Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Fe(C5H5)(C14H13O)], the plane of the heterocyclic ring is almost perpendicular to the plane of the substituted cyclo­penta­dienyl ring, and the heterocyclic ring adopts a half-chair conformation. The conformation of the nearly parallel cyclo­penta­dienyl (Cp) rings [the dihedral angle between their planes is 2.7 (1)°] is almost halfway between eclipsed and staggered, and the rings are mutually twisted by about 19.4 (2)° (mean value). The mean lengths of the C—C bonds in the substituted and unsubstituted cyclo­penta­dienyl ring are 1.420 (2) and 1.406 (3) Å, respectively, and the Fe—C distances range from 2.029 (2) to 2.051 (2) Å. The phenyl and unsubstituted cyclo­penta­dienyl rings are involved in C—H...π interactions, with intermolecular H...centroid distances of 2.85 and 3.14 Å for C—H...π(Ph), and 2.88 Å for C—H...π(Cp). In two of these interactions, the C—H bond points towards one of the ring bonds rather than towards the ring centroid. In the crystal structure, the C—H...π interactions connect the mol­ecules into a three-dimensional framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103011703/gd1251sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103011703/gd1251Isup2.hkl
Contains datablock I

CCDC reference: 219553

Comment top

Optically active ferrocene derivatives are widely employed as chiral ligands in asymmetric reactions, and there is continuing interest in the development of efficient procedures for the preparation of these derivatives in enantiopure form (Gonsalves & Chen, 1995; Bolm et al., 1998; Pioda & Togni, 1998; Perea et al., 1999). Ferrocene derivatives exhibiting centro- and planar chirality are very convenient substrates for biotransformations (Köllner et al., 1998; Richards & Locke, 1998; Schwink & Knochel, 1998; Patti & Nicolosi, 1999; Đaković et al., 2003). In the course of our research on enzyme-catalyzed resolution of centrochiral ferrocene compounds, racemic 2-(α-hydroxyferrocyl)benzenethanol and 1-ferrocenylisochromane, (I), were prepared by reduction of methyl 2-(ferrocenoyl)benzenacetate (Đaković, 2000).

The molecular structure of (I) is the first reported structure to contain an isochromanyl group attached to the ferrocenyl moiety (Fig. 1). Moreover, a survey of the Cambridge Structural Database (Allen, 2002) lists only three structures containing an isochromanyl group at all (Yamato et al., 1984; Unterhalt et al., 1994; Eikawa et al., 1999). The heterocyclic six-membered ring adopts a distorted half-chair conformation, in which atoms O1 and C15 are 0.426 (1) and −0.348 (2) Å from the plane of the other ring atoms (C11/C12/C13/C14); the C11—C12—C13—C14 torsion angle is 2.4 (2)°. The bond lengths in the heterocyclic and fused phenyl rings (Table 1) mostly agree with those in the structures of 1,1'-oxybis(isochromane) (Eikawa et al., 1999) and (S)-1-(phenyl)ethylammonium (S)-isochromane-1-carboxylate (Unterhalt et al., 1994). The exception is the C12—C13 bond length, which is shorter [ca 0.04 Å]in the latter structure. The heterocyclic ring atoms O1, C11 and C15 and the cyclopentadienyl (Cp) ring atom C1 lie in the same plane; the C15—O1—C11—C1 torsion angle is 178.95 (14)°. The dihedral angle between the mean planes of these four atoms and the C1–C5 Cp ring is 47.8 (1)°. Furthermore, the plane of the heterocyclic ring is almost perpendicular to the plane of the C1–C5 ring and parallel to the plane of the fused phenyl ring. The corresponding dihedral angles are 87.3 (1) and 4.0 (1)°.

The exocyclic C2—C1—C11 Cp bond angle is larger than the C5–C1–C11 angle (Table 1). The Cp rings are planar and almost parallel to each other [the dihedral angle is 2.7 (1)°]. The Fe—C distances are in the range 2.034 (2)–2.051 (2) Å for the substituted (C1—C5) and 2.029 (2)–2.049 (2) Å for the unsubstituted (C6—C10) ring, the average values being 2.042 (2) and 2.038 (2) Å, respectively. The C—C bonds are slightly longer in the substituted ring than in the unsubstituted ring [1.410 (3)–1.429 (2) Å versus 1.397 (3)–1.414 (3) Å], and the bond angles in both rings range from 107.52 (15) to 108.33 (18)°.

The geometry of the ferrocenyl moiety agrees well with the structures of ferrocene (Seiler & Dunitz, 1979) and of the ferrocene structures (derivatives?) we have reported previously (Cetina et al., 2002; Cetina et al., 2003). The main conformational difference was observed in the orientation of the Cp rings. In (I), the rings are twisted from the eclipsed conformation by? 19.4 (2)° (average value). The values of the corresponding C—Cg1Cg2—C pseudo-torsion angles (Cg1 and Cg2 are the centroids of the C1—C5 and C6—C10 rings, respectively), defined by joining two eclipsing Cp C atoms through the ring centroids, range from 19.0 (2) to 19.7 (2)°. The conformation is almost exactly halfway between eclipsed and staggered, as demonstrated by the C1–Cg1Cg2–C9 torsion angle of 163.4 (1)°. For a staggered conformation, this angle is 180°, and for a fully eclipsed conformation, it is 144°. The centroids of the Cp rings are almost equidistant from the Fe atom. The Fe—Cg1 and Fe—Cg2 distances are 1.647 (1) and 1.650 (1) Å, while the Cg1—Fe—Cg2 angle is 178.2 (1)°.

There are a number of C—H···π interactions (Table 2 and Fig. 2). Atom H14A of the heterocyclic ring is positioned almost perpendicularly above the phenyl-ring centroid (Cg1) of the adjacent molecule. The six relevant H···C distances fall into the narrow range 3.06–3.28 Å, and the H···Cgi distance is significantly shorter than any of the H···C distances. The C—H···π interaction between atom H18 of the phenyl ring and the unsubstituted Cp ring exhibits a completely different geometry. The H18···C7ii distance is shorter than the H···Cgii distance. The second shortest H···C contact is that to atom C6, and the C—H bond points towards the C6—C7 bond of the Cp ring rather than to the ring centroid (Cg2). Similarly, the longest C5—H5···Cg1iii interaction points towards the C12–C13 bond. Both the H5···C12iii and the H5···C13iii contact is shorter than the H···Cgiii distance. The molecules linked by these C—H···π interactions build a three-dimensional framework.

Experimental top

NaBH4 (253 mg, 6.7 mmol) was added gradually to a solution of methyl 2-(ferrocenoyl)benzenacetate (326 mg, 0.9 mmol) in a mixture of EtOH/Et2O (1:1 v/v; 5 cm3). The mixture was refluxed for 2 h and worked up in the usual manner. Separation by preparative thin-layer chromatography on silica gel (Merck, Kieselgel 60 HF254) gave 2-(α-hydroxyferrocyl)benzenethanol (237 mg; yield 78%) and 1-ferrocenylisochromane (57 mg; yield 20%; yellow crystals; m.p. 365–366 K). Single crystals of the title compound were obtained by slow evaporation from cyclohexane solution at room temperature. IR (CH2Cl2, υ, cm−1): 3081 (w) and 3020 (w) (C—H, Fc), 2942 (m) (C—H, aliphatic), 1278 (m) (C—O—C); 1H NMR (DMSO, p.p.m.): δ 7.18 (d, 1H, H16), 7.12 (d, 1H, H17), 7.14 (d, 1H, H18), 7.16 (d, 1H, H19), 4.23 (s, 5H, unsubstituted ferrocene ring), 4.13–4.20 (m, 4H, substituted ferrocene ring), 3.97 (m, 1H, Ha15), 3.77 (m, 1H, Hb15), 2.78 (m, 2H, H14), 5.58 (s, 1H, H11). 13C NMR (DMSO, p.p.m.): δ 137.29 (C12), 132.91 (C13), 128.5 (C17), 126.25 (C18), 125.98 (C16), 125.36 (C19), 90.21 (C1), 73.63 (C11), 68.62 (unsubstituted ferrocene ring), 68.56–66.31 (substituted ferrocene ring), 61.55 (C15), 27.99 (C14).

Refinement top

All H atoms were included in calculated positions as riding atoms, with SHELXL97 (Sheldrick, 1997) defaults.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of (I), with the atom-numbering scheme. Displacement ellipsoids for non-H atoms have been drawn at the 20% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of (010) sheets built from C14—H14A···Cg1i and C18—H18···Cg2ii interactions. The C—H···π interactions are indicated by dashed lines, and Cg1 and Cg2 are the centroids of rings C12/C13/C16–C19 and C6–C10, respectively. [Symmetry codes: (i) x, 1/2 − y, z − 1/2; (ii) 1 + x, y, 1 + z.]
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the cyclic motif generated by the C5—H5···Cg1iii interaction, which links the (010) sheets into a three-dimensional framework. The C—H···π interactions are indicated by dashed lines, and Cg1 is the centroid of ring C12/C13/C16–C19. The unit-cell box has been omitted for clarity. [Symmetry code: (iii) 1 − x, −y, 2 − z.]
1-Ferrocenylisochroman top
Crystal data top
[Fe(C5H5)(C14H13O)]F(000) = 664
Mr = 318.18Dx = 1.442 Mg m3
Monoclinic, P21/cMelting point = 365–366 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.5053 (2) ÅCell parameters from 3411 reflections
b = 18.5095 (3) Åθ = 2.6–27.5°
c = 7.1941 (1) ŵ = 1.02 mm1
β = 106.933 (1)°T = 293 K
V = 1465.62 (4) Å3Prism, orange
Z = 40.80 × 0.40 × 0.15 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
3334 independent reflections
Radiation source: fine-focus sealed tube2662 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ and ω scansθmax = 27.4°, θmin = 3.7°
Absorption correction: multi-scan
(DENZO–SMN; Otwinovski & Minor, 1997)
h = 1414
Tmin = 0.630, Tmax = 0.857k = 2323
16885 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0341P)2 + 0.3545P]
where P = (Fo2 + 2Fc2)/3
3334 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
[Fe(C5H5)(C14H13O)]V = 1465.62 (4) Å3
Mr = 318.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.5053 (2) ŵ = 1.02 mm1
b = 18.5095 (3) ÅT = 293 K
c = 7.1941 (1) Å0.80 × 0.40 × 0.15 mm
β = 106.933 (1)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3334 independent reflections
Absorption correction: multi-scan
(DENZO–SMN; Otwinovski & Minor, 1997)
2662 reflections with I > 2σ(I)
Tmin = 0.630, Tmax = 0.857Rint = 0.064
16885 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
3334 reflectionsΔρmin = 0.23 e Å3
190 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.16848 (2)0.110779 (12)0.96688 (3)0.03127 (9)
O10.40898 (11)0.15661 (7)0.79838 (17)0.0449 (3)
C10.35320 (15)0.10725 (8)1.0671 (2)0.0322 (4)
C20.30923 (15)0.16871 (9)1.1433 (2)0.0361 (4)
H20.32850.21661.12630.043*
C30.23038 (17)0.14429 (11)1.2505 (2)0.0425 (4)
H30.18930.17351.31560.051*
C40.22539 (17)0.06823 (11)1.2408 (2)0.0439 (4)
H40.18030.03861.29810.053*
C50.30114 (15)0.04481 (9)1.1282 (2)0.0382 (4)
H50.31460.00291.09930.046*
C60.12264 (18)0.09281 (12)0.6764 (3)0.0522 (5)
H60.17500.07620.60880.063*
C70.10194 (18)0.16512 (13)0.7126 (3)0.0556 (6)
H70.13780.20500.67300.067*
C80.01692 (18)0.16689 (12)0.8202 (3)0.0542 (5)
H80.01300.20810.86420.065*
C90.01449 (17)0.09493 (12)0.8491 (3)0.0512 (5)
H90.06870.08030.91550.061*
C100.05068 (17)0.04954 (11)0.7596 (3)0.0502 (5)
H100.04700.00060.75600.060*
C110.44362 (15)0.10553 (9)0.9526 (2)0.0335 (4)
H110.44060.05740.89490.040*
C120.57296 (15)0.11842 (8)1.0803 (2)0.0330 (4)
C130.65379 (15)0.15786 (9)1.0078 (3)0.0380 (4)
C140.61242 (18)0.19005 (11)0.8074 (3)0.0503 (5)
H14A0.60170.24170.81730.060*
H14B0.67430.18230.74240.060*
C150.49509 (17)0.15690 (12)0.6892 (3)0.0500 (5)
H15A0.46280.18430.57040.060*
H15B0.50950.10780.65430.060*
C160.61290 (17)0.09005 (10)1.2667 (3)0.0429 (4)
H160.55920.06381.31520.051*
C170.7312 (2)0.10010 (11)1.3818 (3)0.0563 (5)
H170.75670.08061.50620.068*
C180.81117 (19)0.13925 (13)1.3109 (3)0.0612 (6)
H180.89070.14641.38740.073*
C190.77228 (17)0.16769 (11)1.1260 (3)0.0519 (5)
H190.82650.19411.07900.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.02969 (14)0.03641 (15)0.02777 (13)0.00313 (10)0.00846 (10)0.00124 (10)
O10.0360 (7)0.0639 (8)0.0356 (6)0.0098 (6)0.0118 (5)0.0147 (6)
C10.0283 (8)0.0367 (9)0.0289 (8)0.0014 (7)0.0041 (6)0.0005 (7)
C20.0360 (9)0.0370 (9)0.0335 (8)0.0052 (7)0.0074 (7)0.0061 (7)
C30.0427 (10)0.0570 (12)0.0292 (8)0.0017 (9)0.0125 (8)0.0073 (8)
C40.0455 (11)0.0539 (11)0.0326 (9)0.0078 (9)0.0118 (8)0.0093 (8)
C50.0406 (10)0.0341 (9)0.0379 (9)0.0012 (7)0.0082 (8)0.0043 (7)
C60.0442 (11)0.0818 (15)0.0281 (9)0.0041 (10)0.0068 (8)0.0091 (9)
C70.0494 (12)0.0699 (14)0.0370 (10)0.0165 (10)0.0040 (9)0.0175 (10)
C80.0457 (11)0.0554 (12)0.0506 (11)0.0134 (10)0.0033 (9)0.0039 (10)
C90.0299 (10)0.0766 (15)0.0458 (11)0.0094 (9)0.0089 (8)0.0015 (10)
C100.0464 (11)0.0513 (11)0.0453 (10)0.0115 (9)0.0013 (9)0.0095 (9)
C110.0318 (9)0.0362 (9)0.0315 (8)0.0014 (7)0.0076 (7)0.0000 (7)
C120.0316 (9)0.0325 (9)0.0337 (8)0.0052 (7)0.0078 (7)0.0033 (7)
C130.0343 (9)0.0379 (9)0.0430 (9)0.0014 (7)0.0132 (8)0.0067 (7)
C140.0500 (12)0.0556 (12)0.0509 (11)0.0018 (9)0.0238 (9)0.0041 (9)
C150.0472 (11)0.0713 (13)0.0345 (9)0.0066 (10)0.0165 (8)0.0096 (9)
C160.0423 (11)0.0441 (10)0.0389 (9)0.0062 (8)0.0065 (8)0.0007 (8)
C170.0507 (12)0.0624 (13)0.0445 (11)0.0165 (10)0.0039 (9)0.0001 (9)
C180.0338 (11)0.0731 (14)0.0648 (14)0.0064 (10)0.0042 (10)0.0163 (12)
C190.0343 (10)0.0577 (12)0.0646 (13)0.0037 (9)0.0160 (9)0.0131 (10)
Geometric parameters (Å, º) top
Fe—C62.0285 (18)C7—C81.414 (3)
Fe—C52.0337 (17)C7—H70.93
Fe—C72.0316 (18)C8—C91.411 (3)
Fe—C12.0368 (16)C8—H80.93
Fe—C102.0414 (18)C9—C101.401 (3)
Fe—C82.0399 (19)C9—H90.93
Fe—C42.0445 (17)C10—H100.93
Fe—C22.0458 (16)C11—C121.523 (2)
Fe—C92.0486 (19)C11—H110.98
Fe—C32.0512 (17)C12—C161.388 (2)
O1—C111.4236 (19)C12—C131.397 (2)
O1—C151.432 (2)C13—C191.392 (3)
C1—C21.419 (2)C13—C141.504 (3)
C1—C51.429 (2)C14—C151.501 (3)
C1—C111.503 (2)C14—H14A0.97
C2—C31.424 (2)C14—H14B0.97
C2—H20.93C15—H15A0.97
C3—C41.410 (3)C15—H15B0.97
C3—H30.93C16—C171.384 (3)
C4—C51.419 (2)C16—H160.93
C4—H40.93C17—C181.380 (3)
C5—H50.93C17—H170.93
C6—C71.397 (3)C18—C191.379 (3)
C6—C101.405 (3)C18—H180.93
C6—H60.93C19—H190.93
C6—Fe—C5114.59 (8)C4—C5—Fe70.04 (10)
C6—Fe—C740.26 (9)C1—C5—Fe69.57 (9)
C5—Fe—C7146.55 (8)C4—C5—H5126.0
C6—Fe—C1106.90 (7)C1—C5—H5126.0
C5—Fe—C141.10 (6)Fe—C5—H5126.0
C7—Fe—C1114.53 (7)C7—C6—C10108.22 (18)
C6—Fe—C1040.39 (8)C7—C6—Fe69.99 (10)
C5—Fe—C10108.16 (8)C10—C6—Fe70.30 (10)
C7—Fe—C1067.76 (9)C7—C6—H6125.9
C1—Fe—C10130.02 (7)C10—C6—H6125.9
C6—Fe—C867.92 (9)Fe—C6—H6125.4
C5—Fe—C8170.87 (8)C6—C7—C8107.90 (18)
C7—Fe—C840.63 (9)C6—C7—Fe69.75 (11)
C1—Fe—C8147.79 (8)C8—C7—Fe70.00 (11)
C10—Fe—C867.62 (8)C6—C7—H7126.1
C6—Fe—C4147.56 (9)C8—C7—H7126.1
C5—Fe—C440.74 (7)Fe—C7—H7125.8
C7—Fe—C4171.61 (9)C7—C8—C9107.83 (19)
C1—Fe—C468.80 (7)C7—C8—Fe69.37 (11)
C10—Fe—C4116.62 (8)C9—C8—Fe70.14 (11)
C8—Fe—C4132.86 (8)C7—C8—H8126.1
C6—Fe—C2130.27 (8)C9—C8—H8126.1
C5—Fe—C268.52 (7)Fe—C8—H8126.0
C7—Fe—C2108.76 (8)C10—C9—C8107.72 (18)
C1—Fe—C240.66 (6)C10—C9—Fe69.69 (11)
C10—Fe—C2168.88 (7)C8—C9—Fe69.48 (11)
C8—Fe—C2117.19 (8)C10—C9—H9126.1
C4—Fe—C268.32 (7)C8—C9—H9126.1
C6—Fe—C967.84 (8)Fe—C9—H9126.3
C5—Fe—C9131.31 (8)C9—C10—C6108.33 (18)
C7—Fe—C968.04 (8)C9—C10—Fe70.24 (11)
C1—Fe—C9169.25 (8)C6—C10—Fe69.31 (10)
C10—Fe—C940.06 (8)C9—C10—H10125.8
C8—Fe—C940.38 (8)C6—C10—H10125.8
C4—Fe—C9110.22 (8)Fe—C10—H10126.2
C2—Fe—C9149.77 (8)O1—C11—C1109.37 (13)
C6—Fe—C3170.09 (8)O1—C11—C12111.64 (13)
C5—Fe—C368.19 (7)C1—C11—C12112.14 (13)
C7—Fe—C3132.56 (9)O1—C11—H11107.8
C1—Fe—C368.50 (7)C1—C11—H11107.8
C10—Fe—C3149.16 (8)C12—C11—H11107.8
C8—Fe—C3110.94 (8)C16—C12—C13119.28 (16)
C4—Fe—C340.27 (8)C16—C12—C11120.93 (15)
C2—Fe—C340.69 (7)C13—C12—C11119.77 (14)
C9—Fe—C3118.17 (8)C19—C13—C12118.71 (17)
C11—O1—C15110.39 (13)C19—C13—C14120.90 (17)
C2—C1—C5107.52 (15)C12—C13—C14120.38 (16)
C2—C1—C11127.61 (14)C15—C14—C13111.24 (15)
C5—C1—C11124.78 (14)C15—C14—H14A109.4
C2—C1—Fe70.01 (9)C13—C14—H14A109.4
C5—C1—Fe69.33 (9)C15—C14—H14B109.4
C11—C1—Fe128.61 (11)C13—C14—H14B109.4
C1—C2—C3108.05 (15)H14A—C14—H14B108.0
C1—C2—Fe69.33 (9)O1—C15—C14110.04 (15)
C3—C2—Fe69.86 (10)O1—C15—H15A109.7
C1—C2—H2126.0C14—C15—H15A109.7
C3—C2—H2126.0O1—C15—H15B109.7
Fe—C2—H2126.4C14—C15—H15B109.7
C4—C3—C2108.26 (15)H15A—C15—H15B108.2
C4—C3—Fe69.61 (10)C17—C16—C12121.22 (19)
C2—C3—Fe69.45 (9)C17—C16—H16119.4
C4—C3—H3125.9C12—C16—H16119.4
C2—C3—H3125.9C18—C17—C16119.65 (19)
Fe—C3—H3126.6C18—C17—H17120.2
C3—C4—C5108.07 (15)C16—C17—H17120.2
C3—C4—Fe70.12 (10)C17—C18—C19119.55 (19)
C5—C4—Fe69.22 (9)C17—C18—H18120.2
C3—C4—H4126.0C19—C18—H18120.2
C5—C4—H4126.0C18—C19—C13121.59 (19)
Fe—C4—H4126.3C18—C19—H19119.2
C4—C5—C1108.10 (15)C13—C19—H19119.2
C6—Fe—C1—C2133.08 (11)C5—Fe—C6—C1089.48 (13)
C5—Fe—C1—C2118.66 (14)C7—Fe—C6—C10118.94 (18)
C7—Fe—C1—C290.64 (12)C1—Fe—C6—C10132.84 (12)
C10—Fe—C1—C2171.43 (11)C8—Fe—C6—C1080.96 (14)
C8—Fe—C1—C257.85 (17)C4—Fe—C6—C1055.94 (19)
C4—Fe—C1—C281.00 (11)C2—Fe—C6—C10171.43 (11)
C9—Fe—C1—C2167.8 (4)C9—Fe—C6—C1037.21 (12)
C3—Fe—C1—C237.62 (10)C10—C6—C7—C80.3 (2)
C6—Fe—C1—C5108.26 (11)Fe—C6—C7—C859.86 (13)
C7—Fe—C1—C5150.70 (11)C10—C6—C7—Fe60.16 (13)
C10—Fe—C1—C569.91 (13)C5—Fe—C7—C651.74 (19)
C8—Fe—C1—C5176.50 (13)C1—Fe—C7—C687.45 (12)
C4—Fe—C1—C537.66 (10)C10—Fe—C7—C637.79 (12)
C2—Fe—C1—C5118.66 (14)C8—Fe—C7—C6118.87 (17)
C9—Fe—C1—C549.2 (4)C2—Fe—C7—C6130.93 (12)
C3—Fe—C1—C581.04 (11)C9—Fe—C7—C681.18 (13)
C6—Fe—C1—C1110.36 (16)C3—Fe—C7—C6170.10 (11)
C5—Fe—C1—C11118.62 (18)C6—Fe—C7—C8118.87 (17)
C7—Fe—C1—C1132.08 (17)C5—Fe—C7—C8170.61 (13)
C10—Fe—C1—C1148.71 (18)C1—Fe—C7—C8153.68 (12)
C8—Fe—C1—C1164.9 (2)C10—Fe—C7—C881.08 (13)
C4—Fe—C1—C11156.28 (16)C2—Fe—C7—C8110.20 (13)
C2—Fe—C1—C11122.72 (18)C9—Fe—C7—C837.69 (12)
C9—Fe—C1—C1169.5 (4)C3—Fe—C7—C871.02 (15)
C3—Fe—C1—C11160.34 (16)C6—C7—C8—C90.1 (2)
C5—C1—C2—C30.09 (19)Fe—C7—C8—C959.84 (13)
C11—C1—C2—C3176.75 (16)C6—C7—C8—Fe59.70 (13)
Fe—C1—C2—C359.33 (12)C6—Fe—C8—C737.64 (12)
C5—C1—C2—Fe59.43 (11)C1—Fe—C8—C749.2 (2)
C11—C1—C2—Fe123.92 (17)C10—Fe—C8—C781.44 (13)
C6—Fe—C2—C166.33 (14)C4—Fe—C8—C7172.35 (12)
C5—Fe—C2—C138.31 (10)C2—Fe—C8—C787.51 (13)
C7—Fe—C2—C1106.11 (11)C9—Fe—C8—C7118.94 (18)
C10—Fe—C2—C136.3 (4)C3—Fe—C8—C7131.77 (13)
C8—Fe—C2—C1149.51 (11)C6—Fe—C8—C981.29 (13)
C4—Fe—C2—C182.27 (11)C7—Fe—C8—C9118.94 (18)
C9—Fe—C2—C1175.52 (13)C1—Fe—C8—C9168.11 (12)
C3—Fe—C2—C1119.42 (15)C10—Fe—C8—C937.50 (12)
C6—Fe—C2—C3174.25 (12)C4—Fe—C8—C968.71 (15)
C5—Fe—C2—C381.11 (11)C2—Fe—C8—C9153.55 (11)
C7—Fe—C2—C3134.47 (12)C3—Fe—C8—C9109.29 (12)
C1—Fe—C2—C3119.42 (15)C7—C8—C9—C100.1 (2)
C10—Fe—C2—C3155.7 (4)Fe—C8—C9—C1059.43 (13)
C8—Fe—C2—C391.07 (13)C7—C8—C9—Fe59.36 (13)
C4—Fe—C2—C337.15 (11)C6—Fe—C9—C1037.50 (12)
C9—Fe—C2—C356.10 (19)C5—Fe—C9—C1066.40 (15)
C1—C2—C3—C40.03 (19)C7—Fe—C9—C1081.10 (14)
Fe—C2—C3—C458.97 (12)C1—Fe—C9—C1024.9 (4)
C1—C2—C3—Fe59.00 (11)C8—Fe—C9—C10119.01 (17)
C5—Fe—C3—C437.79 (10)C4—Fe—C9—C10107.70 (13)
C7—Fe—C3—C4173.71 (11)C2—Fe—C9—C10170.91 (13)
C1—Fe—C3—C482.16 (11)C3—Fe—C9—C10151.22 (12)
C10—Fe—C3—C451.3 (2)C6—Fe—C9—C881.51 (13)
C8—Fe—C3—C4132.46 (12)C5—Fe—C9—C8174.59 (11)
C2—Fe—C3—C4119.76 (15)C7—Fe—C9—C837.91 (13)
C9—Fe—C3—C488.54 (13)C1—Fe—C9—C8143.9 (4)
C5—Fe—C3—C281.97 (11)C10—Fe—C9—C8119.01 (17)
C7—Fe—C3—C266.54 (14)C4—Fe—C9—C8133.29 (12)
C1—Fe—C3—C237.59 (10)C2—Fe—C9—C851.9 (2)
C10—Fe—C3—C2171.09 (14)C3—Fe—C9—C889.77 (13)
C8—Fe—C3—C2107.79 (12)C8—C9—C10—C60.3 (2)
C4—Fe—C3—C2119.76 (15)Fe—C9—C10—C659.03 (13)
C9—Fe—C3—C2151.71 (11)C8—C9—C10—Fe59.29 (13)
C2—C3—C4—C50.15 (19)C7—C6—C10—C90.4 (2)
Fe—C3—C4—C559.02 (12)Fe—C6—C10—C959.61 (13)
C2—C3—C4—Fe58.87 (12)C7—C6—C10—Fe59.96 (13)
C6—Fe—C4—C3169.69 (13)C6—Fe—C10—C9119.54 (18)
C5—Fe—C4—C3119.34 (15)C5—Fe—C10—C9133.58 (12)
C1—Fe—C4—C381.36 (11)C7—Fe—C10—C981.87 (14)
C10—Fe—C4—C3153.40 (11)C1—Fe—C10—C9174.11 (11)
C8—Fe—C4—C370.05 (15)C8—Fe—C10—C937.79 (12)
C2—Fe—C4—C337.52 (10)C4—Fe—C10—C990.27 (13)
C9—Fe—C4—C3110.09 (12)C2—Fe—C10—C9155.7 (4)
C6—Fe—C4—C550.35 (18)C3—Fe—C10—C955.9 (2)
C1—Fe—C4—C537.98 (10)C5—Fe—C10—C6106.88 (13)
C10—Fe—C4—C587.26 (12)C7—Fe—C10—C637.67 (12)
C8—Fe—C4—C5170.61 (11)C1—Fe—C10—C666.36 (15)
C2—Fe—C4—C581.82 (11)C8—Fe—C10—C681.75 (14)
C9—Fe—C4—C5130.57 (11)C4—Fe—C10—C6150.20 (12)
C3—Fe—C4—C5119.34 (15)C2—Fe—C10—C636.1 (4)
C3—C4—C5—C10.20 (19)C9—Fe—C10—C6119.54 (18)
Fe—C4—C5—C159.37 (11)C3—Fe—C10—C6175.43 (14)
C3—C4—C5—Fe59.58 (12)C15—O1—C11—C1178.95 (14)
C2—C1—C5—C40.18 (19)C15—O1—C11—C1254.27 (18)
C11—C1—C5—C4176.96 (15)C2—C1—C11—O149.6 (2)
Fe—C1—C5—C459.67 (12)C5—C1—C11—O1134.26 (16)
C2—C1—C5—Fe59.86 (11)Fe—C1—C11—O143.98 (19)
C11—C1—C5—Fe123.37 (16)C2—C1—C11—C1274.8 (2)
C6—Fe—C5—C4152.99 (11)C5—C1—C11—C12101.35 (18)
C7—Fe—C5—C4173.09 (14)Fe—C1—C11—C12168.38 (11)
C1—Fe—C5—C4119.21 (15)O1—C11—C12—C16160.95 (15)
C10—Fe—C5—C4109.99 (12)C1—C11—C12—C1637.8 (2)
C2—Fe—C5—C481.29 (11)O1—C11—C12—C1320.6 (2)
C9—Fe—C5—C471.62 (14)C1—C11—C12—C13143.73 (15)
C3—Fe—C5—C437.36 (11)C16—C12—C13—C190.2 (3)
C6—Fe—C5—C187.80 (11)C11—C12—C13—C19178.73 (15)
C7—Fe—C5—C153.88 (18)C16—C12—C13—C14179.16 (16)
C10—Fe—C5—C1130.80 (10)C11—C12—C13—C142.4 (2)
C4—Fe—C5—C1119.21 (15)C19—C13—C14—C15164.90 (18)
C2—Fe—C5—C137.92 (9)C12—C13—C14—C1516.2 (2)
C9—Fe—C5—C1169.17 (10)C11—O1—C15—C1470.7 (2)
C3—Fe—C5—C181.85 (10)C13—C14—C15—O148.9 (2)
C5—Fe—C6—C7151.58 (11)C13—C12—C16—C170.0 (3)
C1—Fe—C6—C7108.22 (12)C11—C12—C16—C17178.42 (16)
C10—Fe—C6—C7118.94 (18)C12—C16—C17—C180.3 (3)
C8—Fe—C6—C737.98 (12)C16—C17—C18—C190.2 (3)
C4—Fe—C6—C7174.88 (13)C17—C18—C19—C130.1 (3)
C2—Fe—C6—C769.63 (15)C12—C13—C19—C180.3 (3)
C9—Fe—C6—C781.73 (13)C14—C13—C19—C18179.21 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···Cg1i0.972.853.627 (2)138
C18—H18···Cg2ii0.932.883.660 (2)142
C18—H18···C7ii0.932.863.760 (3)163
C18—H18···C6ii0.933.033.874 (3)151
C5—H5···Cg1iii0.933.143.984 (2)152
C5—H5···C12iii0.932.983.840 (2)154
C5—H5···C13iii0.933.023.949 (2)177
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C14H13O)]
Mr318.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.5053 (2), 18.5095 (3), 7.1941 (1)
β (°) 106.933 (1)
V3)1465.62 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.80 × 0.40 × 0.15
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(DENZO–SMN; Otwinovski & Minor, 1997)
Tmin, Tmax0.630, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
16885, 3334, 2662
Rint0.064
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.076, 1.03
No. of reflections3334
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.23

Computer programs: COLLECT (Nonius, 2000), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97.

Selected geometric parameters (Å, º) top
O1—C111.4236 (19)C13—C191.392 (3)
O1—C151.432 (2)C13—C141.504 (3)
C1—C111.503 (2)C14—C151.501 (3)
C11—C121.523 (2)C16—C171.384 (3)
C12—C161.388 (2)C17—C181.380 (3)
C12—C131.397 (2)C18—C191.379 (3)
C11—O1—C15110.39 (13)C1—C11—C12112.14 (13)
C2—C1—C11127.61 (14)C13—C12—C11119.77 (14)
C5—C1—C11124.78 (14)C12—C13—C14120.38 (16)
O1—C11—C1109.37 (13)C15—C14—C13111.24 (15)
O1—C11—C12111.64 (13)O1—C15—C14110.04 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···Cg1i0.972.853.627 (2)138
C18—H18···Cg2ii0.932.883.660 (2)142
C18—H18···C7ii0.932.863.760 (3)163
C18—H18···C6ii0.933.033.874 (3)151
C5—H5···Cg1iii0.933.143.984 (2)152
C5—H5···C12iii0.932.983.840 (2)154
C5—H5···C13iii0.933.023.949 (2)177
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x+1, y, z+2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds