Download citation
Download citation
link to html
In the title compound, C27H39IN3+·I, the acridinium system shows the usual approximate mirror symmetry about the central C...N line, and the corresponding bond lengths and angles in the two halves agree within experimental error. The alkyl chain at the ring N atom is initially perpendicular to the ring plane and then bends sharply at the fourth C atom. Pairs of centrosymmetrically related cations overlap two of their rings and the di­methyl­amino groups are also partly involved in the overlap. Each I ion is involved in short-range interactions with two cations. These interactions give rise to a 14-membered cyclic structure, which involves pairs of cations and anions across an inversion centre.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102013768/gd1217sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102013768/gd1217Isup2.hkl
Contains datablock I

CCDC reference: 195634

Comment top

Interest in acridine cationic dyes is connected to their ability to bind DNA, thus interfering with replication processes. As has widely been reported (Lerman, 1961; Karle et al., 1980; Nandi et al., 1990), the association of the dye with DNA occurs by intercalation of the planar moiety of the molecule between subsequent base pairs along the DNA chain, and it is also favoured by electrostatic interactions with the phosphate groups. Moreover, the structural similarity with some antibiotics qualifies these dyes as useful models to study the interactions of the drugs with the receptors.

These dyes self-associate in aqueous solution through interactions of their π electron systems, forming pairs or larger aggregates (Vitagliano, 1983; Costantino et al., 1984; Markovits et al., 1989). Crystallographic studies of these compounds are able to give a detailed description of the molecular arrangements in the solid state, and provide valuable information on the fine geometry of self-association processes, such as the scheme and extent of overlap (Mattia et al., 1984; Sivaraman et al., 1996; Copp et al., 2000; Puliti & Mattia, 2001). This information, in addition to spectroscopic and thermodynamic data, is useful in modelling both self-aggregation in solution and intercalation phenomena with biological macromolecules. In continuing our studies of the structural characterization of the solid-state associations of acridine cationic dyes, we have carried out the crystallographic analysis of the title compound, (I), and the results are presented here. \sch

Fig. 1 shows a view of (I) approximately normal to the mean plane of the acridinium system. On average, all the geometrical parameters are in the expected ranges (Kuroda & Shinomiya, 1992; Lutz & Spek, 1998; Puliti & Mattia, 2001). In particular, the mean values of the C—C and C—N bonds in the acridinium moiety are 1.40 (2) and 1.3835 (17) Å, respectively. The C—C bond lengths of the alkyl chain fall in the range 1.497–1.544 Å and the I2—C30 bond distance is 2.083 (13) Å. The acridinium system displays the usual mirror symmetry about the C9—N10 line (Jones & Neidle, 1975; Mattia et al., 1984, 1995), and the corresponding bond lengths and angles in the two halves agree to within experimental error (3σ).

The bonding geometry at the central N10 atom is planar and the sum of the valency angles subtended is 360.0 (9)°. Moreover, the C11—N10—C14 angle [121.7 (5)°] is larger than the adjacent intra-ring angles [N10—C11—C13 118.9 (6)° and N10—C14—C12 118.6 (6)°], as found in other pyridine structures substituted at N10 (Kuroda & Shinomiya, 1992; Lutz & Spek, 1998; Foces-Foces et al., 1999; Puliti & Mattia, 2001). The tricyclic system is roughly planar, and the greatest atomic displacements pertain to atoms C6 and N10, which are shifted by 0.068 (6) and 0.077 (5) Å, respectively, in opposite directions out of the best ring plane. On the whole, the edgewise profile of the acridine moiety appears slightly bent around the C9—N10 line.

The alkyl chain at N10 is initially perpendicular to the ring plane [C14—N10—C21—C22 torsion angle 88.9 (7)°] and then bends sharply at atom C24. The best planes through atoms C21/C22/C23/C24 and C24/C25—C30 are essentially normal to each other and form an angle of 98.1 (4)°.

The I- ion lies at distances of 3.04 Å from H(C9) and 3.16 Å from H(C2i) [symmetry code: (i) -x, 1 - y, 1 - z], and is 1.6235 (5) and 0.6890 (5) Å, respectively, out of the mean planes of the corresponding acridinium systems. The I-···H distances are a little shorter than the sum of the accepted van der Waals radii for I (2.15 Å) and H (1.2 Å; Whuler et al., 1980). In addition, the H atoms are properly positioned to make stabilizing interactions between the I- anion and the activated atoms C9 and C2. These interactions produce a 14-membered cyclic structure which involves pairs of cations and anions across a symmetry centre. The geometry of the C—H···I interactions, together with the symmetry codes of the donors, are given in Table 2.

A pair of cations, related by an inversion centre at (1/2,1/2,1/2), overlap their acridinium A and B rings at an interplanar distance of 3.51 Å. The dimethylamino groups are partly involved in the vertical overlap, whose extent is shown in Fig. 2 as a shaded region. Moreover, it is to be noted that each molecule of the pair related by the inversion centre at (1,1/2,0) places the terminal part of the alkyl chain (C24—C30) edgewise over the partner acridine system; the three shortest distances from the best ring plane involve atoms C25, C27 and C29, and fall in the range 3.75–3.79 Å.

The main features of the molecular packing are shown in Fig. 3. The shortest interaction between dimethylamino groups is C17···C17(-x, 2 - y, 1 - z) 3.527 (8) Å. Regarding the iododecyl chains, all the intermolecular methylene distances are normal van der Waals contacts and the shortest I···I distance is I2···I2(3 - x, -y, -z) 4.1715 (16) Å.

The steric hindrance of the alkyl chain at the pyridine N10 atom does not prevent overlap of the aromatic rings, so that the stacking interactions play a prevailing role in stabilizing the crystalline environment, as is found in most acridine structures. In comparison with the packing observed in the 10-propyl orange acridinium iodide crystal (Puliti & Mattia, 2001), the base overlap in the present structure is organized in pairs instead of infinite stacks. Moreover, the extent of the area of superposition is wider and the stacking interplanar distance (3.51 Å) is 0.12 Å shorter. This distance compares well with the average values observed in correlated structures without a substituent at the pyridine N atom (Mattia et al., 1984, 1995; Sharma & Clearfield, 2000).

Experimental top

Compound (I) was obtained as a secondary product during the synthetic process for obtaining bifunctional dyes (`dimer' molecules) formed by two acridinium orange moieties joined through a decyl chain. The method used was that described by Vitagliano et al. (1978). Single crystals of (I) were obtained by slow evaporation from ethanol.

Refinement top

All H atoms were observed in difference Fourier maps and included in the final refinements as riding atoms, with Uiso(H) = Ueq(parent atom). Aromatic and alkyl H atoms were constrained to lie 0.96 and 1.00 Å, respectively, from their parent atoms. The H atoms of the methyl groups attached to Nsp2 were refined as part of rigid groups, allowing rotation about the respective N—C bonds.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: SDP (Enraf-Nonius, 1985); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of (I) approximately on the average ring-plane, showing the atomic labelling scheme. Displacement elipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A pair of overlapped acridine cations in (I). The shading indicates the extent of the overlap.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the C—H···I interactions (drawn as thin lines) as well as the π···π overlap. Atoms marked with an asterisk (*), hash (#) or plus sign (+) are at the symmetry positions (-x, 1 - y, 1 - z), (1 - x, 1 - y, 1 - z) and (1 + x, y, z), respectively.
3,6-Bis(dimethylamino)-10-(10-iododecyl)acridinium iodide top
Crystal data top
C27H39IN3+·IZ = 2
Mr = 659.41F(000) = 656
Triclinic, P1Dx = 1.579 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 10.1338 (9) ÅCell parameters from 24 reflections
b = 11.996 (3) Åθ = 20.5–24.5°
c = 13.421 (2) ŵ = 17.93 mm1
α = 67.496 (17)°T = 298 K
β = 76.903 (11)°Needle, red
γ = 67.574 (11)°0.18 × 0.07 × 0.06 mm
V = 1387.0 (5) Å3
Data collection top
Enraf-Nonius CAD-4
diffractometer
3602 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 68.0°, θmin = 3.6°
ω/θ scans, as suggested by peak–shape analysish = 012
Absorption correction: ψ scan
(North et al., 1968)
k = 1314
Tmin = 0.281, Tmax = 0.341l = 1516
5035 measured reflections3 standard reflections every 300 reflections
5035 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0637P)2 + 2.5829P]
where P = (Fo2 + 2Fc2)/3
5035 reflections(Δ/σ)max = 0.001
293 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
C27H39IN3+·Iγ = 67.574 (11)°
Mr = 659.41V = 1387.0 (5) Å3
Triclinic, P1Z = 2
a = 10.1338 (9) ÅCu Kα radiation
b = 11.996 (3) ŵ = 17.93 mm1
c = 13.421 (2) ÅT = 298 K
α = 67.496 (17)°0.18 × 0.07 × 0.06 mm
β = 76.903 (11)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
3602 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.281, Tmax = 0.3413 standard reflections every 300 reflections
5035 measured reflections intensity decay: 2%
5035 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.09Δρmax = 0.42 e Å3
5035 reflectionsΔρmin = 0.70 e Å3
293 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.16063 (5)0.25528 (5)0.48044 (5)0.0914 (2)
I21.61085 (12)0.01425 (8)0.10554 (8)0.1628 (4)
C10.2804 (7)0.5963 (8)0.3857 (6)0.083 (2)
H10.20370.56570.39020.083*
C20.2501 (7)0.7067 (8)0.4071 (5)0.0766 (18)
H20.15260.75240.42620.077*
C30.3586 (6)0.7537 (6)0.4016 (5)0.0632 (14)
C40.5031 (6)0.6851 (6)0.3760 (5)0.0659 (15)
H40.57870.71590.37380.066*
C50.8477 (8)0.3202 (6)0.2745 (5)0.0715 (16)
H50.92500.34950.27110.071*
C60.8771 (9)0.2121 (7)0.2470 (6)0.0783 (18)
C70.7632 (10)0.1652 (8)0.2559 (6)0.089 (2)
H70.78220.08700.24280.089*
C80.6279 (10)0.2338 (8)0.2833 (6)0.094 (2)
H80.55140.20380.28600.094*
C90.4538 (8)0.4158 (8)0.3366 (5)0.0783 (19)
H90.37730.38450.34220.078*
N100.6749 (5)0.4977 (5)0.3326 (4)0.0630 (12)
C110.5352 (6)0.5704 (6)0.3538 (4)0.0606 (14)
C120.5924 (8)0.3472 (7)0.3082 (5)0.0752 (17)
C130.4223 (7)0.5266 (7)0.3569 (5)0.0663 (15)
C140.7065 (7)0.3881 (6)0.3073 (5)0.0665 (15)
N150.3279 (6)0.8605 (6)0.4237 (5)0.0789 (15)
N161.0093 (8)0.1457 (6)0.2185 (5)0.0926 (19)
C170.1815 (7)0.9278 (7)0.4604 (6)0.087 (2)
H17A0.14960.87080.53070.087*
H17B0.11540.95190.40490.087*
H17C0.17981.00670.47060.087*
C180.4383 (8)0.9107 (7)0.4232 (7)0.090 (2)
H18A0.46040.96490.34790.090*
H18B0.52710.83820.44930.090*
H18C0.40330.96350.47220.090*
C191.0463 (12)0.0340 (9)0.1866 (9)0.131 (4)
H19A1.00590.05940.11670.131*
H19B1.00560.03010.24400.131*
H19C1.15310.00430.17710.131*
C201.1273 (10)0.1942 (9)0.2009 (8)0.109 (3)
H20A1.11950.22850.26000.109*
H20B1.12280.26410.12940.109*
H20C1.22050.12350.20120.109*
C210.7964 (6)0.5331 (6)0.3400 (5)0.0660 (15)
H21A0.87830.45340.36720.066*
H21B0.76680.57910.39390.066*
C220.8467 (7)0.6166 (7)0.2330 (6)0.0770 (17)
H22A0.76700.69860.20700.077*
H22B0.87350.57260.17780.077*
C230.9760 (8)0.6450 (9)0.2450 (7)0.094 (2)
H23A0.94560.69470.29620.094*
H23B1.05070.56210.27840.094*
C241.0435 (10)0.7187 (9)0.1403 (8)0.110 (3)
H24A1.12070.73940.15750.110*
H24B0.96900.80120.10600.110*
C251.1079 (9)0.6461 (9)0.0591 (7)0.104 (3)
H25A1.02980.62650.04210.104*
H25B1.14190.70410.00960.104*
C261.2307 (10)0.5230 (9)0.0937 (7)0.102 (3)
H26A1.19640.46090.15870.102*
H26B1.30790.54010.11480.102*
C271.2932 (10)0.4636 (9)0.0029 (7)0.103 (3)
H27A1.32390.52700.06320.103*
H27B1.21720.44300.01600.103*
C281.4228 (11)0.3408 (10)0.0370 (8)0.114 (3)
H28A1.50390.36230.04710.114*
H28B1.39590.28060.10730.114*
C291.4687 (14)0.2787 (10)0.0487 (8)0.132 (4)
H29A1.47660.34500.12090.132*
H29B1.39270.24500.04940.132*
C301.6090 (13)0.1714 (12)0.0337 (10)0.150 (4)
H30A1.68440.20530.03200.150*
H30B1.63600.14200.09810.150*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0550 (3)0.0944 (4)0.1362 (5)0.0202 (2)0.0048 (2)0.0565 (3)
I20.1966 (9)0.1093 (5)0.1913 (9)0.0203 (5)0.0750 (7)0.0567 (6)
C10.063 (4)0.108 (6)0.083 (5)0.036 (4)0.015 (3)0.025 (4)
C20.048 (3)0.107 (5)0.067 (4)0.022 (3)0.010 (3)0.022 (4)
C30.051 (3)0.069 (4)0.061 (4)0.016 (3)0.012 (3)0.013 (3)
C40.056 (3)0.066 (4)0.067 (4)0.014 (3)0.012 (3)0.016 (3)
C50.081 (4)0.066 (4)0.059 (4)0.022 (3)0.019 (3)0.007 (3)
C60.096 (5)0.071 (4)0.068 (4)0.023 (4)0.018 (4)0.022 (3)
C70.114 (6)0.079 (5)0.078 (5)0.025 (4)0.012 (4)0.035 (4)
C80.127 (7)0.101 (6)0.083 (5)0.062 (5)0.017 (5)0.034 (4)
C90.077 (4)0.109 (5)0.059 (4)0.049 (4)0.016 (3)0.014 (4)
N100.060 (3)0.066 (3)0.061 (3)0.022 (2)0.003 (2)0.018 (2)
C110.053 (3)0.070 (4)0.050 (3)0.020 (3)0.005 (2)0.010 (3)
C120.085 (5)0.086 (5)0.057 (4)0.042 (4)0.013 (3)0.009 (3)
C130.062 (3)0.083 (4)0.056 (3)0.030 (3)0.010 (3)0.017 (3)
C140.077 (4)0.076 (4)0.052 (3)0.031 (3)0.007 (3)0.020 (3)
N150.052 (3)0.082 (4)0.088 (4)0.011 (3)0.007 (3)0.024 (3)
N160.106 (5)0.076 (4)0.089 (4)0.009 (4)0.015 (4)0.038 (3)
C170.070 (4)0.086 (5)0.090 (5)0.006 (4)0.000 (4)0.035 (4)
C180.072 (4)0.074 (4)0.120 (6)0.011 (4)0.003 (4)0.045 (4)
C190.134 (8)0.103 (7)0.159 (10)0.006 (6)0.037 (7)0.068 (7)
C200.104 (6)0.097 (6)0.116 (7)0.018 (5)0.014 (5)0.052 (5)
C210.053 (3)0.069 (4)0.071 (4)0.016 (3)0.011 (3)0.019 (3)
C220.059 (4)0.083 (4)0.081 (4)0.020 (3)0.006 (3)0.022 (4)
C230.079 (5)0.125 (7)0.103 (6)0.054 (5)0.007 (4)0.053 (5)
C240.106 (6)0.118 (7)0.117 (7)0.054 (6)0.007 (5)0.043 (6)
C250.083 (5)0.127 (7)0.093 (6)0.036 (5)0.003 (4)0.031 (5)
C260.117 (7)0.117 (7)0.097 (6)0.065 (6)0.005 (5)0.043 (5)
C270.096 (6)0.114 (7)0.092 (6)0.045 (5)0.003 (5)0.021 (5)
C280.103 (6)0.136 (8)0.096 (6)0.046 (6)0.002 (5)0.032 (6)
C290.195 (12)0.107 (7)0.109 (7)0.062 (8)0.001 (7)0.047 (6)
C300.123 (9)0.159 (11)0.157 (11)0.019 (8)0.012 (8)0.082 (9)
Geometric parameters (Å, º) top
I2—C302.083 (13)C18—H18C1.0000
C1—C21.368 (10)C19—H19A1.0000
C1—C131.412 (10)C19—H19B1.0000
C1—H10.9600C19—H19C1.0000
C2—C31.392 (9)C20—H20A1.0000
C2—H20.9600C20—H20B1.0000
C3—N151.331 (8)C20—H20C1.0000
C3—C41.417 (8)C21—C221.511 (9)
C4—C111.421 (9)C21—H21A1.0000
C4—H40.9600C21—H21B1.0000
C5—C61.389 (9)C22—C231.528 (9)
C5—C141.416 (9)C22—H22A1.0000
C5—H50.9600C22—H22B1.0000
C6—N161.327 (10)C23—C241.516 (11)
C6—C71.429 (11)C23—H23A1.0000
C7—C81.355 (11)C23—H23B1.0000
C7—H70.9600C24—C251.531 (12)
C8—C121.419 (10)C24—H24A1.0000
C8—H80.9600C24—H24B1.0000
C9—C131.363 (10)C25—C261.510 (12)
C9—C121.382 (10)C25—H25A1.0000
C9—H90.9600C25—H25B1.0000
N10—C111.382 (7)C26—C271.538 (12)
N10—C141.385 (8)C26—H26A1.0000
N10—C211.481 (7)C26—H26B1.0000
C11—C131.416 (8)C27—C281.544 (13)
C12—C141.415 (9)C27—H27A1.0000
N15—C181.458 (9)C27—H27B1.0000
N15—C171.468 (8)C28—C291.497 (13)
N16—C191.450 (10)C28—H28A1.0000
N16—C201.457 (11)C28—H28B1.0000
C17—H17A1.0000C29—C301.501 (15)
C17—H17B1.0000C29—H29A1.0000
C17—H17C1.0000C29—H29B1.0000
C18—H18A1.0000C30—H30A1.0000
C18—H18B1.0000C30—H30B1.0000
C2—C1—C13121.3 (6)N16—C20—H20A109.5
C2—C1—H1119.4N16—C20—H20B109.5
C13—C1—H1119.4H20A—C20—H20B109.5
C1—C2—C3120.9 (6)N16—C20—H20C109.5
C1—C2—H2119.5H20A—C20—H20C109.5
C3—C2—H2119.5H20B—C20—H20C109.5
N15—C3—C2120.3 (6)N10—C21—C22113.2 (5)
N15—C3—C4119.8 (6)N10—C21—H21A108.9
C2—C3—C4119.8 (6)C22—C21—H21A108.9
C3—C4—C11119.4 (6)N10—C21—H21B108.9
C3—C4—H4120.3C22—C21—H21B108.9
C11—C4—H4120.3H21A—C21—H21B107.8
C6—C5—C14121.6 (7)C21—C22—C23110.6 (6)
C6—C5—H5119.2C21—C22—H22A109.5
C14—C5—H5119.2C23—C22—H22A109.5
N16—C6—C5122.2 (7)C21—C22—H22B109.5
N16—C6—C7118.3 (7)C23—C22—H22B109.5
C5—C6—C7119.4 (7)H22A—C22—H22B108.1
C8—C7—C6118.4 (7)C24—C23—C22115.0 (7)
C8—C7—H7120.8C24—C23—H23A108.5
C6—C7—H7120.8C22—C23—H23A108.5
C7—C8—C12124.0 (8)C24—C23—H23B108.5
C7—C8—H8118.0C22—C23—H23B108.5
C12—C8—H8118.0H23A—C23—H23B107.5
C13—C9—C12122.0 (6)C23—C24—C25113.5 (8)
C13—C9—H9119.0C23—C24—H24A108.9
C12—C9—H9119.0C25—C24—H24A108.9
C11—N10—C14121.7 (5)C23—C24—H24B108.9
C11—N10—C21120.5 (5)C25—C24—H24B108.9
C14—N10—C21117.8 (5)H24A—C24—H24B107.7
N10—C11—C13118.9 (6)C26—C25—C24116.5 (8)
N10—C11—C4121.5 (5)C26—C25—H25A108.2
C13—C11—C4119.5 (6)C24—C25—H25A108.2
C9—C12—C14119.2 (7)C26—C25—H25B108.2
C9—C12—C8123.3 (7)C24—C25—H25B108.2
C14—C12—C8117.5 (7)H25A—C25—H25B107.3
C9—C13—C1121.7 (6)C25—C26—C27111.8 (8)
C9—C13—C11119.3 (6)C25—C26—H26A109.2
C1—C13—C11118.9 (6)C27—C26—H26A109.2
N10—C14—C12118.6 (6)C25—C26—H26B109.2
N10—C14—C5122.3 (6)C27—C26—H26B109.2
C12—C14—C5119.0 (6)H26A—C26—H26B107.9
C3—N15—C18122.4 (5)C26—C27—C28111.7 (8)
C3—N15—C17121.5 (6)C26—C27—H27A109.3
C18—N15—C17115.9 (6)C28—C27—H27A109.3
C6—N16—C19124.8 (8)C26—C27—H27B109.3
C6—N16—C20120.3 (7)C28—C27—H27B109.3
C19—N16—C20114.2 (8)H27A—C27—H27B107.9
N15—C17—H17A109.5C29—C28—C27109.5 (9)
N15—C17—H17B109.5C29—C28—H28A109.8
H17A—C17—H17B109.5C27—C28—H28A109.8
N15—C17—H17C109.5C29—C28—H28B109.8
H17A—C17—H17C109.5C27—C28—H28B109.8
H17B—C17—H17C109.5H28A—C28—H28B108.2
N15—C18—H18A109.5C28—C29—C30114.0 (10)
N15—C18—H18B109.5C28—C29—H29A108.7
H18A—C18—H18B109.5C30—C29—H29A108.7
N15—C18—H18C109.5C28—C29—H29B108.7
H18A—C18—H18C109.5C30—C29—H29B108.7
H18B—C18—H18C109.5H29A—C29—H29B107.6
N16—C19—H19A109.5C29—C30—I2115.3 (8)
N16—C19—H19B109.5C29—C30—H30A108.5
H19A—C19—H19B109.5I2—C30—H30A108.5
N16—C19—H19C109.5C29—C30—H30B108.5
H19A—C19—H19C109.5I2—C30—H30B108.5
H19B—C19—H19C109.5H30A—C30—H30B107.5
C13—C1—C2—C30.2 (11)C21—N10—C14—C12175.1 (5)
C1—C2—C3—N15179.3 (6)C11—N10—C14—C5173.3 (5)
C1—C2—C3—C41.5 (10)C21—N10—C14—C58.7 (8)
N15—C3—C4—C11179.3 (6)C9—C12—C14—N101.5 (9)
C2—C3—C4—C111.5 (9)C8—C12—C14—N10179.3 (6)
C14—C5—C6—N16178.4 (6)C9—C12—C14—C5177.8 (6)
C14—C5—C6—C72.4 (10)C8—C12—C14—C54.4 (9)
N16—C6—C7—C8179.0 (7)C6—C5—C14—N10178.5 (6)
C5—C6—C7—C84.9 (11)C6—C5—C14—C122.3 (9)
C6—C7—C8—C122.7 (12)C2—C3—N15—C18177.5 (6)
C14—N10—C11—C134.4 (8)C4—C3—N15—C180.3 (10)
C21—N10—C11—C13173.5 (5)C2—C3—N15—C173.6 (10)
C14—N10—C11—C4177.8 (5)C4—C3—N15—C17174.2 (6)
C21—N10—C11—C44.2 (8)C5—C6—N16—C19178.5 (8)
C3—C4—C11—N10177.4 (5)C7—C6—N16—C195.4 (12)
C3—C4—C11—C130.3 (9)C5—C6—N16—C208.3 (11)
C13—C9—C12—C144.4 (10)C7—C6—N16—C20175.6 (7)
C13—C9—C12—C8178.0 (6)C11—N10—C21—C2293.0 (7)
C7—C8—C12—C9179.7 (7)C14—N10—C21—C2288.9 (7)
C7—C8—C12—C142.0 (11)N10—C21—C22—C23177.6 (6)
C12—C9—C13—C1179.9 (6)C21—C22—C23—C24174.9 (7)
C12—C9—C13—C112.9 (10)C22—C23—C24—C2563.9 (11)
C2—C1—C13—C9179.3 (6)C23—C24—C25—C2663.0 (11)
C2—C1—C13—C112.0 (10)C24—C25—C26—C27176.1 (7)
N10—C11—C13—C91.5 (9)C25—C26—C27—C28177.6 (8)
C4—C11—C13—C9179.3 (6)C26—C27—C28—C29173.5 (8)
N10—C11—C13—C1175.8 (6)C27—C28—C29—C30169.9 (9)
C4—C11—C13—C12.0 (9)C28—C29—C30—I264.0 (12)
C11—N10—C14—C122.9 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···I1i0.963.164.005 (5)148
C9—H9···I10.963.043.896 (7)150
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC27H39IN3+·I
Mr659.41
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.1338 (9), 11.996 (3), 13.421 (2)
α, β, γ (°)67.496 (17), 76.903 (11), 67.574 (11)
V3)1387.0 (5)
Z2
Radiation typeCu Kα
µ (mm1)17.93
Crystal size (mm)0.18 × 0.07 × 0.06
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.281, 0.341
No. of measured, independent and
observed [I > 2σ(I)] reflections
5035, 5035, 3602
Rint0.000
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.160, 1.09
No. of reflections5035
No. of parameters293
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.70

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SDP (Enraf-Nonius, 1985), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected bond and torsion angles (º) top
C11—N10—C14121.7 (5)C18—N15—C17115.9 (6)
C11—N10—C21120.5 (5)C6—N16—C19124.8 (8)
C14—N10—C21117.8 (5)C6—N16—C20120.3 (7)
C3—N15—C18122.4 (5)C19—N16—C20114.2 (8)
C3—N15—C17121.5 (6)
C2—C3—N15—C18177.5 (6)C23—C24—C25—C2663.0 (11)
C7—C6—N16—C20175.6 (7)C24—C25—C26—C27176.1 (7)
C14—N10—C21—C2288.9 (7)C25—C26—C27—C28177.6 (8)
N10—C21—C22—C23177.6 (6)C26—C27—C28—C29173.5 (8)
C21—C22—C23—C24174.9 (7)C27—C28—C29—C30169.9 (9)
C22—C23—C24—C2563.9 (11)C28—C29—C30—I264.0 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···I1i0.963.1604.005 (5)148
C9—H9···I10.963.0363.896 (7)150
Symmetry code: (i) x, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds