) O1

Rms deviation of fitted atoms = 0.0010

−9.3807(0.0060)x − 1.9302(0.0330)y + 6.7257(0.0285)z = 0.1784(0.0086)

Angle to previous plane (with approximate e.s.d.) = 80.99 (16)

* 0.0000 (0.0000) C11 * 0.0000 (0.0000) C2 * 0.0000 (0.0000) N1 − 0.2843 (0.0040) Fe1 0.0000 (0.0000) N1 − 2.2319 (0.0028) O1

Rms deviation of fitted atoms = 0.0000

0.0012(0.0275)x − 4.4501(0.0268)y + 14.3446(0.0085)z = 1.1863(0.0104)

Angle to previous plane (with approximate e.s.d.) = 79.07 (20)

* 0.0000 (0.0000) C1 * 0.0000 (0.0000) C2 * 0.0000 (0.0000) N1 − 0.0753 (0.0055) O1 0.1056 (0.0041) C31 1.8478 (0.0079) Fe1 0.3639 (0.0086) C34

Rms deviation of fitted atoms = 0.0000

0.1859(0.0111)x + 13.4658 (0.0011)y − 0.9552(0.0184)z = 5.2376(0.0072)

Angle to previous plane (with approximate e.s.d.) = 67.47 (14)

* 0.0024 (0.0014) C11 * −0.0006 (0.0014) C12 * −0.0015 (0.0015) C13 * 0.0029 (0.0014) C14 * −0.0033 (0.0014) C15 1.6498 (0.0011) Fe1 − 1.8764 (0.0048) C1 − 0.0130 (0.0039) C2 − 1.3580 (0.0043) N1 − 1.2291 (0.0048) O1

Rms deviation of fitted atoms = 0.0023

8.9052(0.0031)x + 0.4084(0.0118)y + 1.4145(0.0137)z = 1.6654(0.0032)

Angle to previous plane (with approximate e.s.d.) = 88.45 (8)

* 0.0108 (0.0015) C35 * −0.0110 (0.0014) C36 * −0.0021 (0.0015) C37 * −0.0065 (0.0016) C38 * 0.0061 (0.0016) C39 * 0.0027 (0.0015) C40

Rms deviation of fitted atoms = 0.0074

8.8757(0.0030)x + 0.6285(0.0116)y + 1.5192(0.0131)z = 1.6897(0.0015)

Angle to previous plane (with approximate e.s.d.) = 1.01 (9)

* 0.0092 (0.0014) C31 * −0.0094 (0.0014) C32 * 0.0023 (0.0015) C33 * 0.0051 (0.0015) C34 * −0.0053 (0.0015) C35 * −0.0019 (0.0014) C36

Rms deviation of fitted atoms = 0.0063

8.9473(0.0031)x + 0.9521(0.0128)y + 1.1376(0.0141)z = 1.7066(0.0017)

Angle to previous plane (with approximate e.s.d.) = 1.95 (9)

* 0.0068 (0.0015) C32 * −0.0056 (0.0015) C33 * −0.0026 (0.0016) C41 * −0.0029 (0.0017) C42 * 0.0043 (0.0017) C43 * 0.0000 (0.0016) C44

Rms deviation of fitted atoms = 0.0043

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.17185 (3)0.53590 (2)0.37775 (2)0.01869 (11)
O10.27952 (15)0.30605 (11)0.17238 (9)0.0198 (3)
N10.0453 (2)0.29996 (14)0.17575 (12)0.0179 (4)
C10.1644 (2)0.25890 (16)0.16301 (13)0.0167 (4)
C20.0470 (2)0.40206 (16)0.20743 (14)0.0190 (4)
C110.1156 (2)0.40919 (16)0.30518 (14)0.0178 (4)
C120.2680 (2)0.40997 (16)0.34898 (14)0.0212 (5)
C130.2863 (3)0.41618 (17)0.44108 (15)0.0245 (5)
C140.1472 (3)0.41942 (17)0.45502 (15)0.0245 (5)
C150.0415 (2)0.41447 (16)0.37116 (14)0.0217 (5)
C210.1123 (3)0.64962 (17)0.29068 (16)0.0291 (5)
C220.2640 (3)0.65415 (17)0.33291 (16)0.0276 (5)
C230.2835 (3)0.66425 (18)0.42467 (16)0.0271 (5)
C240.1445 (3)0.66560 (18)0.43924 (17)0.0294 (6)
C250.0385 (3)0.65678 (18)0.35639 (18)0.0306 (6)
C310.1572 (2)0.15172 (16)0.13712 (14)0.0176 (4)
C320.1712 (2)0.12709 (16)0.05334 (14)0.0182 (4)
C330.1834 (2)0.02484 (16)0.03196 (14)0.0198 (5)
C340.1784 (2)0.04773 (17)0.09325 (15)0.0230 (5)
C350.1614 (2)0.02443 (17)0.17563 (14)0.0207 (5)
C360.1507 (2)0.07812 (16)0.19837 (14)0.0177 (4)
C370.1537 (2)0.09947 (18)0.23722 (15)0.0253 (5)
C380.1393 (2)0.07601 (18)0.31790 (15)0.0265 (5)
C390.1323 (2)0.02513 (18)0.34144 (15)0.0247 (5)
C400.1376 (2)0.09931 (17)0.28457 (14)0.0214 (5)
C410.1707 (2)0.19972 (17)0.01214 (14)0.0237 (5)
C420.1838 (3)0.17255 (19)0.09246 (15)0.0273 (5)
C430.1979 (3)0.0716 (2)0.11253 (15)0.0276 (5)
C440.1974 (2)0.00008 (18)0.05282 (15)0.0249 (5)
H10.028 (3)0.2663 (19)0.1692 (16)0.026 (7)*
H2A0.05400.42730.19280.023*
H2B0.10170.44430.17690.023*
H120.34380.40690.32150.025*
H130.37680.41790.48570.029*
H140.12770.42410.51040.029*
H150.06100.41470.36100.026*
H210.06780.64300.22920.035*
H220.33910.65100.30480.033*
H230.37430.66920.46870.033*
H240.12570.67140.49470.035*
H250.06400.65580.34660.037*
H340.18670.11530.07870.028*
H370.15860.16720.22180.030*
H380.13390.12700.35820.032*
H390.12380.04120.39810.030*
H400.13250.16630.30200.026*
H410.16120.26790.00030.028*
H420.18340.22190.13530.033*
H430.20780.05380.16850.033*
H440.20660.06740.06740.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01947 (17)0.01556 (18)0.02188 (18)0.00051 (13)0.00728 (13)0.00180 (13)
O10.0195 (7)0.0171 (8)0.0247 (8)0.0027 (6)0.0092 (6)0.0010 (6)
N10.0166 (9)0.0149 (10)0.0227 (9)0.0021 (8)0.0064 (8)0.0037 (7)
C10.0202 (10)0.0172 (11)0.0131 (9)0.0008 (9)0.0053 (8)0.0016 (8)
C20.0178 (10)0.0156 (11)0.0232 (11)0.0015 (9)0.0053 (9)0.0006 (9)
C110.0202 (10)0.0133 (11)0.0205 (10)0.0000 (8)0.0066 (9)0.0009 (8)
C120.0186 (10)0.0186 (12)0.0274 (11)0.0009 (9)0.0080 (9)0.0030 (9)
C130.0257 (12)0.0210 (13)0.0238 (11)0.0018 (9)0.0021 (10)0.0000 (9)
C140.0326 (13)0.0202 (12)0.0219 (11)0.0021 (10)0.0097 (10)0.0015 (9)
C150.0223 (11)0.0177 (12)0.0272 (11)0.0043 (9)0.0107 (10)0.0011 (9)
C210.0384 (14)0.0172 (12)0.0289 (13)0.0011 (10)0.0051 (11)0.0026 (10)
C220.0342 (13)0.0171 (12)0.0364 (13)0.0042 (10)0.0178 (11)0.0002 (10)
C230.0269 (12)0.0185 (13)0.0342 (13)0.0049 (10)0.0059 (10)0.0052 (10)
C240.0376 (14)0.0194 (13)0.0363 (13)0.0007 (10)0.0185 (12)0.0064 (10)
C250.0259 (12)0.0155 (13)0.0505 (16)0.0048 (10)0.0110 (12)0.0006 (11)
C310.0163 (10)0.0152 (11)0.0221 (11)0.0006 (8)0.0069 (9)0.0004 (8)
C320.0179 (10)0.0162 (11)0.0206 (10)0.0010 (8)0.0059 (9)0.0005 (9)
C330.0192 (10)0.0189 (12)0.0212 (10)0.0018 (9)0.0056 (9)0.0025 (9)
C340.0230 (11)0.0159 (12)0.0299 (12)0.0009 (9)0.0071 (10)0.0041 (9)
C350.0170 (10)0.0197 (12)0.0239 (11)0.0007 (9)0.0034 (9)0.0020 (9)
C360.0153 (10)0.0169 (11)0.0209 (10)0.0015 (8)0.0052 (9)0.0005 (9)
C370.0231 (11)0.0183 (12)0.0322 (12)0.0006 (9)0.0042 (10)0.0027 (10)
C380.0243 (12)0.0271 (13)0.0271 (12)0.0006 (10)0.0059 (10)0.0089 (10)
C390.0205 (11)0.0322 (14)0.0221 (11)0.0021 (10)0.0072 (9)0.0066 (10)
C400.0216 (11)0.0206 (12)0.0229 (11)0.0019 (9)0.0080 (9)0.0015 (9)
C410.0296 (12)0.0178 (12)0.0254 (11)0.0011 (10)0.0105 (10)0.0007 (9)
C420.0335 (13)0.0290 (14)0.0210 (11)0.0036 (11)0.0104 (10)0.0013 (10)
C430.0308 (13)0.0345 (14)0.0205 (11)0.0015 (11)0.0120 (10)0.0043 (10)
C440.0248 (11)0.0231 (12)0.0257 (12)0.0028 (9)0.0056 (10)0.0078 (10)
Geometric parameters (Å, º) top
Fe1—C112.045 (2)C34—C351.397 (3)
Fe1—C122.046 (2)C35—C361.441 (3)
Fe1—C132.047 (2)C35—C371.423 (3)
Fe1—C142.047 (2)C36—C401.437 (3)
Fe1—C152.045 (2)C37—C381.363 (3)
Fe1—C212.034 (2)C38—C391.421 (3)
Fe1—C222.047 (2)C39—C401.358 (3)
Fe1—C232.060 (2)C41—C421.365 (3)
Fe1—C242.056 (2)C42—C431.414 (4)
Fe1—C252.040 (2)C43—C441.353 (3)
O1—C11.245 (2)N1—H10.82 (3)
N1—C11.336 (3)C2—H2A0.9900
N1—C21.465 (3)C2—H2B0.9900
C1—C311.499 (3)C12—H120.9500
C2—C111.504 (3)C13—H130.9500
C11—C121.428 (3)C14—H140.9500
C11—C151.424 (3)C15—H150.9500
C12—C131.423 (3)C21—H210.9500
C13—C141.414 (3)C22—H220.9500
C14—C151.425 (3)C23—H230.9500
C21—C221.418 (3)C24—H240.9500
C21—C251.421 (4)C25—H250.9500
C22—C231.419 (3)C34—H340.9500
C23—C241.417 (3)C37—H370.9500
C24—C251.418 (4)C38—H380.9500
C31—C321.412 (3)C39—H390.9500
C31—C361.403 (3)C40—H400.9500
C32—C331.433 (3)C41—H410.9500
C32—C411.427 (3)C42—H420.9500
C33—C341.390 (3)C43—H430.9500
C33—C441.428 (3)C44—H440.9500
C21—Fe1—C2540.82 (10)C24—C25—C21108.0 (2)
C21—Fe1—C15121.38 (10)C24—C25—Fe170.34 (14)
C25—Fe1—C15106.66 (10)C21—C25—Fe169.33 (13)
C21—Fe1—C11105.71 (9)C36—C31—C32121.3 (2)
C25—Fe1—C11121.50 (10)C32—C31—C1118.36 (18)
C15—Fe1—C1140.76 (8)C36—C31—C1120.05 (18)
C21—Fe1—C12122.15 (9)C31—C32—C41122.8 (2)
C25—Fe1—C12158.11 (10)C31—C32—C33119.02 (19)
C15—Fe1—C1268.35 (9)C41—C32—C33118.18 (19)
C11—Fe1—C1240.85 (8)C34—C33—C44121.6 (2)
C21—Fe1—C2240.68 (10)C34—C33—C32119.40 (19)
C25—Fe1—C2268.41 (10)C44—C33—C32118.9 (2)
C15—Fe1—C22157.63 (9)C33—C34—C35122.1 (2)
C11—Fe1—C22121.78 (9)C34—C35—C37121.6 (2)
C12—Fe1—C22107.63 (9)C34—C35—C36119.1 (2)
C21—Fe1—C14158.01 (10)C37—C35—C36119.3 (2)
C25—Fe1—C14122.59 (10)C31—C36—C40123.5 (2)
C15—Fe1—C1440.75 (9)C31—C36—C35119.06 (19)
C11—Fe1—C1468.79 (9)C40—C36—C35117.46 (19)
C12—Fe1—C1468.44 (9)C38—C37—C35121.2 (2)
C22—Fe1—C14160.23 (10)C37—C38—C39119.6 (2)
C21—Fe1—C13159.27 (10)C40—C39—C38121.3 (2)
C25—Fe1—C13159.19 (10)C39—C40—C36121.0 (2)
C15—Fe1—C1368.13 (9)C42—C41—C32120.8 (2)
C11—Fe1—C1368.59 (9)C41—C42—C43120.6 (2)
C12—Fe1—C1340.68 (9)C44—C43—C42120.7 (2)
C22—Fe1—C13124.11 (10)C43—C44—C33120.8 (2)
C14—Fe1—C1340.40 (9)C1—N1—H1119.4 (18)
C21—Fe1—C2468.33 (10)C2—N1—H1119.4 (18)
C25—Fe1—C2440.51 (10)N1—C2—H2A109.2
C15—Fe1—C24123.17 (9)C11—C2—H2A109.2
C11—Fe1—C24158.33 (9)N1—C2—H2B109.2
C12—Fe1—C24159.92 (10)C11—C2—H2B109.2
C22—Fe1—C2468.14 (10)H2A—C2—H2B107.9
C14—Fe1—C24108.49 (10)C13—C12—H12126.0
C13—Fe1—C24124.19 (10)C11—C12—H12126.0
C21—Fe1—C2368.12 (10)Fe1—C12—H12126.3
C25—Fe1—C2367.97 (10)C14—C13—H13125.8
C15—Fe1—C23159.87 (9)C12—C13—H13125.8
C11—Fe1—C23158.77 (9)Fe1—C13—H13126.4
C12—Fe1—C23123.89 (9)C13—C14—H14126.2
C22—Fe1—C2340.44 (9)C15—C14—H14126.2
C14—Fe1—C23124.47 (10)Fe1—C14—H14126.1
C13—Fe1—C23109.59 (10)C11—C15—H15125.8
C24—Fe1—C2340.27 (9)C14—C15—H15125.8
C1—N1—C2121.03 (18)Fe1—C15—H15126.5
O1—C1—N1122.5 (2)C22—C21—H21126.0
O1—C1—C31119.69 (18)C25—C21—H21126.0
N1—C1—C31117.81 (18)Fe1—C21—H21125.6
N1—C2—C11111.85 (18)C21—C22—H22126.1
C2—C11—Fe1126.92 (15)C23—C22—H22126.1
C15—C11—C12107.35 (19)Fe1—C22—H22126.0
C15—C11—C2126.66 (19)C24—C23—H23125.9
C12—C11—C2125.98 (19)C22—C23—H23125.9
C15—C11—Fe169.61 (12)Fe1—C23—H23126.7
C12—C11—Fe169.59 (12)C23—C24—H24126.1
C13—C12—C11108.00 (19)C25—C24—H24126.1
C13—C12—Fe169.73 (13)Fe1—C24—H24126.3
C11—C12—Fe169.56 (12)C24—C25—H25126.0
C14—C13—C12108.5 (2)C21—C25—H25126.0
C14—C13—Fe169.80 (13)Fe1—C25—H25125.9
C12—C13—Fe169.59 (13)C33—C34—H34118.9
C13—C14—C15107.69 (19)C35—C34—H34118.9
C13—C14—Fe169.80 (13)C38—C37—H37119.4
C15—C14—Fe169.53 (13)C35—C37—H37119.4
C11—C15—C14108.48 (19)C37—C38—H38120.2
C11—C15—Fe169.63 (12)C39—C38—H38120.2
C14—C15—Fe169.72 (13)C40—C39—H39119.3
C22—C21—C25108.0 (2)C38—C39—H39119.3
C22—C21—Fe170.17 (14)C39—C40—H40119.5
C25—C21—Fe169.85 (14)C36—C40—H40119.5
C21—C22—C23107.8 (2)C42—C41—H41119.6
C21—C22—Fe169.15 (13)C32—C41—H41119.6
C23—C22—Fe170.27 (13)C41—C42—H42119.7
C24—C23—C22108.3 (2)C43—C42—H42119.7
C24—C23—Fe169.71 (13)C44—C43—H43119.7
C22—C23—Fe169.29 (13)C42—C43—H43119.7
C23—C24—C25107.9 (2)C43—C44—H44119.6
C23—C24—Fe170.02 (13)C33—C44—H44119.6
C25—C24—Fe169.16 (13)
C2—N1—C1—O14.1 (3)C12—Fe1—C21—C25161.61 (14)
C2—N1—C1—C31175.43 (18)C22—Fe1—C21—C25118.9 (2)
C1—N1—C2—C1179.1 (2)C14—Fe1—C21—C2548.2 (3)
N1—C2—C11—C1599.1 (2)C13—Fe1—C21—C25168.8 (2)
N1—C2—C11—C1279.6 (3)C24—Fe1—C21—C2537.66 (15)
N1—C2—C11—Fe1169.99 (14)C23—Fe1—C21—C2581.17 (15)
C21—Fe1—C11—C15120.13 (14)C25—C21—C22—C230.1 (3)
C25—Fe1—C11—C1578.69 (15)Fe1—C21—C22—C2359.91 (17)
C12—Fe1—C11—C15118.54 (18)C25—C21—C22—Fe159.82 (16)
C22—Fe1—C11—C15161.34 (13)C25—Fe1—C22—C2137.99 (15)
C14—Fe1—C11—C1537.39 (13)C15—Fe1—C22—C2143.3 (3)
C13—Fe1—C11—C1580.91 (14)C11—Fe1—C22—C2176.59 (16)
C24—Fe1—C11—C1549.4 (3)C12—Fe1—C22—C21119.13 (14)
C23—Fe1—C11—C15170.0 (2)C14—Fe1—C22—C21165.7 (2)
C21—Fe1—C11—C12121.32 (14)C13—Fe1—C22—C21160.90 (14)
C25—Fe1—C11—C12162.76 (13)C24—Fe1—C22—C2181.75 (15)
C15—Fe1—C11—C12118.54 (18)C23—Fe1—C22—C21118.9 (2)
C22—Fe1—C11—C1280.12 (15)C21—Fe1—C22—C23118.9 (2)
C14—Fe1—C11—C1281.15 (14)C25—Fe1—C22—C2380.93 (15)
C13—Fe1—C11—C1237.63 (13)C15—Fe1—C22—C23162.2 (2)
C24—Fe1—C11—C12168.0 (2)C11—Fe1—C22—C23164.49 (13)
C23—Fe1—C11—C1251.5 (3)C12—Fe1—C22—C23121.94 (14)
C21—Fe1—C11—C21.0 (2)C14—Fe1—C22—C2346.8 (3)
C25—Fe1—C11—C242.5 (2)C13—Fe1—C22—C2380.18 (16)
C15—Fe1—C11—C2121.2 (2)C24—Fe1—C22—C2337.18 (14)
C12—Fe1—C11—C2120.3 (2)C21—C22—C23—C240.2 (3)
C22—Fe1—C11—C240.2 (2)Fe1—C22—C23—C2458.99 (17)
C14—Fe1—C11—C2158.6 (2)C21—C22—C23—Fe159.20 (16)
C13—Fe1—C11—C2157.9 (2)C21—Fe1—C23—C2481.87 (16)
C24—Fe1—C11—C271.7 (3)C25—Fe1—C23—C2437.70 (15)
C23—Fe1—C11—C268.8 (3)C15—Fe1—C23—C2440.4 (3)
C15—C11—C12—C130.3 (3)C11—Fe1—C23—C24158.7 (2)
C2—C11—C12—C13179.2 (2)C12—Fe1—C23—C24163.23 (14)
Fe1—C11—C12—C1359.35 (16)C22—Fe1—C23—C24119.8 (2)
C15—C11—C12—Fe159.62 (15)C14—Fe1—C23—C2477.58 (17)
C2—C11—C12—Fe1121.5 (2)C13—Fe1—C23—C24120.17 (15)
C21—Fe1—C12—C13164.47 (14)C21—Fe1—C23—C2237.94 (14)
C25—Fe1—C12—C13162.0 (2)C25—Fe1—C23—C2282.11 (16)
C15—Fe1—C12—C1381.19 (14)C15—Fe1—C23—C22160.3 (2)
C11—Fe1—C12—C13119.29 (18)C11—Fe1—C23—C2238.9 (3)
C22—Fe1—C12—C13122.21 (14)C12—Fe1—C23—C2276.96 (17)
C14—Fe1—C12—C1337.21 (13)C14—Fe1—C23—C22162.61 (14)
C24—Fe1—C12—C1347.8 (3)C13—Fe1—C23—C22120.02 (15)
C23—Fe1—C12—C1380.68 (16)C24—Fe1—C23—C22119.8 (2)
C21—Fe1—C12—C1176.24 (15)C22—C23—C24—C250.3 (3)
C25—Fe1—C12—C1142.7 (3)Fe1—C23—C24—C2558.98 (17)
C15—Fe1—C12—C1138.10 (12)C22—C23—C24—Fe158.73 (17)
C22—Fe1—C12—C11118.50 (13)C21—Fe1—C24—C2381.29 (16)
C14—Fe1—C12—C1182.08 (14)C25—Fe1—C24—C23119.2 (2)
C13—Fe1—C12—C11119.29 (18)C15—Fe1—C24—C23164.53 (14)
C24—Fe1—C12—C11167.1 (2)C11—Fe1—C24—C23159.1 (2)
C23—Fe1—C12—C11160.04 (13)C12—Fe1—C24—C2344.2 (3)
C11—C12—C13—C140.1 (3)C22—Fe1—C24—C2337.33 (14)
Fe1—C12—C13—C1459.15 (16)C14—Fe1—C24—C23121.90 (15)
C11—C12—C13—Fe159.24 (15)C13—Fe1—C24—C2379.93 (17)
C21—Fe1—C13—C14159.6 (3)C21—Fe1—C24—C2537.94 (14)
C25—Fe1—C13—C1441.2 (3)C15—Fe1—C24—C2576.24 (17)
C15—Fe1—C13—C1438.02 (13)C11—Fe1—C24—C2539.9 (3)
C11—Fe1—C13—C1482.02 (14)C12—Fe1—C24—C25163.5 (2)
C12—Fe1—C13—C14119.81 (19)C22—Fe1—C24—C2581.90 (16)
C22—Fe1—C13—C14163.30 (13)C14—Fe1—C24—C25118.87 (15)
C24—Fe1—C13—C1478.09 (16)C13—Fe1—C24—C25160.84 (14)
C23—Fe1—C13—C14120.58 (14)C23—Fe1—C24—C25119.2 (2)
C21—Fe1—C13—C1239.8 (3)C23—C24—C25—C210.2 (3)
C25—Fe1—C13—C12161.0 (2)Fe1—C24—C25—C2159.32 (16)
C15—Fe1—C13—C1281.80 (14)C23—C24—C25—Fe159.52 (17)
C11—Fe1—C13—C1237.79 (12)C22—C21—C25—C240.1 (3)
C22—Fe1—C13—C1276.89 (16)Fe1—C21—C25—C2459.95 (17)
C14—Fe1—C13—C12119.81 (19)C22—C21—C25—Fe160.02 (17)
C24—Fe1—C13—C12162.10 (13)C21—Fe1—C25—C24119.1 (2)
C23—Fe1—C13—C12119.61 (14)C15—Fe1—C25—C24121.94 (14)
C12—C13—C14—C150.4 (3)C11—Fe1—C25—C24163.87 (13)
Fe1—C13—C14—C1559.44 (16)C12—Fe1—C25—C24164.8 (2)
C12—C13—C14—Fe159.02 (16)C22—Fe1—C25—C2481.19 (15)
C21—Fe1—C14—C13160.8 (2)C14—Fe1—C25—C2480.29 (16)
C25—Fe1—C14—C13163.87 (14)C13—Fe1—C25—C2449.8 (3)
C15—Fe1—C14—C13118.88 (19)C23—Fe1—C25—C2437.48 (14)
C11—Fe1—C14—C1381.47 (14)C15—Fe1—C25—C21119.01 (15)
C12—Fe1—C14—C1337.45 (13)C11—Fe1—C25—C2177.08 (16)
C22—Fe1—C14—C1344.7 (3)C12—Fe1—C25—C2145.7 (3)
C24—Fe1—C14—C13121.41 (14)C22—Fe1—C25—C2137.87 (14)
C23—Fe1—C14—C1379.68 (16)C14—Fe1—C25—C21160.66 (14)
C21—Fe1—C14—C1541.9 (3)C13—Fe1—C25—C21168.9 (2)
C25—Fe1—C14—C1577.25 (16)C24—Fe1—C25—C21119.1 (2)
C11—Fe1—C14—C1537.41 (13)C23—Fe1—C25—C2181.57 (15)
C12—Fe1—C14—C1581.43 (14)O1—C1—C31—C36108.9 (2)
C22—Fe1—C14—C15163.6 (2)N1—C1—C31—C3670.6 (3)
C13—Fe1—C14—C15118.88 (19)O1—C1—C31—C3265.1 (3)
C24—Fe1—C14—C15119.71 (14)N1—C1—C31—C32115.4 (2)
C23—Fe1—C14—C15161.44 (13)C36—C31—C32—C41176.7 (2)
C12—C11—C15—C140.5 (2)C1—C31—C32—C419.3 (3)
C2—C11—C15—C14179.4 (2)C36—C31—C32—C331.9 (3)
Fe1—C11—C15—C1459.08 (16)C1—C31—C32—C33172.02 (18)
C12—C11—C15—Fe159.61 (15)C31—C32—C33—C341.3 (3)
C2—C11—C15—Fe1121.5 (2)C41—C32—C33—C34177.5 (2)
C13—C14—C15—C110.6 (3)C31—C32—C33—C44179.96 (19)
Fe1—C14—C15—C1159.02 (15)C41—C32—C33—C441.2 (3)
C13—C14—C15—Fe159.61 (16)C44—C33—C34—C35178.6 (2)
C21—Fe1—C15—C1177.19 (15)C32—C33—C34—C350.1 (3)
C25—Fe1—C15—C11119.23 (14)C33—C34—C35—C37178.8 (2)
C12—Fe1—C15—C1138.19 (12)C33—C34—C35—C360.8 (3)
C22—Fe1—C15—C1145.6 (3)C32—C31—C36—C40179.53 (19)
C14—Fe1—C15—C11119.84 (19)C1—C31—C36—C405.7 (3)
C13—Fe1—C15—C1182.14 (14)C32—C31—C36—C351.2 (3)
C24—Fe1—C15—C11160.42 (13)C1—C31—C36—C35172.60 (18)
C23—Fe1—C15—C11169.5 (2)C34—C35—C36—C310.1 (3)
C21—Fe1—C15—C14162.96 (14)C37—C35—C36—C31179.46 (19)
C25—Fe1—C15—C14120.93 (14)C34—C35—C36—C40178.26 (19)
C11—Fe1—C15—C14119.84 (19)C37—C35—C36—C402.2 (3)
C12—Fe1—C15—C1481.66 (14)C34—C35—C37—C38179.0 (2)
C22—Fe1—C15—C14165.5 (2)C36—C35—C37—C381.4 (3)
C13—Fe1—C15—C1437.71 (13)C35—C37—C38—C390.2 (3)
C24—Fe1—C15—C1479.74 (16)C37—C38—C39—C401.0 (3)
C23—Fe1—C15—C1449.7 (3)C38—C39—C40—C360.1 (3)
C25—Fe1—C21—C22118.9 (2)C31—C36—C40—C39179.7 (2)
C15—Fe1—C21—C22162.20 (13)C35—C36—C40—C391.4 (3)
C11—Fe1—C21—C22120.80 (14)C31—C32—C41—C42179.7 (2)
C12—Fe1—C21—C2279.49 (16)C33—C32—C41—C421.0 (3)
C14—Fe1—C21—C22167.1 (2)C32—C41—C42—C430.1 (3)
C13—Fe1—C21—C2250.0 (3)C41—C42—C43—C440.6 (4)
C24—Fe1—C21—C2281.23 (15)C42—C43—C44—C330.3 (4)
C23—Fe1—C21—C2237.72 (14)C34—C33—C44—C43178.1 (2)
C15—Fe1—C21—C2578.91 (16)C32—C33—C44—C430.6 (3)
C11—Fe1—C21—C25120.31 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.82 (3)2.10 (3)2.910 (2)169 (2)
C2—H2A···Cg3i0.992.623.573 (2)161
C15—H15···C40i0.952.803.726 (3)164
C25—H25···C37i0.952.873.715 (3)149
C44—H44···O1ii0.952.413.276 (3)151
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C21H16NO)]
Mr419.29
Crystal system, space groupMonoclinic, P21/a
Temperature (K)294
a, b, c (Å)9.5904 (3), 13.4903 (5), 15.8568 (5)
β (°) 106.603 (2)
V3)1965.98 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.24 × 0.20 × 0.20
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.854, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
13006, 4481, 3287
Rint0.057
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.097, 1.03
No. of reflections4481
No. of parameters267
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.43

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP (Johnson, 1976) and PLATON (Spek, 2002), SHELXL97 and PREP8 (Ferguson, 1998).

Selected geometric parameters (Å, º) top
O1—C11.245 (2)C1—C311.499 (3)
N1—C11.336 (3)C2—C111.504 (3)
N1—C21.465 (3)N1—H10.82 (3)
C1—N1—C2121.03 (18)N1—C1—C31117.81 (18)
O1—C1—N1122.5 (2)N1—C2—C11111.85 (18)
O1—C1—C31119.69 (18)C2—C11—Fe1126.92 (15)
C2—N1—C1—O14.1 (3)N1—C2—C11—Fe1169.99 (14)
C2—N1—C1—C31175.43 (18)O1—C1—C31—C36108.9 (2)
C1—N1—C2—C1179.1 (2)N1—C1—C31—C3670.6 (3)
N1—C2—C11—C1599.1 (2)O1—C1—C31—C3265.1 (3)
N1—C2—C11—C1279.6 (3)N1—C1—C31—C32115.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.82 (3)2.10 (3)2.910 (2)169 (2)
C2—H2A···Cg3i0.992.623.573 (2)161
C15—H15···C40i0.952.803.726 (3)164
C25—H25···C37i0.952.873.715 (3)149
C44—H44···O1ii0.952.413.276 (3)151
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y1/2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds