Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [PtBr2(C48H36N4O4)]·0.896CHCl3·0.569CH3CN, the centrosymmetric metal complex is octahedral, with the porphyrin ring essentially planar and the Br atoms occupying axial positions. The two independent methoxy­phenyl substituents are tilted at angles of 89.0 and 67.0° with respect to the porphyrin plane. The Pt—N distances are 2.035 (4) and 2.036 (4) Å and the Pt—Br distance is 2.4666 (6) Å. Chloro­form and aceto­nitrile solvent mol­ecules, exhibiting substantial disorder, occupy positions between the porphyrin mol­ecules. This is the first crystal and molecular structure of a PtIV–porphyrin complex to be reported.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102013859/gd1222sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102013859/gd1222Isup2.hkl
Contains datablock I

CCDC reference: 195611

Comment top

Metalloporphyrin reactivity is found to be dependent upon the central metal, the substituents on the porphyrin ring and the axially coordinated ligands (Dolphin, 1978). Platinum porphyrins have been investigated as oxygen-sensing probes (Gouin & Gouterman, 2000), phosphorescent probes in bioanalytical applications (Papkovsky et al., 2000), photosensitizers (Kunkely & Vogler, 1997), potential antitumour agents (Brunner et al., 1997) and molecular conductors (Hiroyuki et al., 2000). Most of the recent studies have focused on PtII porphyrins, with relatively few studies pertaining to PtIV porphyrin systems. Here, we report the first crystal structure of a PtIV porphyrin compound, the title compound, (I). \sch

Complex (I) (Fig. 1) crystallizes in the centrosymmetric space group P2/n, with the Pt atom located at a centre of inversion. The structure of the molecule is typical of many porphyrin complexes. The porphyrin moiety is essentially planar, while the bond lengths and angles within the macrocycle are unremarkable. The p-methoxyphenyl groups are rotated 89 and 67° degrees from the porphyrin mean plane, due to steric hindrance with the meso-H atoms of the macrocycle. Strict coplanarity of the Pt atom and the four pyrrole N atoms is imposed by the inversion centre. The Pt—N bond lengths (Table 1) are longer than those found in PtII analogues. For example, the PtII—N distances in tetraphenylporphinatoplatinum(II), (Hazell, 1984) and the analogous 2,3,7,8,12,13,17,18-octaethylporphinatoplatinum(II) (Milgrom et al., 1988), are found to be 2.008 and 2.012 (3) Å, respectively. The PtII—Nporphyrin bonds are considered to be shorter then typical PtII—N complex bonds, due to extensive metal d(π)-porphyrin π* overlap (Milgrom et al., 1988). The longer PtIV—N bonds observed in (I) are attributed to a decrease in metal d(π)-porphyrin π* bonding upon oxidation of PtII to PtIV, as evident in the electronic spectrum of the compound (Mink et al., 1997; Mink et al., 2000).

The molecules of (I) pack with the porphyrinato moieties forming face-centred parallel layers along the ac face of the unit cell. Within each layer, the porphyrinato moieties at the corners of the unit cell lie parallel to each other, each making angles of 29.6 and 19.5° to the b and c edges, respectively (measured in the ac and bc planes). The moiety at the centre of the face makes the same angles to the b and c edges but in the opposite direction. The overall effect is to produce a layer with a herring-bone pattern when viewed from the side (Fig. 2).

Solvent molecules are packed between the porphyrin layers. A chloroform molecule is found on a twofold axis, while another solvent site is shared between chloroform and acetonitrile molecules. The solvent molecules appear to be within van der Waals contact distances to the porphyrins, suggesting that it is the solvent that holds the crystal together. This is borne out by the rapid deterioration of the crystals when they are removed from the solvent and allowed to desolvate; the crystals become very brittle and crumble easily.

Experimental top

Compound (I) was synthesized by direct oxidation of the PtII analogue with bromine, according to methods reported previously by Mink et al. (2000).

Refinement top

H atoms were treated as riding, with C—H distances in the range 0.93–0.98 Å. Is this added text correct?

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996; data reduction: SHELXTL-Plus (Sheldrick, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii and the solvent molecules have been omitted for clarity.
[Figure 2] Fig. 2. A view of (I) down the (001) face, showing the herring-bone packing arrangement of the porphyrin molecules. H atoms and solvent molecules have been omitted for clarity.
Dibromo[5,10,15,20-tetrakis(4-methoxyphenyl)porphyrinato-κ4N]platinum(IV) chloroform/acetonitrile solvate top
Crystal data top
[Pt(C48H36N4O4)Br2]·(CHCl3)0.896·(C2H3N)0.569F(000) = 1322
Mr = 1348.32Dx = 1.728 Mg m3
Monoclinic, P2/nMelting point: 305 K
Hall symbol: -P 2yacMo Kα radiation, λ = 0.71073 Å
a = 14.8727 (7) ÅCell parameters from 6264 reflections
b = 9.4421 (5) Åθ = 9.5–28.3°
c = 18.5973 (9) ŵ = 4.60 mm1
β = 99.348 (1)°T = 294 K
V = 2576.9 (2) Å3Elongated prism, purple
Z = 20.30 × 0.15 × 0.10 mm
Data collection top
Siemens SMART P3/512 CCD area-detector
diffractometer
5931 independent reflections
Radiation source: fine-focus sealed tube4440 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1919
Tmin = 0.517, Tmax = 0.629k = 1112
25609 measured reflectionsl = 2324
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.82(Δ/σ)max = 0.033
5931 reflectionsΔρmax = 0.61 e Å3
371 parametersΔρmin = 0.80 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0019 (3)
Crystal data top
[Pt(C48H36N4O4)Br2]·(CHCl3)0.896·(C2H3N)0.569V = 2576.9 (2) Å3
Mr = 1348.32Z = 2
Monoclinic, P2/nMo Kα radiation
a = 14.8727 (7) ŵ = 4.60 mm1
b = 9.4421 (5) ÅT = 294 K
c = 18.5973 (9) Å0.30 × 0.15 × 0.10 mm
β = 99.348 (1)°
Data collection top
Siemens SMART P3/512 CCD area-detector
diffractometer
5931 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
4440 reflections with I > 2σ(I)
Tmin = 0.517, Tmax = 0.629Rint = 0.058
25609 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0406 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 0.82Δρmax = 0.61 e Å3
5931 reflectionsΔρmin = 0.80 e Å3
371 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.00000.00000.00000.02325 (11)
Br10.09115 (4)0.20927 (6)0.04548 (3)0.03804 (16)
N10.1013 (3)0.0710 (5)0.0524 (2)0.0256 (9)
C10.1714 (3)0.1601 (6)0.0245 (3)0.0282 (11)
N20.0555 (3)0.1091 (5)0.0908 (2)0.0269 (9)
C20.2245 (4)0.1895 (6)0.0801 (3)0.0330 (12)
H2A0.27630.24610.07530.040*
C30.1864 (4)0.1209 (7)0.1407 (3)0.0380 (14)
H3A0.20710.12160.18530.046*
C40.1081 (4)0.0465 (6)0.1244 (3)0.0294 (12)
C50.0499 (4)0.0345 (6)0.1735 (3)0.0319 (13)
C60.0253 (4)0.1077 (6)0.1571 (3)0.0279 (11)
C70.0854 (4)0.1935 (6)0.2076 (3)0.0319 (12)
H7A0.08030.21100.25600.038*
C80.1504 (4)0.2439 (6)0.1720 (3)0.0325 (12)
H8A0.19830.30290.19140.039*
C90.1329 (4)0.1911 (5)0.0990 (3)0.0269 (11)
C100.1873 (3)0.2163 (6)0.0455 (3)0.0256 (10)
C110.0683 (4)0.0427 (6)0.2505 (3)0.0305 (12)
C120.0311 (4)0.0588 (7)0.3021 (3)0.0387 (14)
H12A0.00570.13050.28860.046*
C130.0488 (4)0.0530 (7)0.3723 (3)0.0383 (14)
H13A0.02330.12030.40610.046*
C140.1040 (4)0.0518 (6)0.3933 (3)0.0318 (12)
C150.1417 (4)0.1515 (6)0.3428 (3)0.0392 (14)
H15A0.17920.22240.35610.047*
C160.1233 (4)0.1448 (6)0.2725 (3)0.0355 (13)
H16A0.14920.21200.23890.043*
C170.2682 (3)0.3129 (5)0.0651 (3)0.0259 (11)
C180.2547 (4)0.4561 (6)0.0795 (3)0.0302 (12)
H18A0.19590.49090.07750.036*
C190.3284 (4)0.5461 (6)0.0967 (3)0.0371 (13)
H19A0.31880.64110.10620.044*
C200.4156 (4)0.4962 (6)0.0999 (4)0.0392 (14)
C210.4305 (4)0.3540 (7)0.0856 (3)0.0416 (14)
H21A0.48950.32010.08720.050*
C220.3565 (4)0.2629 (6)0.0690 (3)0.0337 (12)
H22A0.36640.16760.06040.040*
O230.1162 (3)0.0486 (5)0.4645 (2)0.0441 (10)
C230.1799 (6)0.1470 (8)0.4857 (3)0.063 (2)
H23A0.18270.13500.53650.094*
H23B0.23900.13030.45760.094*
H23C0.16070.24170.47720.094*
O240.4836 (3)0.5944 (5)0.1161 (3)0.0650 (15)
C240.5749 (5)0.5470 (9)0.1230 (6)0.082 (3)
H24A0.61540.62600.13420.123*
H24B0.58480.50460.07800.123*
H24C0.58640.47840.16150.123*
C1000.2039 (6)0.1401 (7)0.2274 (5)0.043 (3)0.465 (4)
H10A0.14620.11090.19790.051*0.465 (4)
Cl110.2034 (4)0.3257 (5)0.2327 (3)0.095 (2)0.465 (4)
Cl120.2060 (9)0.0718 (16)0.3155 (5)0.142 (6)0.465 (4)
Cl130.2922 (4)0.0735 (6)0.18561 (19)0.0377 (13)0.465 (4)
C2000.0741 (4)0.5661 (10)0.1522 (4)0.058 (6)0.431 (5)
H20A0.08230.65940.12910.070*0.431 (5)
Cl140.0259 (4)0.5668 (6)0.2180 (2)0.0769 (19)0.431 (5)
Cl150.0617 (4)0.4373 (6)0.0858 (2)0.0714 (19)0.431 (5)
Cl160.1691 (5)0.5271 (6)0.1949 (3)0.083 (2)0.431 (5)
N3000.2056 (10)0.4336 (16)0.1420 (10)0.098 (5)0.569 (5)
C4000.1390 (12)0.4671 (16)0.1295 (11)0.078 (6)0.569 (5)
C3000.0550 (11)0.5115 (16)0.1149 (17)0.104 (9)0.569 (5)
H30A0.03060.58210.14980.156*0.569 (5)
H30B0.01420.43210.11810.156*0.569 (5)
H30C0.06210.55090.06680.156*0.569 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02404 (16)0.03014 (17)0.01495 (14)0.00686 (12)0.00131 (10)0.00219 (11)
Br10.0384 (3)0.0381 (3)0.0350 (3)0.0007 (3)0.0019 (2)0.0091 (3)
N10.025 (2)0.035 (2)0.018 (2)0.0059 (19)0.0062 (17)0.0041 (18)
C10.029 (3)0.034 (3)0.021 (2)0.007 (2)0.000 (2)0.005 (2)
N20.025 (2)0.039 (3)0.0164 (19)0.0073 (19)0.0036 (17)0.0015 (18)
C20.030 (3)0.046 (3)0.024 (3)0.008 (2)0.008 (2)0.002 (2)
C30.038 (3)0.055 (4)0.023 (3)0.018 (3)0.011 (2)0.000 (3)
C40.034 (3)0.034 (3)0.019 (2)0.009 (2)0.002 (2)0.000 (2)
C50.032 (3)0.044 (3)0.019 (2)0.007 (2)0.000 (2)0.001 (2)
C60.033 (3)0.031 (3)0.020 (2)0.005 (2)0.004 (2)0.000 (2)
C70.035 (3)0.044 (3)0.016 (2)0.009 (2)0.001 (2)0.001 (2)
C80.035 (3)0.037 (3)0.023 (3)0.009 (2)0.003 (2)0.000 (2)
C90.035 (3)0.026 (3)0.018 (2)0.004 (2)0.000 (2)0.001 (2)
C100.025 (3)0.030 (3)0.020 (2)0.002 (2)0.001 (2)0.001 (2)
C110.031 (3)0.044 (3)0.016 (2)0.010 (2)0.004 (2)0.002 (2)
C120.040 (3)0.051 (3)0.027 (3)0.009 (3)0.011 (3)0.005 (3)
C130.037 (3)0.050 (3)0.027 (3)0.005 (3)0.006 (3)0.010 (3)
C140.042 (3)0.039 (3)0.014 (2)0.013 (3)0.005 (2)0.004 (2)
C150.055 (4)0.036 (3)0.028 (3)0.000 (3)0.011 (3)0.003 (2)
C160.048 (3)0.034 (3)0.025 (3)0.004 (3)0.008 (2)0.003 (2)
C170.025 (3)0.031 (3)0.022 (2)0.009 (2)0.004 (2)0.001 (2)
C180.029 (3)0.029 (3)0.033 (3)0.001 (2)0.006 (2)0.003 (2)
C190.039 (3)0.028 (3)0.045 (3)0.004 (2)0.009 (3)0.001 (3)
C200.032 (3)0.035 (3)0.050 (4)0.012 (3)0.003 (3)0.002 (3)
C210.024 (3)0.042 (3)0.057 (4)0.004 (3)0.000 (3)0.006 (3)
C220.036 (3)0.023 (3)0.041 (3)0.003 (2)0.002 (3)0.003 (2)
O230.060 (3)0.052 (2)0.022 (2)0.004 (2)0.0124 (19)0.0013 (19)
C230.104 (6)0.057 (4)0.034 (3)0.013 (4)0.036 (4)0.003 (3)
O240.043 (3)0.041 (3)0.110 (4)0.023 (2)0.010 (3)0.014 (3)
C240.040 (4)0.066 (5)0.140 (9)0.024 (4)0.012 (5)0.019 (6)
C1000.066 (9)0.044 (7)0.019 (6)0.003 (6)0.011 (6)0.004 (5)
Cl110.181 (7)0.055 (3)0.056 (3)0.012 (3)0.039 (3)0.001 (2)
Cl120.134 (12)0.160 (12)0.136 (10)0.009 (9)0.035 (8)0.043 (9)
Cl130.049 (3)0.054 (3)0.0142 (17)0.021 (3)0.0168 (19)0.0031 (19)
C2000.096 (15)0.026 (9)0.054 (10)0.043 (9)0.015 (10)0.001 (7)
Cl140.115 (5)0.068 (3)0.040 (2)0.015 (3)0.009 (2)0.017 (2)
Cl150.111 (5)0.051 (3)0.045 (2)0.031 (3)0.008 (2)0.007 (2)
Cl160.111 (5)0.059 (3)0.083 (4)0.020 (3)0.031 (4)0.025 (3)
N3000.074 (10)0.061 (9)0.155 (16)0.001 (8)0.009 (10)0.039 (10)
C4000.064 (10)0.051 (9)0.111 (15)0.026 (8)0.006 (10)0.036 (9)
C3000.056 (10)0.038 (10)0.22 (3)0.022 (8)0.031 (14)0.027 (13)
Geometric parameters (Å, º) top
Pt1—N2i2.035 (4)C15—C161.379 (8)
Pt1—N22.035 (4)C15—H15A0.9300
Pt1—N1i2.036 (4)C16—H16A0.9300
Pt1—N12.036 (4)C17—C221.385 (7)
Pt1—Br12.4668 (6)C17—C181.400 (7)
Pt1—Br1i2.4668 (6)C18—C191.383 (8)
N1—C11.374 (6)C18—H18A0.9300
N1—C41.378 (6)C19—C201.372 (9)
C1—C10i1.390 (7)C19—H19A0.9300
C1—C21.428 (7)C20—O241.369 (7)
N2—C91.376 (6)C20—C211.394 (8)
N2—C61.379 (6)C21—C221.391 (8)
C2—C31.342 (7)C21—H21A0.9300
C2—H2A0.9300C22—H22A0.9300
C3—C41.435 (7)O23—C231.427 (8)
C3—H3A0.9300C23—H23A0.9600
C4—C51.383 (8)C23—H23B0.9600
C5—C61.390 (7)C23—H23C0.9600
C5—C111.503 (7)O24—C241.415 (9)
C6—C71.437 (7)C24—H24A0.9600
C7—C81.344 (7)C24—H24B0.9600
C7—H7A0.9300C24—H24C0.9600
C8—C91.429 (7)C100—Cl131.748 (5)
C8—H8A0.9300C100—Cl121.755 (5)
C9—C101.399 (7)C100—Cl111.755 (5)
C10—C1i1.390 (7)C100—H10A0.9800
C10—C171.508 (7)C200—Cl141.765 (5)
C11—C161.370 (8)C200—Cl151.765 (5)
C11—C121.404 (8)C200—Cl161.768 (5)
C12—C131.375 (8)C200—H20A0.9800
C12—H12A0.9300N300—C4001.10 (2)
C13—C141.382 (9)C400—C3001.39 (2)
C13—H13A0.9300C300—H30A0.9600
C14—O231.365 (6)C300—H30B0.9600
C14—C151.384 (8)C300—H30C0.9600
N2i—Pt1—N2180.00 (14)C12—C13—C14120.7 (6)
N2i—Pt1—N1i90.07 (16)C12—C13—H13A119.6
N2—Pt1—N1i89.93 (16)C14—C13—H13A119.6
N2i—Pt1—N189.93 (16)O23—C14—C13115.9 (5)
N2—Pt1—N190.07 (16)O23—C14—C15124.8 (6)
N1i—Pt1—N1180.0 (3)C13—C14—C15119.3 (5)
N2i—Pt1—Br190.30 (13)C16—C15—C14119.4 (6)
N2—Pt1—Br189.70 (13)C16—C15—H15A120.3
N1i—Pt1—Br191.13 (12)C14—C15—H15A120.3
N1—Pt1—Br188.87 (12)C11—C16—C15122.4 (6)
N2i—Pt1—Br1i89.70 (13)C11—C16—H16A118.8
N2—Pt1—Br1i90.30 (13)C15—C16—H16A118.8
N1i—Pt1—Br1i88.87 (12)C22—C17—C18118.9 (5)
N1—Pt1—Br1i91.13 (12)C22—C17—C10121.3 (5)
Br1—Pt1—Br1i180.00 (4)C18—C17—C10119.8 (5)
C1—N1—C4107.4 (4)C19—C18—C17120.3 (5)
C1—N1—Pt1126.6 (3)C19—C18—H18A119.8
C4—N1—Pt1125.9 (3)C17—C18—H18A119.8
N1—C1—C10i126.2 (5)C20—C19—C18120.5 (6)
N1—C1—C2108.7 (4)C20—C19—H19A119.8
C10i—C1—C2125.1 (5)C18—C19—H19A119.8
C9—N2—C6107.2 (4)O24—C20—C19115.9 (5)
C9—N2—Pt1126.6 (3)O24—C20—C21124.1 (6)
C6—N2—Pt1126.1 (3)C19—C20—C21120.0 (5)
C3—C2—C1107.9 (5)C22—C21—C20119.6 (6)
C3—C2—H2A126.1C22—C21—H21A120.2
C1—C2—H2A126.1C20—C21—H21A120.2
C2—C3—C4107.7 (5)C17—C22—C21120.6 (5)
C2—C3—H3A126.1C17—C22—H22A119.7
C4—C3—H3A126.1C21—C22—H22A119.7
N1—C4—C5126.7 (5)C14—O23—C23116.9 (5)
N1—C4—C3108.3 (5)O23—C23—H23A109.5
C5—C4—C3125.0 (5)O23—C23—H23B109.5
C4—C5—C6124.7 (5)H23A—C23—H23B109.5
C4—C5—C11117.8 (5)O23—C23—H23C109.5
C6—C5—C11117.5 (5)H23A—C23—H23C109.5
N2—C6—C5126.3 (5)H23B—C23—H23C109.5
N2—C6—C7108.7 (4)C20—O24—C24118.0 (5)
C5—C6—C7125.1 (5)O24—C24—H24A109.5
C8—C7—C6107.4 (5)O24—C24—H24B109.5
C8—C7—H7A126.3H24A—C24—H24B109.5
C6—C7—H7A126.3O24—C24—H24C109.5
C7—C8—C9108.1 (5)H24A—C24—H24C109.5
C7—C8—H8A126.0H24B—C24—H24C109.5
C9—C8—H8A126.0Cl13—C100—Cl12112.4 (5)
N2—C9—C10125.9 (4)Cl13—C100—Cl11113.2 (5)
N2—C9—C8108.7 (4)Cl12—C100—Cl11108.3 (7)
C10—C9—C8125.4 (5)Cl13—C100—H10A107.5
C1i—C10—C9124.8 (5)Cl12—C100—H10A107.5
C1i—C10—C17117.7 (4)Cl11—C100—H10A107.5
C9—C10—C17117.5 (4)Cl14—C200—Cl15108.4 (4)
C16—C11—C12117.6 (5)Cl14—C200—Cl16109.6 (5)
C16—C11—C5122.1 (5)Cl15—C200—Cl16110.6 (5)
C12—C11—C5120.2 (5)Cl14—C200—H20A109.4
C13—C12—C11120.5 (6)Cl15—C200—H20A109.4
C13—C12—H12A119.8Cl16—C200—H20A109.4
C11—C12—H12A119.8N300—C400—C300179 (3)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Pt(C48H36N4O4)Br2]·(CHCl3)0.896·(C2H3N)0.569
Mr1348.32
Crystal system, space groupMonoclinic, P2/n
Temperature (K)294
a, b, c (Å)14.8727 (7), 9.4421 (5), 18.5973 (9)
β (°) 99.348 (1)
V3)2576.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)4.60
Crystal size (mm)0.30 × 0.15 × 0.10
Data collection
DiffractometerSiemens SMART P3/512 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.517, 0.629
No. of measured, independent and
observed [I > 2σ(I)] reflections
25609, 5931, 4440
Rint0.058
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.120, 0.82
No. of reflections5931
No. of parameters371
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.80

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996, SHELXTL-Plus (Sheldrick, 1990), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Pt1—N22.035 (4)Pt1—Br12.4668 (6)
Pt1—N12.036 (4)
N2—Pt1—N190.07 (16)C4—N1—Pt1125.9 (3)
N2—Pt1—Br189.70 (13)C9—N2—Pt1126.6 (3)
N1—Pt1—Br188.87 (12)C6—N2—Pt1126.1 (3)
C1—N1—Pt1126.6 (3)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds