Download citation
Download citation
link to html
In the title compound, [Fe(C7H7O2)2], the cyclo­penta­dienyl rings and the two attached methoxy­carbonyl groups, in an anti arrangement, form an extended π-conjugated system. The Fe—C distances range from 2.035 (3) to 2.061 (3) Å and the average value of the C—C bond lengths in the two cyclo­penta­dienyl rings is 1.419 (5) Å. The rings are almost parallel to one another [1.0 (2)°] and are mutually twisted from an eclipsed conformation by only 1.8 (3)° (average value). The methoxy­carbonyl groups are twisted out of the plane of the cyclo­penta­dienyl rings by 6.5 (4) and 15.7 (4)°, respectively. The mol­ecules are joined into dimers by intermolecular C—H...O hydrogen bonds that form ten-membered rings. The same types of hydrogen bonds form eight-membered rings and infinite chains along the b axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103008503/gd1249sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103008503/gd1249Isup2.hkl
Contains datablock I

CCDC reference: 214367

Comment top

The present study forms part of our wider research on differently homo- and heteroannularly disubstituted ferrocene compounds, viz. their synthesis, stereochemistry and structural analysis (Zorić et al., 1999; Lapić & Rapić, 2000; Cetina et al., 2002; Pavlović et al., 2002; Cetina et al., 2003). The applications of these complexes rely on their electronic properties, which depend on various functional groups on the cyclopentadienyl rings (Oberhoff et al., 1996). The study of these metallocenes led to important developments in the field of homogeneous catalysis, including carbonylation, hydrogenation and polymerization (Gonsalves & Chen, 1995; Severin et al., 1998; Patti & Nicolosi, 2000; Metzler-Nolte, 2001).

In the title compound, (I), the cyclopentadienyl rings bear two methoxycarbonyl groups in an anti arrangement (Fig. 1). The almost parallel cyclopentadienyl (Cp) rings [the dihedral angle is 1.0 (2)°] adopt an almost totally eclipsed conformation. The values of the corresponding pseudo-torsion angles defined by joining two eclipsing Cp C atoms through the ring centroids, viz. C—Cg1Cg2–C (Cg1 and Cg2 are the centroids of the C1–C5 and C6–C10 rings, respectively), range from 1.3 (3) to 2.6 (3)°. The Fe atom is almost equidistant from the centroids [Fe—Cg1 = 1.654 (1) Å and Fe—Cg2 = 1.652 (1) Å], and the Cg1—Fe—Cg2 angle deviates very slightly from 180° [179.6 (1)°].

The C—C bond distances in the Cp rings are in the ranges 1.402 (6)–1.436 (5) Å for the C1–C5 ring and 1.408 (5)–1.429 (5) Å for the C6–C10 ring, with an average value of 1.419 (5) Å for both rings. The values of the bond angles in the Cp rings are in the range 106.9 (3)–109.3 (3)°. The structural parameters are consistent with those of similar structures that have a methoxycarbonyl group on one of the Cp rings (Luo et al., 1990; Podlaha et al., 1996; Hobi et al., 1997; Beck et al., 2001; Costa et al., 2001) and with the structure of methyl 3-ferrocenylpropanoate (Cetina et al., 2002). Selected geometric parameters for (I) are listed in Table 1.

The methoxycarbonyl groups and Cp rings form an extended π-conjugated system. The Cring—Ccarboxyl single bonds are shortened compared with the standard `unconjugated' Csp2—Csp2 bond [1.478 Å] and agree with the `conjugated' bond of 1.455 Å (Allen et al., 1987). The coplanar arrangement of a carbonyl group attached to the ring should allow the maximum interaction of two π-systems. In (I), the substituted groups are slightly twisted out of the plane of the Cp rings to which they are attached. The twisting is more pronounced for the C13/O3/O4 group with respect to the C6–C10 ring than for the C11/O1/O2 group with respect to the C1–C5 ring [15.7 (4) and 6.5 (4)°, respectively]. The π-conjugation also influences the Fe—C distances [2.035 (3)—2.061 (3) Å]. A survey of the Cambridge Structural Database (Allen, 2002) reveals that, in structures with efficient overlap of two π-systems, the shortest Fe—C distance is generally? Fe—Csubst [Fe—C1 = 2.038 (3) Å; Csubst is the substituted C atom of the Cp ring]. However, the shortest distance can also involve the nearest atom to Csubst, such as between the Fe atom and atom C7 of the C6–C10 ring in (I) [Fe–C7 = 2.035 (3) Å].

The molecules are bonded into dimers by very weak intermolecular C12—H12A···O1 hydrogen bonds forming? a ten-membered ring (Table 2 and Fig. 2). To our knowledge, two methoxycarbonyl groups attached to the Cp rings form such R22(10) rings in only two ferrocene structures (Luo et al., 1990; Podlaha et al., 1996). The dimers are connected by intermolecular C12—H12B···O1 hydrogen bonds, which form R24(8) rings, and C14—H14B···O3 hydrogen bonds, which form infinite chains along the b axis. The geometric centers of both rings coincide with a crystallographic center of inversion.

Experimental top

The title compound (Woodward et al., 1952; Sonoda & Moritani, 1971) was prepared by refluxing a methanol solution of 1,1'-ferrocene dicarboxylic acid in the presence of BF3.Et2O. After purification on silica-gel plates (Merck, Kieselgel 60 HF254) using CH2Cl2 as eluant, (I) was obtained as orange crystals [97% yield, m.p. 388–390 K; literature m.p. 386–387 K (Sonoda et al., 1971)]. The single-crystal of (I) used for X-ray analysis was obtained by slow evaporation from a cyclohexane solution at room temperature. IR (CH2Cl2, υ, cm−1): 3090 (w, C–H, ferrocene), 1716 (s, C=O); 1H-NMR (CDCl3, p.p.m.): δ 4.80 (s), 4.43 (s), 4.34 (s), 4.25 (d, 8H, ferrocene), 3.84 (s, 6H, COOCH3); 13C-NMR (CDCl3, p.p.m.): δ 172.74, 172.72 (C=O), 71.59, 70.35 (ferrocene substituted ring), 51.73, 51.37 (OCH3).

Refinement top

All H atoms were included in calculated positions as riding atoms, with default parameters in SHELXL97 (Sheldrick, 1997).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. A view of (I), with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are shown at the 20% probability level.
[Figure 2] Fig. 2. Crystal packing diagram of (I), viewed along [100]. Hydrogen bonds are indicated by dashed lines. [Symmetry codes: (i) −x, 1 − y, 1 − z; (ii) x, 1 + y, z.]
dimethyl ferrocene-1,1'-dicarboxylate top
Crystal data top
[Fe(C7H7O2)2]F(000) = 1248
Mr = 302.10Dx = 1.589 Mg m3
Monoclinic, C2/cMelting point = 388–390 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 32.7581 (10) ÅCell parameters from 2802 reflections
b = 5.9616 (2) Åθ = 2.6–26.7°
c = 13.3424 (5) ŵ = 1.20 mm1
β = 104.2847 (13)°T = 293 K
V = 2525.08 (15) Å3Irregular, orange
Z = 80.30 × 0.20 × 0.10 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2640 independent reflections
Radiation source: fine-focus sealed tube2039 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ϕ and ω scansθmax = 26.7°, θmin = 3.9°
Absorption correction: multi-scan
DENZO–SMN; Otwinovski & Minor, 1997
h = 3940
Tmin = 0.697, Tmax = 0.887k = 67
13701 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.083P)2 + 3.7923P]
where P = (Fo2 + 2Fc2)/3
2640 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Fe(C7H7O2)2]V = 2525.08 (15) Å3
Mr = 302.10Z = 8
Monoclinic, C2/cMo Kα radiation
a = 32.7581 (10) ŵ = 1.20 mm1
b = 5.9616 (2) ÅT = 293 K
c = 13.3424 (5) Å0.30 × 0.20 × 0.10 mm
β = 104.2847 (13)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2640 independent reflections
Absorption correction: multi-scan
DENZO–SMN; Otwinovski & Minor, 1997
2039 reflections with I > 2σ(I)
Tmin = 0.697, Tmax = 0.887Rint = 0.066
13701 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.03Δρmax = 0.87 e Å3
2640 reflectionsΔρmin = 0.48 e Å3
174 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.125946 (12)0.24707 (7)0.84995 (3)0.03629 (19)
O10.03032 (8)0.3410 (5)0.6250 (3)0.0740 (9)
O20.05414 (8)0.6812 (5)0.6784 (2)0.0573 (6)
O30.22026 (8)0.1719 (5)1.0947 (2)0.0634 (7)
O40.19679 (7)0.5233 (4)1.06339 (19)0.0506 (6)
C10.10225 (10)0.3876 (6)0.7083 (2)0.0430 (7)
C20.13730 (11)0.5165 (6)0.7657 (3)0.0480 (8)
H20.13690.66660.78440.058*
C30.17257 (11)0.3715 (7)0.7884 (3)0.0526 (9)
H30.19950.41080.82550.063*
C40.16048 (11)0.1594 (8)0.7460 (3)0.0544 (9)
H40.17810.03570.74980.065*
C50.11695 (11)0.1648 (7)0.6966 (2)0.0482 (8)
H50.10090.04600.66270.058*
C60.07851 (11)0.2361 (6)0.9259 (3)0.0528 (9)
H60.05080.28330.90050.063*
C70.11218 (10)0.3699 (6)0.9801 (2)0.0463 (8)
H70.11060.52110.99600.056*
C80.14913 (11)0.2333 (5)1.0066 (2)0.0423 (7)
C90.13774 (10)0.0146 (6)0.9664 (2)0.0461 (7)
H90.15570.10800.97190.055*
C100.09411 (11)0.0167 (6)0.9166 (3)0.0502 (8)
H100.07850.10430.88360.060*
C110.05887 (11)0.4610 (6)0.6672 (2)0.0482 (8)
C120.01300 (14)0.7711 (7)0.6289 (4)0.0707 (12)
H12A0.00710.74390.55580.106*
H12B0.01270.92960.64130.106*
H12C0.00800.69930.65680.106*
C130.19216 (10)0.3002 (6)1.0585 (2)0.0438 (7)
C140.23824 (11)0.6031 (7)1.1163 (3)0.0571 (9)
H14A0.24490.55211.18670.086*
H14B0.23860.76411.11500.086*
H14C0.25870.54601.08220.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.0360 (3)0.0447 (3)0.0284 (3)0.00034 (17)0.00845 (18)0.00120 (17)
O10.0600 (16)0.0634 (17)0.082 (2)0.0046 (15)0.0133 (15)0.0035 (16)
O20.0546 (14)0.0571 (14)0.0554 (15)0.0036 (12)0.0043 (12)0.0007 (13)
O30.0527 (15)0.0531 (14)0.0737 (19)0.0027 (13)0.0050 (13)0.0070 (14)
O40.0508 (13)0.0456 (13)0.0497 (14)0.0013 (10)0.0017 (10)0.0037 (10)
C10.0490 (17)0.0505 (18)0.0292 (14)0.0019 (14)0.0091 (13)0.0041 (13)
C20.0532 (18)0.0527 (19)0.0390 (17)0.0073 (15)0.0130 (14)0.0035 (14)
C30.0433 (17)0.073 (3)0.0444 (18)0.0070 (17)0.0156 (14)0.0074 (18)
C40.0533 (19)0.072 (2)0.0440 (19)0.0131 (18)0.0238 (16)0.0025 (18)
C50.0565 (19)0.0569 (19)0.0312 (16)0.0015 (17)0.0110 (14)0.0045 (15)
C60.0382 (16)0.082 (3)0.0417 (18)0.0018 (16)0.0166 (14)0.0074 (17)
C70.0505 (18)0.057 (2)0.0354 (16)0.0034 (15)0.0186 (14)0.0017 (15)
C80.0466 (17)0.056 (2)0.0246 (14)0.0004 (14)0.0085 (13)0.0062 (12)
C90.0517 (18)0.0449 (17)0.0412 (17)0.0003 (14)0.0106 (14)0.0094 (14)
C100.0500 (18)0.056 (2)0.0445 (18)0.0102 (15)0.0110 (15)0.0056 (15)
C110.0560 (19)0.054 (2)0.0328 (16)0.0023 (16)0.0075 (14)0.0016 (14)
C120.064 (2)0.066 (3)0.075 (3)0.0168 (19)0.003 (2)0.003 (2)
C130.0458 (17)0.0532 (18)0.0318 (15)0.0002 (14)0.0086 (13)0.0037 (14)
C140.0539 (19)0.058 (2)0.055 (2)0.0058 (17)0.0048 (16)0.0073 (17)
Geometric parameters (Å, º) top
Fe—C72.035 (3)C3—C41.402 (6)
Fe—C12.038 (3)C3—H30.93
Fe—C82.041 (3)C4—C51.416 (5)
Fe—C32.044 (3)C4—H40.93
Fe—C92.047 (3)C5—H50.93
Fe—C22.046 (3)C6—C71.408 (5)
Fe—C52.054 (3)C6—C101.421 (5)
Fe—C102.055 (3)C6—H60.93
Fe—C62.055 (3)C7—C81.429 (5)
Fe—C42.061 (3)C7—H70.93
O1—C111.202 (4)C8—C91.424 (5)
O2—C111.335 (5)C8—C131.464 (5)
O2—C121.449 (5)C9—C101.420 (5)
O3—C131.203 (4)C9—H90.93
O4—C131.339 (4)C10—H100.93
O4—C141.447 (4)C12—H12A0.96
C1—C51.434 (5)C12—H12B0.96
C1—C21.436 (5)C12—H12C0.96
C1—C111.458 (5)C14—H14A0.96
C2—C31.414 (5)C14—H14B0.96
C2—H20.93C14—H14C0.96
C7—Fe—C1121.99 (13)C2—C3—H3125.4
C7—Fe—C841.04 (13)Fe—C3—H3125.7
C1—Fe—C8157.87 (13)C3—C4—C5108.6 (3)
C7—Fe—C3123.87 (15)C3—C4—Fe69.37 (19)
C1—Fe—C368.24 (13)C5—C4—Fe69.58 (19)
C8—Fe—C3107.45 (14)C3—C4—H4125.7
C7—Fe—C968.64 (14)C5—C4—H4125.7
C1—Fe—C9160.04 (14)Fe—C4—H4126.9
C8—Fe—C940.77 (13)C4—C5—C1107.3 (3)
C3—Fe—C9122.09 (14)C4—C5—Fe70.15 (19)
C7—Fe—C2107.16 (14)C1—C5—Fe68.88 (17)
C1—Fe—C241.16 (13)C4—C5—H5126.4
C8—Fe—C2121.45 (13)C1—C5—H5126.4
C3—Fe—C240.46 (15)Fe—C5—H5126.2
C9—Fe—C2157.33 (14)C7—C6—C10108.3 (3)
C7—Fe—C5158.24 (14)C7—C6—Fe69.12 (18)
C1—Fe—C541.03 (15)C10—C6—Fe69.76 (19)
C8—Fe—C5159.41 (14)C7—C6—H6125.9
C3—Fe—C567.90 (15)C10—C6—H6125.9
C9—Fe—C5123.28 (15)Fe—C6—H6126.8
C2—Fe—C568.95 (15)C6—C7—C8108.2 (3)
C7—Fe—C1068.17 (15)C6—C7—Fe70.6 (2)
C1—Fe—C10123.93 (13)C8—C7—Fe69.70 (18)
C8—Fe—C1068.33 (14)C6—C7—H7125.9
C3—Fe—C10157.83 (15)C8—C7—H7125.9
C9—Fe—C1040.52 (13)Fe—C7—H7125.4
C2—Fe—C10160.51 (14)C9—C8—C7107.5 (3)
C5—Fe—C10107.96 (15)C9—C8—C13124.0 (3)
C7—Fe—C640.26 (14)C7—C8—C13128.3 (3)
C1—Fe—C6108.01 (14)C9—C8—Fe69.81 (18)
C8—Fe—C668.26 (14)C7—C8—Fe69.26 (18)
C3—Fe—C6160.17 (16)C13—C8—Fe123.1 (2)
C9—Fe—C668.17 (14)C10—C9—C8107.9 (3)
C2—Fe—C6123.91 (15)C10—C9—Fe70.05 (19)
C5—Fe—C6122.95 (15)C8—C9—Fe69.41 (18)
C10—Fe—C640.45 (15)C10—C9—H9126.0
C7—Fe—C4159.89 (15)C8—C9—H9126.0
C1—Fe—C468.11 (14)Fe—C9—H9126.1
C8—Fe—C4123.43 (14)C9—C10—C6108.0 (3)
C3—Fe—C439.93 (17)C9—C10—Fe69.44 (18)
C9—Fe—C4107.86 (15)C6—C10—Fe69.79 (19)
C2—Fe—C468.00 (16)C9—C10—H10126.0
C5—Fe—C440.26 (14)C6—C10—H10126.0
C10—Fe—C4122.88 (16)Fe—C10—H10126.4
C6—Fe—C4158.57 (17)O1—C11—O2122.7 (3)
C11—O2—C12115.7 (3)O1—C11—C1124.8 (3)
C13—O4—C14115.6 (3)O2—C11—C1112.5 (3)
C5—C1—C2107.9 (3)O2—C12—H12A109.5
C5—C1—C11124.0 (3)O2—C12—H12B109.5
C2—C1—C11128.1 (3)H12A—C12—H12B109.5
C5—C1—Fe70.08 (17)O2—C12—H12C109.5
C2—C1—Fe69.74 (18)H12A—C12—H12C109.5
C11—C1—Fe125.8 (2)H12B—C12—H12C109.5
C3—C2—C1106.9 (3)O3—C13—O4123.1 (3)
C3—C2—Fe69.7 (2)O3—C13—C8124.7 (3)
C1—C2—Fe69.10 (18)O4—C13—C8112.2 (3)
C3—C2—H2126.6O4—C14—H14A109.5
C1—C2—H2126.6O4—C14—H14B109.5
Fe—C2—H2126.2H14A—C14—H14B109.5
C4—C3—C2109.3 (3)O4—C14—H14C109.5
C4—C3—Fe70.70 (19)H14A—C14—H14C109.5
C2—C3—Fe69.86 (19)H14B—C14—H14C109.5
C4—C3—H3125.4
C7—Fe—C1—C5161.8 (2)C7—Fe—C6—C10119.9 (3)
C8—Fe—C1—C5163.7 (3)C1—Fe—C6—C10121.6 (2)
C3—Fe—C1—C580.9 (2)C8—Fe—C6—C1081.7 (2)
C9—Fe—C1—C544.3 (5)C3—Fe—C6—C10162.8 (4)
C2—Fe—C1—C5118.9 (3)C9—Fe—C6—C1037.6 (2)
C10—Fe—C1—C578.1 (2)C2—Fe—C6—C10164.2 (2)
C6—Fe—C1—C5119.8 (2)C5—Fe—C6—C1078.8 (3)
C4—Fe—C1—C537.7 (2)C4—Fe—C6—C1045.7 (5)
C7—Fe—C1—C279.3 (2)C10—C6—C7—C80.9 (4)
C8—Fe—C1—C244.9 (4)Fe—C6—C7—C859.8 (2)
C3—Fe—C1—C238.0 (2)C10—C6—C7—Fe58.9 (2)
C9—Fe—C1—C2163.2 (4)C1—Fe—C7—C680.0 (2)
C5—Fe—C1—C2118.9 (3)C8—Fe—C7—C6118.9 (3)
C10—Fe—C1—C2163.1 (2)C3—Fe—C7—C6163.9 (2)
C6—Fe—C1—C2121.3 (2)C9—Fe—C7—C681.0 (2)
C4—Fe—C1—C281.2 (2)C2—Fe—C7—C6122.6 (2)
C7—Fe—C1—C1143.7 (3)C5—Fe—C7—C646.5 (5)
C8—Fe—C1—C1178.1 (5)C10—Fe—C7—C637.3 (2)
C3—Fe—C1—C11160.9 (3)C4—Fe—C7—C6164.7 (4)
C9—Fe—C1—C1173.8 (5)C1—Fe—C7—C8161.08 (18)
C2—Fe—C1—C11123.0 (4)C3—Fe—C7—C877.2 (2)
C5—Fe—C1—C11118.2 (4)C9—Fe—C7—C837.89 (19)
C10—Fe—C1—C1140.1 (4)C2—Fe—C7—C8118.5 (2)
C6—Fe—C1—C111.7 (3)C5—Fe—C7—C8165.4 (4)
C4—Fe—C1—C11155.9 (3)C10—Fe—C7—C881.6 (2)
C5—C1—C2—C30.2 (3)C6—Fe—C7—C8118.9 (3)
C11—C1—C2—C3179.9 (3)C4—Fe—C7—C845.8 (5)
Fe—C1—C2—C359.7 (2)C6—C7—C8—C90.8 (4)
C5—C1—C2—Fe59.9 (2)Fe—C7—C8—C959.6 (2)
C11—C1—C2—Fe120.2 (3)C6—C7—C8—C13176.7 (3)
C7—Fe—C2—C3122.5 (2)Fe—C7—C8—C13116.4 (3)
C1—Fe—C2—C3118.2 (3)C6—C7—C8—Fe60.4 (2)
C8—Fe—C2—C379.9 (2)C7—Fe—C8—C9118.9 (3)
C9—Fe—C2—C346.9 (5)C1—Fe—C8—C9165.8 (3)
C5—Fe—C2—C380.2 (2)C3—Fe—C8—C9119.2 (2)
C10—Fe—C2—C3164.6 (4)C2—Fe—C8—C9161.3 (2)
C6—Fe—C2—C3163.5 (2)C5—Fe—C8—C945.8 (5)
C4—Fe—C2—C336.8 (2)C10—Fe—C8—C937.6 (2)
C7—Fe—C2—C1119.3 (2)C6—Fe—C8—C981.3 (2)
C8—Fe—C2—C1161.85 (19)C4—Fe—C8—C978.3 (3)
C3—Fe—C2—C1118.2 (3)C1—Fe—C8—C746.9 (4)
C9—Fe—C2—C1165.2 (3)C3—Fe—C8—C7121.9 (2)
C5—Fe—C2—C138.03 (19)C9—Fe—C8—C7118.9 (3)
C10—Fe—C2—C146.4 (5)C2—Fe—C8—C779.9 (2)
C6—Fe—C2—C178.3 (2)C5—Fe—C8—C7164.6 (4)
C4—Fe—C2—C181.4 (2)C10—Fe—C8—C781.2 (2)
C1—C2—C3—C40.6 (4)C6—Fe—C8—C737.5 (2)
Fe—C2—C3—C459.9 (2)C4—Fe—C8—C7162.8 (2)
C1—C2—C3—Fe59.3 (2)C7—Fe—C8—C13123.0 (4)
C7—Fe—C3—C4163.8 (2)C1—Fe—C8—C1376.1 (5)
C1—Fe—C3—C481.5 (2)C3—Fe—C8—C131.1 (3)
C8—Fe—C3—C4121.6 (2)C9—Fe—C8—C13118.2 (4)
C9—Fe—C3—C479.3 (2)C2—Fe—C8—C1343.1 (3)
C2—Fe—C3—C4120.1 (3)C5—Fe—C8—C1372.4 (5)
C5—Fe—C3—C437.1 (2)C10—Fe—C8—C13155.8 (3)
C10—Fe—C3—C446.4 (5)C6—Fe—C8—C13160.5 (3)
C6—Fe—C3—C4164.2 (4)C4—Fe—C8—C1339.9 (3)
C7—Fe—C3—C276.1 (2)C7—C8—C9—C100.5 (4)
C1—Fe—C3—C238.6 (2)C13—C8—C9—C10176.6 (3)
C8—Fe—C3—C2118.3 (2)Fe—C8—C9—C1059.7 (2)
C9—Fe—C3—C2160.6 (2)C7—C8—C9—Fe59.2 (2)
C5—Fe—C3—C283.0 (2)C13—C8—C9—Fe116.9 (3)
C10—Fe—C3—C2166.4 (3)C7—Fe—C9—C1081.0 (2)
C6—Fe—C3—C244.2 (5)C1—Fe—C9—C1045.1 (5)
C4—Fe—C3—C2120.1 (3)C8—Fe—C9—C10119.1 (3)
C2—C3—C4—C50.7 (4)C3—Fe—C9—C10161.6 (2)
Fe—C3—C4—C558.7 (2)C2—Fe—C9—C10164.4 (3)
C2—C3—C4—Fe59.4 (2)C5—Fe—C9—C1078.4 (2)
C7—Fe—C4—C342.5 (6)C6—Fe—C9—C1037.5 (2)
C1—Fe—C4—C381.8 (2)C4—Fe—C9—C10120.1 (2)
C8—Fe—C4—C376.8 (3)C7—Fe—C9—C838.1 (2)
C9—Fe—C4—C3119.0 (2)C1—Fe—C9—C8164.2 (3)
C2—Fe—C4—C337.3 (2)C3—Fe—C9—C879.3 (2)
C5—Fe—C4—C3120.2 (3)C2—Fe—C9—C845.3 (4)
C10—Fe—C4—C3161.0 (2)C5—Fe—C9—C8162.5 (2)
C6—Fe—C4—C3165.4 (3)C10—Fe—C9—C8119.1 (3)
C7—Fe—C4—C5162.7 (4)C6—Fe—C9—C881.6 (2)
C1—Fe—C4—C538.4 (2)C4—Fe—C9—C8120.8 (2)
C8—Fe—C4—C5163.0 (2)C8—C9—C10—C60.0 (4)
C3—Fe—C4—C5120.2 (3)Fe—C9—C10—C659.3 (2)
C9—Fe—C4—C5120.8 (2)C8—C9—C10—Fe59.3 (2)
C2—Fe—C4—C583.0 (2)C7—C6—C10—C90.6 (4)
C10—Fe—C4—C578.7 (3)Fe—C6—C10—C959.1 (2)
C6—Fe—C4—C545.2 (5)C7—C6—C10—Fe58.6 (2)
C3—C4—C5—C10.6 (4)C7—Fe—C10—C982.2 (2)
Fe—C4—C5—C159.1 (2)C1—Fe—C10—C9163.0 (2)
C3—C4—C5—Fe58.5 (2)C8—Fe—C10—C937.9 (2)
C2—C1—C5—C40.2 (4)C3—Fe—C10—C945.2 (5)
C11—C1—C5—C4179.7 (3)C2—Fe—C10—C9161.9 (4)
Fe—C1—C5—C459.9 (2)C5—Fe—C10—C9120.6 (2)
C2—C1—C5—Fe59.7 (2)C6—Fe—C10—C9119.4 (3)
C11—C1—C5—Fe120.4 (3)C4—Fe—C10—C978.8 (2)
C7—Fe—C5—C4164.0 (4)C7—Fe—C10—C637.1 (2)
C1—Fe—C5—C4118.6 (3)C1—Fe—C10—C677.6 (3)
C8—Fe—C5—C444.0 (5)C8—Fe—C10—C681.5 (2)
C3—Fe—C5—C436.8 (3)C3—Fe—C10—C6164.6 (3)
C9—Fe—C5—C478.0 (3)C9—Fe—C10—C6119.4 (3)
C2—Fe—C5—C480.4 (3)C2—Fe—C10—C642.6 (5)
C10—Fe—C5—C4120.0 (3)C5—Fe—C10—C6120.1 (2)
C6—Fe—C5—C4162.0 (2)C4—Fe—C10—C6161.9 (2)
C7—Fe—C5—C145.5 (5)C12—O2—C11—O14.8 (6)
C8—Fe—C5—C1162.5 (3)C12—O2—C11—C1173.1 (3)
C3—Fe—C5—C181.8 (2)C5—C1—C11—O14.8 (5)
C9—Fe—C5—C1163.42 (19)C2—C1—C11—O1175.3 (4)
C2—Fe—C5—C138.14 (19)Fe—C1—C11—O184.1 (4)
C10—Fe—C5—C1121.4 (2)C5—C1—C11—O2173.1 (3)
C6—Fe—C5—C179.4 (2)C2—C1—C11—O26.8 (5)
C4—Fe—C5—C1118.6 (3)Fe—C1—C11—O298.1 (3)
C1—Fe—C6—C7118.6 (2)C14—O4—C13—O30.4 (5)
C8—Fe—C6—C738.2 (2)C14—O4—C13—C8178.4 (3)
C3—Fe—C6—C742.9 (5)C9—C8—C13—O318.5 (5)
C9—Fe—C6—C782.3 (2)C7—C8—C13—O3166.2 (4)
C2—Fe—C6—C775.9 (2)Fe—C8—C13—O3105.2 (4)
C5—Fe—C6—C7161.3 (2)C9—C8—C13—O4162.8 (3)
C10—Fe—C6—C7119.9 (3)C7—C8—C13—O412.6 (5)
C4—Fe—C6—C7165.6 (4)Fe—C8—C13—O476.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O1i0.962.473.401 (6)162
C12—H12B···O1ii0.962.543.447 (5)157
C14—H14B···O3ii0.962.503.442 (5)166
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Fe(C7H7O2)2]
Mr302.10
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)32.7581 (10), 5.9616 (2), 13.3424 (5)
β (°) 104.2847 (13)
V3)2525.08 (15)
Z8
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
DENZO–SMN; Otwinovski & Minor, 1997
Tmin, Tmax0.697, 0.887
No. of measured, independent and
observed [I > 2σ(I)] reflections
13701, 2640, 2039
Rint0.066
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.141, 1.03
No. of reflections2640
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.48

Computer programs: COLLECT (Nonius, 2000), DENZO–SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
O1—C111.202 (4)O4—C131.339 (4)
O2—C111.335 (5)O4—C141.447 (4)
O2—C121.449 (5)C1—C111.458 (5)
O3—C131.203 (4)C8—C131.464 (5)
C11—O2—C12115.7 (3)O1—C11—O2122.7 (3)
C13—O4—C14115.6 (3)O1—C11—C1124.8 (3)
C5—C1—C11124.0 (3)O2—C11—C1112.5 (3)
C2—C1—C11128.1 (3)O3—C13—O4123.1 (3)
C9—C8—C13124.0 (3)O3—C13—C8124.7 (3)
C7—C8—C13128.3 (3)O4—C13—C8112.2 (3)
C12—O2—C11—C1173.1 (3)C14—O4—C13—C8178.4 (3)
C2—C1—C11—O26.8 (5)C7—C8—C13—O3166.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O1i0.962.473.401 (6)162
C12—H12B···O1ii0.962.543.447 (5)157
C14—H14B···O3ii0.962.503.442 (5)166
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds