Download citation
Download citation
link to html
Structural characterization of the title compound, C10H15N2+·PF6-, shows it to be ionic, with the pyridine rather than the piperidine N atom being protonated and forming hydrogen bonds to the counter-ions, resulting in two independent ion pairs. A number of unusual features are noted, in particular the remarkably close inter-ring hydrogen contacts [1.97 (3)-2.00 (3) Å] and the considerable differences in the pair of cations, in respect of the torsion angles within the piperidine ring involving the bonds to either side of the N atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103019358/gd1273sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103019358/gd1273Isup2.hkl
Contains datablock I

CCDC reference: 226126

Comment top

A recent publication (James et al., 2001) describes the room-temperature structural characterization of 4-piperidinylpyridinium tetrachloroferrate(III), which was undertaken in order to understand better the low-temperature magnetic ordering arising from the particular spatial distribution of the magnetic centres within the lattice. The results briefly drew attention to other features of interest peripheral to that objective, concerning the nature of the cation in which the inter-ring bond appeared to exhibit a high bond order not evident, for example, in the N-(4'-pyridyl)-4-ethoxypyridinium species coordinated to trichlorozincate(II) (Steffen & Palenik, 1978). As there appears to be no other structural characterization of the present species or close relatives in the literature, we considered it to be of interest to execute a further study of it under conditions conducive to providing a description of greater precision, i.e. at low-temperature, using CCD rather than single-counter instrumentation. We thus record herein the structure determination of 4-piperidinylpyridine as the title hexafluorophosphate salt, (I). \sch

4-Piperidinylpiperidine, crystallized from aqueous solution, is, in principle, capable of protonation at either the piperidinyl or the pyridyl N atom. The isolated bases, piperidine and pyridine, have pKa values of 1.1 and 5.2, respectively. However, the usefulness of these data as a guide as to which N atom would be most likely to protonate in the combined array will be affected by a variety of factors, leaving the likely outcome open to question. In the event, the results of the previous experiment suggested protonation at the pyridinium N atom, coupled with the assumption of a quinonoid bond distribution throughout the pyridinium ring and considerable double-bond character in the inter-ring bond, similar to that found in the numerous 4-dimethylaminopyridinium species studied.

The results of the present study confirm the stoichiometry and connectivity of the present salt, (I), as consistent with that of the systematic name. Two independent formula units, devoid of crystallographic symmetry, comprise the asymmetric unit of the structure. The cations and anions are associated pairwise via hydrogen-bonding arising from the pyridinium protonating H atoms to the anions (Fig. 1), with generally close agreement in the corresponding parameters of the two cations (Table 1) (but see below). A notable feature of the structure of the tetrachloroferrate salt was the association of the protonating H atoms with Cl atoms arising from pairs of symmetry-related anions, linking them into a one-dimensional string. In (I), we find some ambivalence in the hydrogen associations, with N/H11···F24(1 − x,2 − y,1 − z) 3.053 (3) and 2.23 (3) Å, compared with N/H11···F25(1 − x,2 − y,1 − z) 2.952 (3) and 2.45 (3) Å, but N/H21···F11 3.012 (3) and 2.21 (3) Å is more clearcut (Fig. 1). These interactions have little, if any, apparent impact on the associated anion geometries.

The bonding within the cations of (I) exhibits prominent quinonoid characteristics in the pyridinium rings, the bond order between the rings (in Cn4—Nn1', where n is 1 or 2) exhibiting consistent marked double-bond character [1.334 (3) and 1.336 (3) Å for n = 1 or 2, respectively]. The C2NCC2 arrays are closely planar (χ2 818 and 579 for n = 1 or 2, respectively), and the angle sums about Nn1' are 359.6 and 359.1° for n = 1 or 2, respectively. The torsion angles, pairwise in the bonds outward from Nn1' in the piperidine rings, are 61.9 (3) and −61.5 (3), −56.7 (3) and 56.3 (3), and 52.7 (3) and −52.4 (3)° for ring 1, and 55.4 (3) and −56.9 (3), −54.5 (3) and 57.7 (3), and 55.1 (3) and −56.4 (3)° for ring 2, the large difference between the first pairs of values being curious. In adopting this resonance form, a transfer of positive charge is implied from the protonated pyridine N atom to the N atom of the piperidine ring. This provides an interesting contrast with the N-(4'-pyridyl)-4-ethoxypyridinium species, in which not only is the central inter-ring bond much longer at 1.447 (11) Å, but the two ring planes have an interplanar dihedral angle of 40.5°, because of the steric interactions between the 3,5 H atoms on the `A' ring and the 2,6 H atoms on the `B' ring, the associated H···H distances being shown to lie at the van der Waals limit. Remarkably, in the structure of (I), the four H(ar)···H(eq) contacts between the rings (all H refined) lie in the range 1.97 (3)–2.00 (3) Å.

Inspection of the angular geometries to either side of the Hn3,5 attachments in the pyridinium ring suggests the H atoms bow away from the piperidine ring, all C4—C3,5-H being greater than 120° and all C2—C3—H3 and C6—C5—H5 less, at no great level of significance, but no such trend is discernable at the contacting piperidinium H atoms. Indeed, it may be surmised that such contacts might be avoided more effectively by adoption of a less rigorous chair conformation by the piperidine rings.

The extension of conjugation into the exocyclic bond in species of the present type is well known in derivatives of the type R2N·C6H4NH+, there being an abundance of examples for R = H or Me. It is of interest to note that the inter-ring C—N distance in (I) is comparable with the latter and also with systems where the piperidine is supplanted by a pyrrolidine moiety, e.g. 1.324 (4) Å (Huang et al., 1997) and 1.329 (5) Å (Wheeler & Foxman, 1992), [endocyclic C—N—C 111.0 (3) and 111.6 (3)° respectively], lengthening to 1.369 (2) Å [C—N—C 112.43 (9)°] in a deprotonated analogue (Spivey et al., 2000).

Experimental top

Crystals of (I) were prepared by slow evaporation of an aqueous acidic (HCl) solution containing 4-piperidinylpyridine and a small excess of ammonium hexafluorophosphate (Aldrich Chemical Co.). Very pale-yellow crystals of (I) were obtained (m.p. 409–410 K). Analysis, found: C 39.05, H 4.95, N 8.94% (Campbell Microanalytical Laboratory, University of Otago, New Zealand); calculated for C10H15F6N2P: C 38.97, H 4.91, N 9.08%.

Refinement top

The H atoms were located from difference Fourier maps and placed at idealized positions (C—H = 0.95 Å and N—H = 0.92 Å), and they were refined in x,y,z and U.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: Xtal3.4 (Hall et al., 1995); program(s) used to solve structure: Xtal3.4; program(s) used to refine structure: CRYLSQ in Xtal3.4; molecular graphics: Xtal3.4; software used to prepare material for publication: BONDLA and CIFIO in Xtal3.4.

Figures top
[Figure 1] Fig. 1. Projections of the two independent ion pairs of (I), viewed normal to their pyridine ring planes. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
4-Piperidinylpyridinium hexafluorophosphate top
Crystal data top
C10H15N2+·PF6F(000) = 1264
Mr = 308.21Dx = 1.597 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8192 reflections
a = 12.814 (1) Åθ = 2.5–28.5°
b = 10.4199 (8) ŵ = 0.28 mm1
c = 20.072 (2) ÅT = 150 K
β = 106.937 (1)°Prism, colourless
V = 2563.8 (4) Å30.45 × 0.35 × 0.19 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
6423 independent reflections
Radiation source: sealed tube4871 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 29.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1716
Tmin = 0.820, Tmax = 0.949k = 1414
29464 measured reflectionsl = 2727
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: difference Fourier map
wR(F2) = 0.048All H-atom parameters refined
S = 0.98 w = 1/(σ2(F) + 0.0004F2)
4871 reflections(Δ/σ)max = 0.012
463 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.46 e Å3
0 constraints
Crystal data top
C10H15N2+·PF6V = 2563.8 (4) Å3
Mr = 308.21Z = 8
Monoclinic, P21/nMo Kα radiation
a = 12.814 (1) ŵ = 0.28 mm1
b = 10.4199 (8) ÅT = 150 K
c = 20.072 (2) Å0.45 × 0.35 × 0.19 mm
β = 106.937 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6423 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4871 reflections with I > 2σ(I)
Tmin = 0.820, Tmax = 0.949Rint = 0.024
29464 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.048All H-atom parameters refined
S = 0.98Δρmax = 0.69 e Å3
4871 reflectionsΔρmin = 0.46 e Å3
463 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.20071 (16)0.4407 (2)0.45059 (11)0.0431 (10)
C120.17356 (18)0.4466 (2)0.38059 (13)0.0411 (11)
C130.24748 (16)0.4251 (2)0.34592 (11)0.0331 (10)
C140.35768 (15)0.39376 (18)0.38225 (10)0.0263 (8)
C150.38228 (17)0.3898 (2)0.45633 (11)0.0313 (9)
C160.30394 (19)0.4138 (2)0.48774 (12)0.0388 (11)
N11'0.43117 (13)0.36762 (16)0.34886 (9)0.0302 (8)
C12'0.4063 (2)0.3643 (2)0.27269 (12)0.0381 (11)
C13'0.4134 (2)0.2278 (3)0.24890 (12)0.0414 (12)
C14'0.5251 (2)0.1702 (3)0.28393 (13)0.0437 (12)
C15'0.5543 (2)0.1844 (2)0.36226 (13)0.0408 (11)
C16'0.54258 (17)0.3230 (2)0.38297 (13)0.0374 (11)
N210.74656 (17)0.4117 (2)0.18369 (11)0.0426 (10)
C220.6898 (2)0.3232 (2)0.13922 (14)0.0443 (12)
C230.5823 (2)0.3394 (2)0.10533 (14)0.0425 (12)
C240.52579 (17)0.4519 (2)0.11575 (12)0.0357 (10)
C250.58949 (18)0.5415 (2)0.16411 (12)0.0360 (10)
C260.6968 (2)0.5189 (2)0.19597 (13)0.0410 (11)
N21'0.42005 (15)0.4714 (2)0.08348 (12)0.0514 (11)
C22'0.3542 (2)0.3837 (4)0.0296 (2)0.0653 (18)
C23'0.24692 (19)0.3531 (2)0.04340 (14)0.0420 (11)
C24'0.18345 (19)0.4741 (2)0.04586 (13)0.0401 (11)
C26'0.3615 (2)0.5914 (2)0.08833 (17)0.0482 (13)
C25'0.25299 (18)0.5640 (2)0.10065 (13)0.0391 (11)
P10.13934 (4)0.57592 (5)0.61382 (3)0.0296 (2)
F110.08150 (13)0.46351 (13)0.56141 (7)0.0531 (7)
F120.18627 (12)0.63458 (14)0.55485 (8)0.0510 (7)
F130.03272 (10)0.66309 (14)0.58706 (7)0.0463 (7)
F140.19898 (11)0.68545 (13)0.66593 (8)0.0519 (7)
F150.09389 (10)0.51471 (14)0.67289 (7)0.0446 (7)
F160.24545 (10)0.48742 (12)0.63972 (7)0.0442 (7)
P21.02417 (4)0.25534 (5)0.17166 (3)0.0315 (2)
F210.97669 (12)0.31084 (16)0.23181 (8)0.0574 (8)
F220.94260 (12)0.13735 (15)0.16145 (9)0.0609 (8)
F230.93384 (12)0.33482 (15)0.11498 (8)0.0560 (8)
F241.07052 (12)0.20080 (16)0.11181 (8)0.0575 (8)
F251.10537 (12)0.37463 (14)0.18231 (7)0.0538 (8)
F261.11316 (11)0.17734 (14)0.22929 (8)0.0536 (7)
H110.153 (2)0.455 (3)0.4726 (14)0.055 (8)*
H120.100 (2)0.462 (2)0.3579 (12)0.039 (6)*
H130.2231 (19)0.426 (2)0.2999 (13)0.039 (6)*
H150.4507 (19)0.368 (2)0.4834 (12)0.037 (6)*
H160.318 (2)0.412 (2)0.5364 (13)0.043 (7)*
H12'a0.460 (2)0.415 (3)0.2608 (13)0.049 (7)*
H12'b0.336 (2)0.401 (2)0.2510 (12)0.043 (7)*
H13'a0.402 (2)0.224 (3)0.1988 (14)0.051 (7)*
H13'b0.358 (2)0.180 (3)0.2570 (13)0.046 (7)*
H14'a0.581 (2)0.213 (3)0.2679 (13)0.050 (7)*
H14'b0.524 (2)0.085 (3)0.2722 (14)0.052 (8)*
H15'a0.627 (2)0.161 (3)0.3830 (14)0.059 (8)*
H15'b0.5065 (19)0.130 (2)0.3804 (12)0.037 (6)*
H16'a0.5586 (17)0.332 (2)0.4323 (12)0.031 (6)*
H16'b0.589 (2)0.372 (2)0.3675 (13)0.045 (7)*
H210.813 (3)0.401 (3)0.2051 (15)0.064 (9)*
H220.727 (2)0.253 (2)0.1325 (12)0.041 (7)*
H230.549 (2)0.278 (3)0.0750 (14)0.055 (8)*
H250.561 (2)0.616 (2)0.1729 (12)0.040 (6)*
H260.737 (2)0.574 (2)0.2290 (12)0.041 (7)*
H22'a0.393 (3)0.308 (4)0.0296 (17)0.085 (11)*
H22'b0.341 (3)0.422 (3)0.018 (2)0.088 (12)*
H23'a0.210 (2)0.297 (3)0.0084 (13)0.048 (7)*
H23'b0.260 (2)0.308 (2)0.0872 (13)0.041 (7)*
H24'a0.165 (2)0.515 (3)0.0001 (14)0.050 (7)*
H24'b0.115 (2)0.462 (3)0.0524 (14)0.055 (8)*
H25'a0.216 (2)0.643 (2)0.1038 (12)0.042 (7)*
H25'b0.265 (2)0.527 (3)0.1457 (14)0.051 (7)*
H26'a0.355 (2)0.635 (3)0.0457 (15)0.057 (8)*
H26'b0.403 (2)0.643 (3)0.1239 (14)0.055 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0366 (10)0.0530 (12)0.0462 (11)0.0009 (9)0.0222 (9)0.0046 (9)
C120.0255 (10)0.0489 (14)0.0492 (14)0.0036 (10)0.0115 (10)0.0046 (11)
C130.0270 (10)0.0392 (12)0.0312 (11)0.0004 (8)0.0052 (8)0.0032 (9)
C140.0246 (9)0.0223 (9)0.0313 (10)0.0014 (7)0.0072 (7)0.0004 (7)
C150.0292 (10)0.0320 (10)0.0294 (10)0.0018 (8)0.0032 (8)0.0025 (8)
C160.0434 (12)0.0430 (13)0.0315 (11)0.0066 (10)0.0135 (9)0.0058 (10)
N11'0.0263 (8)0.0324 (9)0.0316 (9)0.0048 (7)0.0080 (7)0.0013 (7)
C12'0.0410 (12)0.0441 (13)0.0319 (11)0.0106 (10)0.0150 (10)0.0092 (10)
C13'0.0446 (13)0.0489 (14)0.0288 (11)0.0005 (11)0.0074 (10)0.0035 (10)
C14'0.0504 (14)0.0385 (13)0.0431 (13)0.0083 (11)0.0152 (11)0.0060 (11)
C15'0.0378 (12)0.0401 (13)0.0411 (13)0.0122 (10)0.0059 (10)0.0006 (10)
C16'0.0235 (10)0.0450 (13)0.0407 (13)0.0040 (9)0.0048 (9)0.0083 (10)
N210.0396 (11)0.0388 (11)0.0464 (12)0.0050 (9)0.0081 (9)0.0062 (9)
C220.0469 (13)0.0315 (12)0.0596 (16)0.0054 (10)0.0238 (12)0.0014 (11)
C230.0445 (13)0.0309 (11)0.0579 (15)0.0073 (10)0.0243 (11)0.0131 (11)
C240.0341 (11)0.0312 (11)0.0455 (12)0.0067 (9)0.0172 (9)0.0072 (9)
C250.0402 (12)0.0276 (10)0.0397 (12)0.0015 (9)0.0109 (9)0.0051 (9)
C260.0441 (13)0.0349 (12)0.0385 (13)0.0011 (10)0.0036 (10)0.0012 (10)
N21'0.0309 (10)0.0464 (12)0.0757 (15)0.0061 (9)0.0136 (10)0.0315 (11)
C22'0.0373 (14)0.073 (2)0.086 (2)0.0157 (14)0.0195 (14)0.050 (2)
C23'0.0361 (12)0.0421 (13)0.0425 (13)0.0073 (10)0.0031 (10)0.0094 (11)
C24'0.0313 (11)0.0458 (13)0.0403 (13)0.0012 (10)0.0056 (10)0.0052 (11)
C26'0.0377 (13)0.0382 (13)0.0667 (18)0.0042 (10)0.0117 (12)0.0123 (13)
C25'0.0360 (11)0.0350 (12)0.0438 (13)0.0084 (9)0.0077 (10)0.0012 (10)
P10.0277 (2)0.0283 (3)0.0349 (3)0.0020 (2)0.0124 (2)0.0017 (2)
F110.0718 (10)0.0369 (8)0.0400 (8)0.0104 (7)0.0005 (7)0.0002 (6)
F120.0600 (9)0.0434 (8)0.0618 (9)0.0099 (7)0.0367 (7)0.0197 (7)
F130.0301 (6)0.0495 (8)0.0578 (9)0.0114 (6)0.0102 (6)0.0106 (7)
F140.0451 (8)0.0365 (7)0.0651 (9)0.0011 (6)0.0018 (7)0.0104 (7)
F150.0333 (7)0.0648 (9)0.0401 (7)0.0045 (6)0.0175 (6)0.0114 (6)
F160.0367 (7)0.0382 (7)0.0635 (9)0.0129 (6)0.0238 (6)0.0132 (6)
P20.0283 (3)0.0297 (3)0.0352 (3)0.0015 (2)0.0072 (2)0.0002 (2)
F210.0623 (9)0.0670 (10)0.0501 (9)0.0141 (8)0.0278 (7)0.0004 (7)
F220.0480 (8)0.0505 (9)0.0778 (11)0.0229 (7)0.0081 (8)0.0034 (8)
F230.0517 (8)0.0565 (9)0.0496 (8)0.0122 (7)0.0010 (7)0.0119 (7)
F240.0576 (9)0.0656 (10)0.0541 (9)0.0005 (8)0.0241 (7)0.0146 (8)
F250.0609 (9)0.0463 (8)0.0494 (8)0.0244 (7)0.0084 (7)0.0008 (7)
F260.0431 (8)0.0510 (9)0.0562 (9)0.0066 (6)0.0018 (6)0.0121 (7)
Geometric parameters (Å, º) top
N11—C121.347 (3)C23—H230.90 (3)
N11—C161.345 (3)C24—C251.421 (3)
N11—H110.86 (3)C24—N21'1.336 (3)
C12—C131.347 (4)C25—C261.358 (3)
C12—H120.94 (2)C25—H250.89 (3)
C13—C141.426 (3)C26—H260.91 (2)
C13—H130.89 (2)N21'—C22'1.478 (4)
C14—C151.428 (3)N21'—C26'1.476 (3)
C14—N11'1.333 (3)C22'—C23'1.514 (4)
C15—C161.355 (4)C22'—H22'a0.93 (4)
C15—H150.92 (2)C22'—H22'b1.01 (4)
C16—H160.94 (3)C23'—C24'1.509 (4)
N11'—C12'1.469 (3)C23'—H23'a0.93 (2)
N11'—C16'1.467 (3)C23'—H23'b0.97 (3)
C12'—C13'1.511 (4)C24'—C25'1.520 (3)
C12'—H12'a0.95 (3)C24'—H24'a0.98 (3)
C12'—H12'b0.96 (2)C24'—H24'b0.93 (3)
C13'—C14'1.522 (3)C26'—C25'1.509 (4)
C13'—H13'a0.98 (3)C26'—H26'a0.95 (3)
C13'—H13'b0.93 (3)C26'—H26'b0.93 (3)
C14'—C15'1.513 (4)C25'—H25'a0.96 (3)
C14'—H14'a0.97 (3)C25'—H25'b0.95 (3)
C14'—H14'b0.92 (3)P1—F111.6042 (14)
C15'—C16'1.522 (4)P1—F121.5971 (18)
C15'—H15'a0.94 (3)P1—F131.5977 (14)
C15'—H15'b0.98 (3)P1—F141.5858 (14)
C16'—H16'a0.95 (2)P1—F151.5981 (16)
C16'—H16'b0.90 (3)P1—F161.5992 (13)
N21—C221.341 (3)P2—F211.6095 (18)
N21—C261.344 (3)P2—F221.5878 (16)
N21—H210.85 (3)P2—F231.5977 (15)
C22—C231.357 (3)P2—F241.5920 (19)
C22—H220.90 (3)P2—F251.5949 (16)
C23—C241.424 (3)P2—F261.5908 (14)
C12—N11—C16120.1 (2)N21—C26—C25121.8 (2)
C12—N11—H11121.4 (16)N21—C26—H26117.5 (16)
C16—N11—H11118.6 (16)C25—C26—H26120.5 (16)
N11—C12—C13121.6 (2)C24—N21'—C22'122.9 (2)
N11—C12—H12115.6 (16)C24—N21'—C26'124.1 (2)
C13—C12—H12122.7 (16)C22'—N21'—C26'112.3 (2)
C12—C13—C14121.0 (2)N21'—C22'—C23'110.6 (3)
C12—C13—H13116.7 (17)N21'—C22'—H22'a109 (2)
C14—C13—H13122.2 (17)N21'—C22'—H22'b111 (2)
C13—C14—C15115.1 (2)C23'—C22'—H22'a109 (2)
C13—C14—N11'121.95 (18)C23'—C22'—H22'b110 (2)
C15—C14—N11'122.93 (16)H22'a—C22'—H22'b106 (3)
C14—C15—C16120.70 (18)C22'—C23'—C24'110.9 (2)
C14—C15—H15120.5 (17)C22'—C23'—H23'a106.1 (19)
C16—C15—H15118.8 (17)C22'—C23'—H23'b109.8 (15)
N11—C16—C15121.5 (2)C24'—C23'—H23'a113.2 (16)
N11—C16—H16115.9 (15)C24'—C23'—H23'b109.5 (16)
C15—C16—H16122.5 (15)H23'a—C23'—H23'b107 (2)
C14—N11'—C12'123.88 (17)C23'—C24'—C25'109.32 (18)
C14—N11'—C16'124.32 (18)C23'—C24'—H24'a108.7 (17)
C12'—N11'—C16'111.4 (2)C23'—C24'—H24'b115.3 (17)
N11'—C12'—C13'109.66 (19)C25'—C24'—H24'a109.9 (15)
N11'—C12'—H12'a107.1 (15)C25'—C24'—H24'b111.0 (17)
N11'—C12'—H12'b110.7 (16)H24'a—C24'—H24'b102 (2)
C13'—C12'—H12'a109.1 (17)N21'—C26'—C25'111.2 (2)
C13'—C12'—H12'b111.5 (15)N21'—C26'—H26'a104.7 (19)
H12'a—C12'—H12'b109 (2)N21'—C26'—H26'b111.1 (17)
C12'—C13'—C14'111.1 (2)C25'—C26'—H26'a113.4 (17)
C12'—C13'—H13'a111.1 (16)C25'—C26'—H26'b109 (2)
C12'—C13'—H13'b109.4 (17)H26'a—C26'—H26'b107 (2)
C14'—C13'—H13'a107.1 (15)C24'—C25'—C26'111.8 (2)
C14'—C13'—H13'b112.1 (15)C24'—C25'—H25'a112.4 (13)
H13'a—C13'—H13'b106 (2)C24'—C25'—H25'b109.6 (16)
C13'—C14'—C15'110.9 (2)C26'—C25'—H25'a110.0 (16)
C13'—C14'—H14'a110.3 (15)C26'—C25'—H25'b109.5 (16)
C13'—C14'—H14'b108.8 (15)H25'a—C25'—H25'b103 (2)
C15'—C14'—H14'a108.5 (14)F11—P1—F1289.73 (8)
C15'—C14'—H14'b110.0 (17)F11—P1—F1390.47 (7)
H14'a—C14'—H14'b108 (3)F11—P1—F14178.75 (9)
C14'—C15'—C16'111.2 (2)F11—P1—F1589.80 (8)
C14'—C15'—H15'a110.4 (19)F11—P1—F1688.78 (7)
C14'—C15'—H15'b109.8 (13)F12—P1—F1390.17 (8)
C16'—C15'—H15'a106.8 (18)F12—P1—F1490.01 (8)
C16'—C15'—H15'b108.7 (15)F12—P1—F15178.84 (10)
H15'a—C15'—H15'b110 (2)F12—P1—F1689.63 (8)
N11'—C16'—C15'109.47 (17)F13—P1—F1490.75 (7)
N11'—C16'—H16'a109.8 (14)F13—P1—F1590.89 (8)
N11'—C16'—H16'b107.8 (15)F13—P1—F16179.23 (8)
C15'—C16'—H16'a111.5 (13)F14—P1—F1590.44 (8)
C15'—C16'—H16'b108.5 (17)F14—P1—F1690.00 (7)
H16'a—C16'—H16'b110 (2)F15—P1—F1689.30 (8)
C22—N21—C26120.0 (2)F21—P2—F2289.80 (9)
C22—N21—H21121 (2)F21—P2—F2389.66 (8)
C26—N21—H21119 (2)F21—P2—F24179.65 (11)
N21—C22—C23121.5 (2)F21—P2—F2589.65 (9)
N21—C22—H22116.5 (14)F21—P2—F2689.17 (8)
C23—C22—H22122.0 (14)F22—P2—F2389.79 (8)
C22—C23—C24120.9 (2)F22—P2—F2490.14 (9)
C22—C23—H23117.9 (18)F22—P2—F25179.42 (12)
C24—C23—H23121.1 (18)F22—P2—F2690.21 (8)
C23—C24—C25115.20 (19)F23—P2—F2490.00 (8)
C23—C24—N21'122.7 (2)F23—P2—F2590.03 (8)
C25—C24—N21'122.0 (2)F23—P2—F26178.83 (10)
C24—C25—C26120.6 (2)F24—P2—F2590.41 (9)
C24—C25—H25121.1 (14)F24—P2—F2691.17 (8)
C26—C25—H25118.3 (14)F25—P2—F2689.96 (8)

Experimental details

Crystal data
Chemical formulaC10H15N2+·PF6
Mr308.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)12.814 (1), 10.4199 (8), 20.072 (2)
β (°) 106.937 (1)
V3)2563.8 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.45 × 0.35 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.820, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
29464, 6423, 4871
Rint0.024
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.048, 0.98
No. of reflections4871
No. of parameters463
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.69, 0.46

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), Xtal3.4 (Hall et al., 1995), CRYLSQ in Xtal3.4, BONDLA and CIFIO in Xtal3.4.

Selected geometric parameters (Å, º) top
N11—C121.347 (3)N21—C221.341 (3)
N11—C161.345 (3)N21—C261.344 (3)
C12—C131.347 (4)C22—C231.357 (3)
C13—C141.426 (3)C23—C241.424 (3)
C14—C151.428 (3)C24—C251.421 (3)
C14—N11'1.333 (3)C24—N21'1.336 (3)
C15—C161.355 (4)C25—C261.358 (3)
C12—N11—C16120.1 (2)N21—C22—C23121.5 (2)
N11—C12—C13121.6 (2)N21—C22—H22116.5 (14)
C12—C13—C14121.0 (2)C23—C24—N21'122.7 (2)
C13—C14—C15115.1 (2)C25—C24—N21'122.0 (2)
C12'—N11'—C16'111.4 (2)C22'—N21'—C26'112.3 (2)
C22—N21—C26120.0 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds