Download citation
Download citation
link to html
In the title complex, 1,4-diazo­niabi­cyclo­[2.2.2]­octane bis­(hy­drogen maleate), C6H14N22+·2C4H3O4, the C4H3O4 and C6H14N22+ ions, derived from maleic acid and 1,4-di­aza­bi­cyclo­[2.2.2]­octane, respectively, are disordered across a mirror plane in space group Cmc21, and they are linked by two nearly linear N—H...O hydrogen bonds, with N...O distances of 2.662 (3) and 2.614 (4) Å, and N—H...O angles of 173°. The crystal structure consists of sheets with reticulations of 3.3792 (4) Å in stratum and 7.3892 (8) Å in width. The sheets are linked by C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102014956/gd1226sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102014956/gd1226Isup2.hkl
Contains datablock I

CCDC reference: 197333

Comment top

Supramolecular aggregate design is an active field (Zaworotko, 2001). Some examples have been reported which use 1,4-diazabicyclo[2.2.2]octane (DABCO) as one of the building blocks (Ferguson et al., 1997; Glidewell et al., 1999) to build supramolecular architecture in two and three dimensions. We have used two simple building blocks, DABCO and maleic acid (MA), to synthesize the title complex, (I), and we report here its sheet-type structure. \sch

In the structure of (I) (Fig. 1), the C4H3O4- and C6H14N22+ ions are linked by two nearly linear hydrogen bonds (Table 2). Hydrogen maleate anions, C4H3O4-, have been reported with both symmetric and asymmetric intramolecular hydrogen bonds (Fillaux et al., 1999; James & Williams, 1974). Complex (I) contains two distinct hydrogen maleate ions, each with an asymmetric intramolecular hydrogen bond (Table 2), with O···O distances intermediate betwen those typical of symmetric (2.437 Å; Fillaux et al., 1999) and asymmetric [2.502 (1) Å; James & Williams, 1974] examples.

Viewed approximately along [100] (Fig. 2), the geometrical arrangement of (I) is characterized by a sheet-like structure of MA and DABCO moieties enclosing spaces measuring 3.3792 (4) × 7.3892 (8) Å. DABCO atoms N1, N2, C1 and C2, and the whole MA moiety, exhibit small deviations from the mirror plane and form a continuous sheet.

The C—H···O hydrogen bonds (Table 2) in (I) play an important role in linking the sheets. The methylene groups of the DABCO moieties take part in another C—H···O hydrogen bond to reinforce the structure. Zigzag and straight sheets in the same layer are coplanar with each other, forming the observed continuous structure.

It may be noted here that DABCO has been observed disordered across a centre of inversion in the 1:1 complex with 4,4'-biphenol (Ferguson et al., 1998) and perchloric acid (Katrusiak, 2000).

Experimental top

1,4-Diazabicyclo[2.2.2]octane (0.01 mol) and maleic acid (0.02 mol) were dissolved in water by heating to a temperature where a clear solution was obtained. Single crystals of the title complex, (I), were formed by standing the resulting solution overnight at 293 K.

Refinement top

The DABCO unit and some of the atoms of the anion (O1, O3, C8 and C9, and their associated H atoms) were disordered across pairs of sites slightly removed from the mirror plane at x = 0. The remaining atoms lie on the mirror plane. H atoms were placed on calculated positions, with Uiso(H) = 1.2Ueq of their parent atoms and with N—H = 0.91 Å, O—H = 0.82 Å and C—H = 0.93–0.98 Å. Are these added distances correct? In the absence of significant anomalous scattering, Friedel pairs were merged; the absolute structure could not be determined.

Computing details top

Data collection: XSCANS (Siemens, year?); cell refinement: XSCANS; data reduction: SHELXTL-Plus (Sheldrick, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus; software used to prepare material for publication: SHELXTL-Plus.

Figures top
[Figure 1] Fig. 1. A view of the cation and anion units of (I) with atom labels, showing 50% probability displacement ellipsoids. Hydrogen bonds are illustrated as thin lines. For the sake of clarity, only one orientation of each component is shown.
[Figure 2] Fig. 2. An illustration of the unit-cell packing of (I) viewed down along the c axis. Hydrogen bonds are shown by thin lines [symmetry codes: (i) 1/2 - x, 3/2 - y, z - 1/2; (ii) x + 1/2, 3/2 - y, z + 1/2; (iii) x + 1, y, z]. For the sake of clarity, only one orientation of each component is shown.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the continuous sheets parallel to (100). Hydrogen bonds are shown by thin lines [symmetry codes: (i) x, 1 - y, z - 1/2; (ii) -x, 2 - y, z + 1/2; (iii) 1/2 - x, 3/2 - y, z - 1/2].
1,4-diazoniabicyclo[2.2.2]octane bis(maleate) top
Crystal data top
C6H14N22+·2C4H3O4F(000) = 728
Mr = 344.32Dx = 1.493 Mg m3
Orthorhombic, Cmc21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c -2Cell parameters from 25 reflections
a = 6.7584 (8) Åθ = 4.3–15.0°
b = 20.145 (4) ŵ = 0.12 mm1
c = 11.255 (2) ÅT = 289 K
V = 1532.3 (4) Å3Prism, colourless
Z = 40.46 × 0.38 × 0.36 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.010
Radiation source: normal-focus sealed tubeθmax = 28.0°, θmin = 2.0°
Graphite monochromatorh = 08
ω scansk = 026
1194 measured reflectionsl = 114
1044 independent reflections3 standard reflections every 97 reflections
845 reflections with I > 2σ(I) intensity decay: 1.9%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0485P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
1044 reflectionsΔρmax = 0.17 e Å3
178 parametersΔρmin = 0.16 e Å3
10 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.026 (2)
Crystal data top
C6H14N22+·2C4H3O4V = 1532.3 (4) Å3
Mr = 344.32Z = 4
Orthorhombic, Cmc21Mo Kα radiation
a = 6.7584 (8) ŵ = 0.12 mm1
b = 20.145 (4) ÅT = 289 K
c = 11.255 (2) Å0.46 × 0.38 × 0.36 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.010
1194 measured reflections3 standard reflections every 97 reflections
1044 independent reflections intensity decay: 1.9%
845 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.03310 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 0.96Δρmax = 0.17 e Å3
1044 reflectionsΔρmin = 0.16 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.026 (4)0.57705 (14)0.2955 (2)0.038 (4)0.50
O20.00000.65294 (10)0.4369 (2)0.0436 (7)
O30.029 (4)0.45539 (14)0.2817 (2)0.047 (5)0.50
H30.04760.49550.28690.056*0.50
O40.00000.37082 (10)0.4034 (3)0.0480 (7)
O50.00000.83938 (10)0.2111 (2)0.0423 (7)
O60.00000.91495 (11)0.0687 (2)0.0472 (7)
O70.00000.83663 (12)0.4278 (2)0.0456 (7)
H70.02260.83650.35630.055*0.50
O80.00000.91015 (13)0.5729 (2)0.0578 (8)
N10.00000.74108 (11)0.2607 (2)0.0299 (6)
H10.00960.71070.32030.036*0.50
N20.00000.82516 (13)0.0990 (2)0.0362 (7)
H20.00960.85550.03940.043*0.50
C10.019 (5)0.70581 (17)0.1439 (3)0.028 (3)0.50
H1A0.13430.67700.14470.034*0.50
H1B0.09700.67890.12920.034*0.50
C20.0412 (12)0.75845 (15)0.0467 (3)0.038 (3)0.50
H2A0.05100.74950.01740.045*0.50
H2B0.17430.75740.01450.045*0.50
C30.180 (2)0.7825 (9)0.2808 (15)0.035 (3)0.50
H3A0.29780.75520.28710.042*0.50
H3B0.16730.80930.35200.042*0.50
C40.1862 (16)0.8258 (5)0.1694 (14)0.046 (3)0.50
H4A0.21480.87110.19280.056*0.50
H4B0.29380.81080.11910.056*0.50
C50.1777 (15)0.7850 (7)0.2641 (15)0.031 (3)0.50
H5A0.19250.80250.34400.037*0.50
H5B0.29410.75860.24670.037*0.50
C60.1693 (17)0.8431 (4)0.1770 (13)0.038 (2)0.50
H6A0.29110.84670.13180.046*0.50
H6B0.14520.88470.21800.046*0.50
C70.00000.59369 (14)0.4019 (3)0.0318 (7)
C80.021 (6)0.54210 (18)0.4978 (3)0.029 (4)0.50
H80.04050.55900.57380.035*0.50
C90.015 (11)0.47632 (17)0.4915 (4)0.031 (6)0.50
H90.02220.45510.56470.038*0.50
C100.00000.43055 (15)0.3884 (3)0.0346 (8)
C110.00000.89922 (16)0.1748 (3)0.0321 (7)
C120.00000.95505 (15)0.2623 (3)0.0390 (9)
H120.00000.99720.22860.047*
C130.00000.95418 (15)0.3805 (3)0.0364 (9)
H130.00000.99610.41530.044*
C140.00000.89827 (17)0.4673 (3)0.0355 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.057 (13)0.0325 (12)0.0252 (12)0.001 (2)0.003 (2)0.0040 (10)
O20.0756 (19)0.0237 (10)0.0315 (12)0.0000.0000.0030 (11)
O30.081 (15)0.0306 (12)0.0290 (13)0.006 (3)0.002 (3)0.0020 (11)
O40.0658 (19)0.0254 (11)0.0529 (17)0.0000.0000.0012 (12)
O50.0673 (18)0.0219 (11)0.0375 (14)0.0000.0000.0033 (11)
O60.0829 (19)0.0311 (11)0.0275 (12)0.0000.0000.0063 (11)
O70.068 (2)0.0326 (13)0.0361 (14)0.0000.0000.0066 (11)
O80.095 (2)0.0505 (15)0.0277 (13)0.0000.0000.0039 (13)
N10.0473 (16)0.0220 (11)0.0204 (12)0.0000.0000.0047 (10)
N20.061 (2)0.0268 (13)0.0207 (12)0.0000.0000.0051 (10)
C10.035 (9)0.0264 (15)0.0242 (15)0.004 (3)0.005 (3)0.0048 (12)
C20.057 (8)0.0296 (19)0.0264 (18)0.001 (2)0.002 (2)0.0037 (15)
C30.042 (7)0.034 (6)0.027 (5)0.006 (4)0.006 (3)0.011 (3)
C40.045 (4)0.023 (5)0.071 (5)0.009 (3)0.002 (4)0.011 (4)
C50.034 (6)0.033 (6)0.027 (5)0.010 (4)0.011 (4)0.010 (4)
C60.053 (5)0.015 (4)0.046 (3)0.009 (3)0.003 (4)0.007 (3)
C70.045 (2)0.0239 (14)0.0265 (17)0.0000.0000.0037 (13)
C80.038 (14)0.0313 (16)0.0184 (15)0.001 (3)0.001 (3)0.0012 (13)
C90.040 (17)0.0301 (16)0.0242 (15)0.006 (6)0.000 (4)0.0045 (15)
C100.040 (2)0.0285 (15)0.0351 (18)0.0000.0000.0019 (13)
C110.0395 (19)0.0280 (16)0.0288 (17)0.0000.0000.0051 (14)
C120.063 (3)0.0209 (15)0.0328 (17)0.0000.0000.0022 (15)
C130.058 (2)0.0239 (17)0.0276 (17)0.0000.0000.0007 (15)
C140.040 (2)0.0353 (18)0.0310 (19)0.0000.0000.0029 (14)
Geometric parameters (Å, º) top
O1—C71.257 (6)C4—H4A0.9700
O2—C71.257 (4)C4—H4B0.9700
O3—C101.315 (6)C5—C61.528 (4)
O3—H30.8200C5—H5A0.9700
O4—C101.215 (4)C5—H5B0.9700
O5—C111.273 (4)C6—H6A0.9700
O6—C111.235 (4)C6—H6B0.9700
O7—C141.319 (4)C7—C81.505 (6)
O7—H70.8200C8—C91.328 (5)
O8—C141.212 (4)C8—H80.9300
N1—C51.493 (4)C9—C101.486 (7)
N1—C31.493 (4)C9—H90.9300
N1—C11.500 (3)C10—O4i1.215 (4)
N1—H10.9100C10—O3i1.315 (6)
N2—C61.486 (4)C10—C9i1.486 (7)
N2—C41.487 (4)C11—O6i1.235 (4)
N2—C21.494 (3)C11—O5i1.273 (4)
N2—H20.9100C11—C12i1.495 (5)
C1—C21.531 (4)C11—C121.495 (5)
C1—H1A0.9700C12—C131.331 (4)
C1—H1B0.9700C12—H120.9300
C2—H2A0.9700C13—C141.491 (5)
C2—H2B0.9700C13—H130.9300
C3—C41.528 (4)C14—O8i1.212 (4)
C3—H3A0.9700C14—O7i1.319 (4)
C3—H3B0.9700C14—C13i1.491 (5)
C10—O3—H3109.5O1—C7—C8120.8 (4)
C14—O7—H7109.5O2—C7—C8115.5 (3)
C5—N1—C3108.7 (3)C9—C8—C7130.4 (8)
C5—N1—C1103.5 (12)C9—C8—H8114.8
C3—N1—C1117.9 (13)C7—C8—H8114.8
C5—N1—H1108.8C8—C9—C10131.6 (5)
C3—N1—H1108.8C8—C9—H9114.2
C1—N1—H1108.8C10—C9—H9114.2
C6—N2—C4109.6 (4)O4i—C10—O3i120.2 (3)
C6—N2—C2107.9 (5)O4—C10—O3i120.2 (3)
C4—N2—C2112.1 (5)O4i—C10—O3120.2 (3)
C6—N2—H2109.1O4—C10—O3120.2 (3)
C4—N2—H2109.1O4i—C10—C9120.4 (4)
C2—N2—H2109.1O4—C10—C9120.4 (4)
N1—C1—C2107.9 (3)O3i—C10—C9119.2 (5)
N1—C1—H1A110.1O3—C10—C9117.8 (7)
C2—C1—H1A110.1O4i—C10—C9i120.4 (4)
N1—C1—H1B110.1O4—C10—C9i120.4 (4)
C2—C1—H1B110.1O3i—C10—C9i117.8 (7)
H1A—C1—H1B108.4O3—C10—C9i119.2 (5)
N2—C2—C1108.9 (4)O6i—C11—O5123.6 (3)
N2—C2—H2A109.9O6—C11—O5123.6 (3)
C1—C2—H2A109.9O6i—C11—O5i123.6 (3)
N2—C2—H2B109.9O6—C11—O5i123.6 (3)
C1—C2—H2B109.9O6i—C11—C12i116.3 (3)
H2A—C2—H2B108.3O6—C11—C12i116.3 (3)
N1—C3—C4102.5 (10)O5—C11—C12i120.1 (3)
N1—C3—H3A111.3O5i—C11—C12i120.1 (3)
C4—C3—H3A111.3O6i—C11—C12116.3 (3)
N1—C3—H3B111.3O6—C11—C12116.3 (3)
C4—C3—H3B111.3O5—C11—C12120.1 (3)
H3A—C3—H3B109.2O5i—C11—C12120.1 (3)
N2—C4—C3114.2 (11)C13—C12—C11130.4 (3)
N2—C4—H4A108.7C13—C12—H12114.8
C3—C4—H4A108.7C11—C12—H12114.8
N2—C4—H4B108.7C12—C13—C14131.7 (3)
C3—C4—H4B108.7C12—C13—H13114.1
H4A—C4—H4B107.6C14—C13—H13114.1
N1—C5—C6114.1 (10)O8i—C14—O7121.1 (3)
N1—C5—H5A108.7O8—C14—O7121.1 (3)
C6—C5—H5A108.7O8i—C14—O7i121.1 (3)
N1—C5—H5B108.7O8—C14—O7i121.1 (3)
C6—C5—H5B108.7O8i—C14—C13i119.6 (3)
H5A—C5—H5B107.6O8—C14—C13i119.6 (3)
N2—C6—C5102.8 (9)O7—C14—C13i119.4 (3)
N2—C6—H6A111.2O7i—C14—C13i119.4 (3)
C5—C6—H6A111.2O8i—C14—C13119.6 (3)
N2—C6—H6B111.2O8—C14—C13119.6 (3)
C5—C6—H6B111.2O7—C14—C13119.4 (3)
H6A—C6—H6B109.1O7i—C14—C13119.4 (3)
O1—C7—O2123.5 (3)
C5—N1—C1—C254.2 (19)C7—C8—C9—C104 (11)
C3—N1—C1—C266 (2)C8—C9—C10—O4i179 (6)
C6—N2—C2—C172.0 (15)C8—C9—C10—O4179 (6)
C4—N2—C2—C148.8 (16)C8—C9—C10—O3i6 (9)
N1—C1—C2—N210 (2)C8—C9—C10—O313 (9)
C5—N1—C3—C466.7 (12)C8—C9—C10—C9i89 (7)
C1—N1—C3—C450.6 (17)O6i—C11—C12—C13180.000 (1)
C6—N2—C4—C354.2 (13)O6—C11—C12—C13180.000 (1)
C2—N2—C4—C365.6 (14)O5—C11—C12—C130.000 (2)
N1—C3—C4—N214.0 (17)O5i—C11—C12—C130.000 (2)
C3—N1—C5—C655.3 (11)C12i—C11—C12—C130 (100)
C1—N1—C5—C670.8 (14)C11—C12—C13—C140.000 (2)
C4—N2—C6—C565.7 (11)C12—C13—C14—O8i180.000 (1)
C2—N2—C6—C556.6 (11)C12—C13—C14—O8180.000 (1)
N1—C5—C6—N212.6 (15)C12—C13—C14—O70.000 (1)
O1—C7—C8—C90 (6)C12—C13—C14—O7i0.000 (1)
O2—C7—C8—C9176 (5)C12—C13—C14—C13i0 (100)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.911.762.662 (3)174
N2—H2···O60.911.712.614 (4)173
O3—H3···O10.821.722.484 (7)154
O7—H7···O50.821.642.440 (4)164
C3—H3A···O5ii0.972.343.27 (2)160
C4—H4B···O2iii0.972.583.395 (19)141
C12—H12···O8iv0.932.563.452 (4)161
C13—H13···O6v0.932.493.382 (4)161
C3—H3B···O8vi0.972.473.288 (2)141
C8—H8···O3vii0.932.403.213 (7)145
C5—H5A···O8vi0.972.703.341 (2)124
C5—H5B···O5viii0.972.463.332 (4)149
Symmetry codes: (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y+3/2, z1/2; (iv) x, y+2, z+1/2; (v) x, y+2, z1/2; (vi) x, y, z+1; (vii) x, y+1, z+1/2; (viii) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H14N22+·2C4H3O4
Mr344.32
Crystal system, space groupOrthorhombic, Cmc21
Temperature (K)289
a, b, c (Å)6.7584 (8), 20.145 (4), 11.255 (2)
V3)1532.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.46 × 0.38 × 0.36
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1194, 1044, 845
Rint0.010
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.078, 0.96
No. of reflections1044
No. of parameters178
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: XSCANS (Siemens, year?), XSCANS, SHELXTL-Plus (Sheldrick, 1990), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus.

Selected geometric parameters (Å, º) top
O1—C71.257 (6)O8—C141.212 (4)
O2—C71.257 (4)N1—C51.493 (4)
O3—C101.315 (6)N1—C31.493 (4)
O4—C101.215 (4)N1—C11.500 (3)
O5—C111.273 (4)N2—C61.486 (4)
O6—C111.235 (4)N2—C41.487 (4)
O7—C141.319 (4)N2—C21.494 (3)
N1—C1—C2—N210 (2)N1—C5—C6—N212.6 (15)
N1—C3—C4—N214.0 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.911.762.662 (3)174
N2—H2···O60.911.712.614 (4)173
O3—H3···O10.821.722.484 (7)154
O7—H7···O50.821.642.440 (4)164
C3—H3A···O5i0.972.343.27 (2)160
C4—H4B···O2ii0.972.583.395 (19)141
C12—H12···O8iii0.932.563.452 (4)161
C13—H13···O6iv0.932.493.382 (4)161
C3—H3B···O8v0.972.473.288 (2)141
C8—H8···O3vi0.932.403.213 (7)145
C5—H5A···O8v0.972.703.341 (2)124
C5—H5B···O5vii0.972.463.332 (4)149
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y+3/2, z1/2; (iii) x, y+2, z+1/2; (iv) x, y+2, z1/2; (v) x, y, z+1; (vi) x, y+1, z+1/2; (vii) x1/2, y+3/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds