Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of three fluoro-substituted acetoacetanilides, namely 2'-, 3'- and 4'-fluoro­acetoacetanilide, all C10H10FNO2, are presented and discussed. We observe a planar structure with intramolecular hydrogen bonding when the F atom is in the ortho position of the aromatic ring, and a twisted structure with intermolecular hydrogen bonding when the F atom is in the meta or para positions. It can be predicted which of these two structural motifs will be adopted by considering the position of any aromatic substituents. In this regard, fluorine appears to mimic the steric effect of a larger substituent, which we attribute to its high electronegativity.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102016086/gd1216sup1.cif
Contains datablocks II, III, IV, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102016086/gd1216IIsup2.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102016086/gd1216IIIsup3.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102016086/gd1216IVsup4.hkl
Contains datablock IV

CCDC references: 199424; 199425; 199426

Comment top

Acetoacetanilides are common starting materials in the synthesis of azo pigments. Typically during synthesis of such a pigment, a diazonium salt component is added to a slightly acidic aqueous slurry of the anilide. Thus, the solid-state properties of the anilide may play a role in determining the final quality of the pigment. Acetoacetanilide, (I), and compounds derived from it by substitution around the aryl ring, thus give rise to a wide range of commercial azo pigments. Such azo pigments are of varying yellow and orange shades and moderate fastness properties, and find applications in a range of systems including the colouration of inks, paints and plastics (Herbst & Hunger, 1993).

We recently compared the structures of some commercially important acetoacetanilides with those of the monoazo pigments derived from them (Chisholm et al., 2000). To expand our knowledge of the packing motifs for such compounds further, we have prepared the fluorinated compounds 2'-fluoroacetoacetanilide, (II), 3'-fluoroacetoacetanilide, (III) and 4'-fluoroacetoacetanilide, (IV), and determined single-crystal structures for each of them. \sch

The presence of F in molecular crystals and its influence on crystal packing have been comparatively rarely studied [for examples, see Hayashi & Mori (1998) and Renak et al. (1999)], given the wealth of information available on the effect of the F atom in biological chemistry (Filler et al., 1993). The interactions of organic F with other atoms within a crystal lattice are weak, and indeed it has been observed that, when organically bonded, F hardly ever acts as a hydrogen-bond acceptor (Dunitz & Taylor, 1997). However, it is known that weak interactions can still play important roles in molecular recognition, self-assembly and other structural processes (MacDonald & Whitesides, 1994).

Each of the compounds (II), (III) and (IV) adopts a trans planar configuration at the amide (Figs. 1, 2 and 4). However, the nature of the hydrogen bonding present then defines the orientation of the ketone carbonyl with respect to the amide. In the ortho-substituted compound, (II), intramolecular hydrogen bonding between the ketone carbonyl and the amide N—H is present. This serves to give a planar arrangement, as shown by the pseudo-torsion angle between the two carbonyls [O1—C2—C4—O2 - 179.0 (2)°]. The meta- and para-substituted compounds, however, feature intermolecular hydrogen bonding between N—H and the amide carbonyl (Fig. 3). Here, the requirement to adopt a planar arrangement is lifted and the equivalent torsion angles are -62.2 (2)° for (III), and -64.0 (2) and -74.8 (2)° for the two independent conformations of (IV). A further difference is that, in (II), the aromatic ring plane is approximately coplanar with the amide plane, whilst both (III) and (IV) exhibit more twisted geometries (see torsion angles in Tables 1, 3 and 5).

Thus, the three compounds are differentiated by the relative conformation of both the aromatic and ketone groups with respect to the amide, and by differences in hydrogen bonding. Similar effects were observed in previous work (Chisholm et al., 2000) on methyl-substituted analogues. Therein, we rationalized that a methyl substituent ortho to the N—H group sterically disfavoured intermolecular interactions and forced the adoption of a sterically disfavoured planar conformation. That this is a disfavoured strained conformation is shown by a widening of the C2—C3—C4 angle, with values of 122.13 (9) and 122.5 (2)° in planar (II) and its methyl analogue, compared with 112.6 (2)° for (III), and 110.6 (1) or 110.2 (2)° for (IV). A steric explanation is less likely to be the case with F substitution, due to the similarity in van der Waals radii between H and F. In (II), an explanation may be the high electronegativity of F, which disfavours the approach of the O atom to form an intermolecular hydrogen bond. The coplanarity of the amide and the aromatic ring is stabilized by an F1···H1N close contact of 2.29 (2) Å. That this is attractive and not incidental may be indicated by the closure of the N1—C5—C10 angle to 117.2 (1)°. We find no evidence of intermolecular H···F interactions in any of these compounds.

In conclusion, the structures presented herein provide further evidence for two broad conformational motifs for acetoacetanilides, namely, a planar intramolecular hydrogen-bonded structure and a non-planar intermolecular hydrogen-bonded structure. Which motif is present is dependent on the position of the substituents on the phenyl ring. Whilst the small size of F may mitigate against steric effects, its high electronegativity may serve to mimic the effect of a larger group in preventing the close approach of a second molecule to form an intermolecular hydrogen bond.

Experimental top

All starting materials were purchased from Aldrich and used as received, except for xylene (mixture of isomers), which was purified by washing with concentrated sulfuric acid and dried over anhydrous CaCl2. The general synthesis of (II), (III) and (IV) was carried out as follows. A 250 ml three-necked round-bottomed flask was fitted with a magnetic stirrer, a dropping funnel, and a still head and condenser set for downward distillation. To this apparatus were added ethyl acetoacetate (12.9 g, 0.1 mol) and xylene (25 ml). The flask was heated in an oil bath at 420 K with stirring. The appropriate fluorinated aniline (0.09 mol) was then added via the dropping funnel and ethanol began to distil. The reaction was continued until the temperature at the still head dropped below the boiling point of ethanol. On cooling to room temperature, off-white crystalline needles formed, which were isolated by filtration and washed with a small amount of petroleum ether (333–353 K), with typical yields of 55–65%. For (II), m.p. 332–334 K; IR spectroscopic data (νmax, Nujol, cm-1): 1707 (CO), 1675 (amide 1), 1620 (aromatic), 1551 (amide 2). For (III), m.p. 339–341 K; IR spectroscopic data (νmax, Nujol, cm-1): 1720 (CO), 1663 (amide 1), 1614 (aromatic), 1548 (amide 2). For (IV), m.p. 364–366 K; IR spectroscopic data (νmax, Nujol, cm-1): 1720 (CO), 1665 (amide 1), 1618 (aromatic), 1552 (amide 2).

Refinement top

In (III), all H atoms were refined isotropically. However, in (II) and (IV), only the amide H atom was refined isotropically, with all other H atoms being placed in calculated positions, with C—H = 0.95–0.99 Å Is this correct?, and refined in riding modes. The methyl H atoms in (II) were modelled as being rotationally disordered over two sites. The refined N—H distances were 0.872 (19)–0.892 (19) Å and the refined C—H distances were 0.90 (2)–1.018 (17) Å.

Computing details top

For all compounds, data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the molecule of (II), showing the atom-numbering scheme and with the intramolecular contacts as dashed lines. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecular structure of (III). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The intermolecular hydrogen-bonding in (III), forming a molecular chain that propogates along the a direction. The atom labelled with an asterisk (*) is at symmetry position (x + 1/2, y, 1/2 - z).
[Figure 4] Fig. 4. A view of the asymmetric unit of (IV), showing the twisted nature of both crystallographically independent molecules and their atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
(II) 2'-fluoroacetoacetanilide top
Crystal data top
C10H10FNO2F(000) = 408
Mr = 195.19Dx = 1.416 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2169 reflections
a = 7.3215 (2) Åθ = 1.7–27.5°
b = 12.0480 (3) ŵ = 0.11 mm1
c = 10.5082 (3) ÅT = 150 K
β = 98.877 (1)°Cut prism, colourless
V = 915.82 (4) Å30.35 × 0.30 × 0.20 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
1812 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 27.5°, θmin = 2.8°
ϕ and ω scansh = 09
3637 measured reflectionsk = 1514
2092 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0485P)2 + 0.2047P]
where P = (Fo2 + 2Fc2)/3
2092 reflections(Δ/σ)max < 0.001
132 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C10H10FNO2V = 915.82 (4) Å3
Mr = 195.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3215 (2) ŵ = 0.11 mm1
b = 12.0480 (3) ÅT = 150 K
c = 10.5082 (3) Å0.35 × 0.30 × 0.20 mm
β = 98.877 (1)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1812 reflections with I > 2σ(I)
3637 measured reflectionsRint = 0.015
2092 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.23 e Å3
2092 reflectionsΔρmin = 0.18 e Å3
132 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.41992 (9)0.03293 (6)0.70364 (6)0.03238 (19)
O10.30657 (11)0.22681 (7)0.57662 (7)0.0297 (2)
O20.08600 (13)0.01994 (7)0.26742 (8)0.0392 (2)
N10.23391 (12)0.02392 (8)0.47517 (8)0.0230 (2)
H1N0.2760 (18)0.0721 (13)0.5359 (13)0.035 (4)*
C10.23139 (18)0.38998 (10)0.45386 (13)0.0368 (3)
H1A0.31950.42590.52100.044*0.50
H1B0.26390.40760.36910.044*0.50
H1C0.10640.41700.45860.044*0.50
H1D0.14030.40780.37810.044*0.50
H1E0.19600.42600.53000.044*0.50
H1F0.35350.41670.44050.044*0.50
C20.23817 (14)0.26668 (9)0.47362 (10)0.0247 (2)
C30.15356 (14)0.19743 (9)0.35946 (10)0.0237 (2)
H3A0.02270.22060.33790.028*
H3B0.21510.21970.28590.028*
C40.15473 (14)0.07137 (9)0.36299 (10)0.0238 (2)
C50.25128 (13)0.08929 (9)0.50507 (10)0.0216 (2)
C60.17827 (14)0.17620 (9)0.42532 (10)0.0254 (2)
H60.11160.16060.34240.030*
C70.20264 (15)0.28577 (10)0.46671 (11)0.0291 (3)
H70.15290.34430.41140.035*
C80.29858 (15)0.31058 (10)0.58765 (11)0.0294 (3)
H80.31350.38560.61530.035*
C90.37292 (14)0.22494 (10)0.66822 (10)0.0274 (3)
H90.43970.24050.75120.033*
C100.34798 (13)0.11756 (9)0.62566 (10)0.0238 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0349 (4)0.0359 (4)0.0231 (3)0.0037 (3)0.0056 (3)0.0024 (3)
O10.0346 (4)0.0300 (4)0.0222 (4)0.0020 (3)0.0026 (3)0.0014 (3)
O20.0557 (6)0.0326 (5)0.0236 (4)0.0013 (4)0.0118 (4)0.0025 (3)
N10.0255 (4)0.0243 (5)0.0180 (4)0.0007 (3)0.0001 (3)0.0017 (4)
C10.0407 (7)0.0281 (6)0.0391 (7)0.0003 (5)0.0014 (5)0.0016 (5)
C20.0220 (5)0.0269 (5)0.0250 (5)0.0009 (4)0.0031 (4)0.0003 (4)
C30.0228 (5)0.0282 (6)0.0194 (5)0.0005 (4)0.0013 (4)0.0022 (4)
C40.0225 (5)0.0297 (6)0.0189 (5)0.0003 (4)0.0024 (4)0.0001 (4)
C50.0194 (4)0.0260 (5)0.0200 (5)0.0011 (4)0.0047 (4)0.0004 (4)
C60.0269 (5)0.0291 (6)0.0200 (5)0.0003 (4)0.0033 (4)0.0021 (4)
C70.0321 (6)0.0278 (6)0.0286 (6)0.0013 (4)0.0085 (5)0.0034 (4)
C80.0292 (5)0.0284 (6)0.0323 (6)0.0042 (4)0.0101 (5)0.0045 (5)
C90.0224 (5)0.0358 (6)0.0242 (5)0.0039 (4)0.0043 (4)0.0063 (4)
C100.0198 (5)0.0311 (6)0.0201 (5)0.0008 (4)0.0022 (4)0.0017 (4)
Geometric parameters (Å, º) top
F1—C101.3621 (12)C3—C41.5191 (15)
O1—C21.2189 (13)C3—H3A0.9900
O2—C41.2205 (13)C3—H3B0.9900
N1—C41.3571 (13)C5—C101.3951 (14)
N1—C51.4011 (14)C5—C61.3950 (15)
N1—H1N0.883 (15)C6—C71.3927 (16)
C1—C21.4997 (16)C6—H60.9500
C1—H1A0.9800C7—C81.3865 (16)
C1—H1B0.9800C7—H70.9500
C1—H1C0.9800C8—C91.3912 (17)
C1—H1D0.9800C8—H80.9500
C1—H1E0.9800C9—C101.3718 (16)
C1—H1F0.9800C9—H90.9500
C2—C31.5131 (14)
C4—N1—C5128.08 (9)C2—C3—C4122.13 (9)
C4—N1—H1N113.9 (9)C2—C3—H3A106.8
C5—N1—H1N118.0 (9)C4—C3—H3A106.8
C2—C1—H1A109.5C2—C3—H3B106.8
C2—C1—H1B109.5C4—C3—H3B106.8
H1A—C1—H1B109.5H3A—C3—H3B106.6
C2—C1—H1C109.5O2—C4—N1124.57 (11)
H1A—C1—H1C109.5O2—C4—C3119.17 (10)
H1B—C1—H1C109.5N1—C4—C3116.26 (9)
C2—C1—H1D109.5C10—C5—C6117.14 (10)
H1A—C1—H1D141.1C10—C5—N1117.20 (10)
H1B—C1—H1D56.3C6—C5—N1125.66 (10)
H1C—C1—H1D56.3C7—C6—C5120.34 (10)
C2—C1—H1E109.5C7—C6—H6119.8
H1A—C1—H1E56.3C5—C6—H6119.8
H1B—C1—H1E141.1C8—C7—C6120.86 (11)
H1C—C1—H1E56.3C8—C7—H7119.6
H1D—C1—H1E109.5C6—C7—H7119.6
C2—C1—H1F109.5C7—C8—C9119.55 (11)
H1A—C1—H1F56.3C7—C8—H8120.2
H1B—C1—H1F56.3C9—C8—H8120.2
H1C—C1—H1F141.1C10—C9—C8118.76 (10)
H1D—C1—H1F109.5C10—C9—H9120.6
H1E—C1—H1F109.5C8—C9—H9120.6
O1—C2—C1120.90 (10)F1—C10—C9119.35 (9)
O1—C2—C3123.27 (10)F1—C10—C5117.30 (10)
C1—C2—C3115.83 (9)C9—C10—C5123.35 (10)
O1—C2—C3—C42.63 (16)C5—C6—C7—C80.36 (16)
C1—C2—C3—C4178.15 (10)C6—C7—C8—C90.60 (16)
C5—N1—C4—O20.84 (17)C7—C8—C9—C100.40 (16)
C5—N1—C4—C3179.04 (9)C8—C9—C10—F1179.94 (9)
C2—C3—C4—O2179.25 (10)C8—C9—C10—C50.04 (16)
C2—C3—C4—N10.86 (14)C6—C5—C10—F1179.82 (8)
C4—N1—C5—C10176.57 (9)N1—C5—C10—F10.96 (13)
C4—N1—C5—C64.27 (17)C6—C5—C10—C90.28 (15)
C10—C5—C6—C70.08 (15)N1—C5—C10—C9178.95 (9)
N1—C5—C6—C7179.07 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.883 (15)1.917 (16)2.6869 (12)144.7 (13)
(III) 3'-fluoroacetoacetanilide top
Crystal data top
C10H10FNO2F(000) = 816
Mr = 195.19Dx = 1.380 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2458 reflections
a = 9.4933 (3) Åθ = 1.3–27.5°
b = 9.7792 (3) ŵ = 0.11 mm1
c = 20.2345 (7) ÅT = 150 K
V = 1878.51 (11) Å3Cut plate, colourless
Z = 80.50 × 0.30 × 0.05 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1387 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 27.5°, θmin = 2.9°
ϕ and ω scansh = 1212
3999 measured reflectionsk = 1212
2158 independent reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.0664P]
where P = (Fo2 + 2Fc2)/3
2158 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C10H10FNO2V = 1878.51 (11) Å3
Mr = 195.19Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.4933 (3) ŵ = 0.11 mm1
b = 9.7792 (3) ÅT = 150 K
c = 20.2345 (7) Å0.50 × 0.30 × 0.05 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1387 reflections with I > 2σ(I)
3999 measured reflectionsRint = 0.044
2158 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.104All H-atom parameters refined
S = 1.02Δρmax = 0.18 e Å3
2158 reflectionsΔρmin = 0.21 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.03629 (9)0.39731 (10)0.08777 (4)0.0366 (3)
O10.25883 (13)0.13894 (13)0.37141 (6)0.0402 (3)
O20.06376 (10)0.05021 (13)0.24909 (5)0.0363 (3)
N10.27845 (14)0.09721 (14)0.20457 (6)0.0259 (3)
H1N0.370 (2)0.0787 (17)0.2078 (8)0.035 (5)*
C10.3917 (2)0.0507 (2)0.40981 (10)0.0386 (5)
H1A0.366 (2)0.146 (3)0.4141 (10)0.062 (7)*
H1B0.482 (3)0.056 (3)0.3952 (11)0.075 (8)*
H1C0.394 (2)0.005 (2)0.4517 (12)0.064 (7)*
C20.30144 (16)0.02397 (18)0.36163 (8)0.0273 (4)
C30.26651 (17)0.05238 (18)0.29890 (8)0.0253 (4)
H3A0.3500 (18)0.0902 (17)0.2826 (8)0.029 (4)*
H3B0.2102 (17)0.1299 (17)0.3103 (8)0.031 (5)*
C40.19230 (15)0.03588 (17)0.24888 (7)0.0250 (4)
C50.23996 (14)0.17868 (16)0.14999 (7)0.0232 (4)
C60.11316 (16)0.24979 (17)0.14672 (8)0.0252 (4)
H60.0467 (16)0.2441 (15)0.1802 (7)0.026 (4)*
C70.08714 (15)0.32580 (17)0.09095 (8)0.0262 (4)
C80.17729 (17)0.33549 (17)0.03824 (8)0.0292 (4)
H80.1454 (16)0.3909 (17)0.0017 (9)0.029 (4)*
C90.30320 (18)0.26480 (19)0.04270 (8)0.0333 (4)
H90.3750 (16)0.2711 (17)0.0060 (8)0.037 (5)*
C100.33527 (17)0.18840 (18)0.09780 (8)0.0294 (4)
H100.4221 (19)0.1432 (18)0.1014 (8)0.035 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0276 (5)0.0418 (6)0.0404 (6)0.0074 (5)0.0022 (4)0.0064 (5)
O10.0564 (8)0.0268 (7)0.0372 (7)0.0071 (6)0.0023 (6)0.0027 (6)
O20.0176 (6)0.0546 (8)0.0368 (7)0.0003 (6)0.0021 (5)0.0094 (6)
N10.0163 (7)0.0342 (9)0.0271 (7)0.0017 (6)0.0008 (5)0.0046 (6)
C10.0468 (12)0.0337 (12)0.0353 (11)0.0021 (10)0.0108 (9)0.0007 (10)
C20.0275 (8)0.0253 (10)0.0292 (8)0.0023 (8)0.0023 (7)0.0015 (7)
C30.0215 (8)0.0245 (9)0.0299 (9)0.0012 (8)0.0024 (7)0.0001 (7)
C40.0202 (8)0.0279 (9)0.0270 (8)0.0010 (7)0.0013 (7)0.0020 (7)
C50.0211 (8)0.0232 (9)0.0252 (8)0.0028 (7)0.0011 (6)0.0021 (7)
C60.0214 (8)0.0299 (10)0.0244 (8)0.0006 (7)0.0007 (7)0.0033 (8)
C70.0215 (8)0.0261 (9)0.0312 (9)0.0007 (7)0.0048 (7)0.0042 (8)
C80.0361 (9)0.0277 (9)0.0239 (8)0.0005 (8)0.0011 (7)0.0002 (8)
C90.0365 (9)0.0334 (10)0.0299 (9)0.0004 (8)0.0094 (8)0.0006 (8)
C100.0244 (8)0.0276 (10)0.0361 (10)0.0030 (8)0.0056 (7)0.0001 (8)
Geometric parameters (Å, º) top
F1—C71.3661 (17)C3—H3A0.934 (17)
O1—C21.211 (2)C3—H3B0.956 (17)
O2—C41.2283 (16)C5—C61.392 (2)
N1—C41.3536 (19)C5—C101.394 (2)
N1—C51.4101 (19)C6—C71.374 (2)
N1—H1N0.892 (19)C6—H60.927 (15)
C1—C21.489 (3)C7—C81.371 (2)
C1—H1A0.96 (2)C8—C91.384 (2)
C1—H1B0.90 (2)C8—H81.018 (17)
C1—H1C0.96 (2)C9—C101.376 (2)
C2—C31.509 (2)C9—H91.010 (16)
C3—C41.505 (2)C10—H100.938 (18)
C4—N1—C5127.78 (13)N1—C4—C3114.63 (13)
C4—N1—H1N116.8 (11)C6—C5—C10119.44 (15)
C5—N1—H1N115.2 (11)C6—C5—N1122.93 (13)
C2—C1—H1A112.8 (12)C10—C5—N1117.63 (14)
C2—C1—H1B110.8 (15)C7—C6—C5117.70 (14)
H1A—C1—H1B102 (2)C7—C6—H6120.7 (9)
C2—C1—H1C111.2 (12)C5—C6—H6121.6 (9)
H1A—C1—H1C112.4 (18)F1—C7—C8117.61 (14)
H1B—C1—H1C106.8 (19)F1—C7—C6118.03 (13)
O1—C2—C1122.71 (16)C8—C7—C6124.36 (15)
O1—C2—C3121.55 (15)C7—C8—C9117.00 (16)
C1—C2—C3115.74 (15)C7—C8—H8117.9 (9)
C4—C3—C2112.62 (14)C9—C8—H8125.0 (9)
C4—C3—H3A112.8 (10)C10—C9—C8121.01 (15)
C2—C3—H3A107.8 (10)C10—C9—H9118.7 (9)
C4—C3—H3B110.8 (10)C8—C9—H9120.2 (9)
C2—C3—H3B108.2 (10)C9—C10—C5120.47 (15)
H3A—C3—H3B104.2 (14)C9—C10—H10120.9 (10)
O2—C4—N1123.51 (14)C5—C10—H10118.7 (10)
O2—C4—C3121.87 (14)
O1—C2—C3—C47.5 (2)N1—C5—C6—C7179.94 (14)
C1—C2—C3—C4172.10 (16)C5—C6—C7—F1179.16 (13)
C5—N1—C4—O24.2 (3)C5—C6—C7—C80.4 (2)
C5—N1—C4—C3175.98 (14)F1—C7—C8—C9178.70 (14)
C2—C3—C4—O286.77 (19)C6—C7—C8—C90.9 (3)
C2—C3—C4—N193.05 (16)C7—C8—C9—C100.1 (3)
C4—N1—C5—C624.7 (2)C8—C9—C10—C51.2 (3)
C4—N1—C5—C10156.07 (16)C6—C5—C10—C91.6 (2)
C10—C5—C6—C70.8 (2)N1—C5—C10—C9179.12 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.89 (2)2.05 (2)2.903 (2)158.9 (15)
Symmetry code: (i) x+1/2, y, z+1/2.
(IV) 4'-fluoroacetoacetanilide top
Crystal data top
C10H10FNO2F(000) = 816
Mr = 195.19Dx = 1.360 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4374 reflections
a = 4.9811 (1) Åθ = 2.6–27.5°
b = 20.7383 (4) ŵ = 0.11 mm1
c = 18.4869 (5) ÅT = 150 K
β = 93.021 (1)°Cut needle, colourless
V = 1907.03 (7) Å30.60 × 0.20 × 0.03 mm
Z = 8
Data collection top
Nonius KappaCCD area-detector
diffractometer
2728 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 06
8284 measured reflectionsk = 2626
4372 independent reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.3055P]
where P = (Fo2 + 2Fc2)/3
4372 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C10H10FNO2V = 1907.03 (7) Å3
Mr = 195.19Z = 8
Monoclinic, P21/cMo Kα radiation
a = 4.9811 (1) ŵ = 0.11 mm1
b = 20.7383 (4) ÅT = 150 K
c = 18.4869 (5) Å0.60 × 0.20 × 0.03 mm
β = 93.021 (1)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2728 reflections with I > 2σ(I)
8284 measured reflectionsRint = 0.035
4372 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.21 e Å3
4372 reflectionsΔρmin = 0.22 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.1874 (2)0.01606 (5)0.71536 (6)0.0515 (3)
F21.0148 (2)0.46448 (6)0.60064 (6)0.0530 (3)
O10.9201 (2)0.31809 (6)0.81717 (8)0.0461 (4)
O21.0559 (2)0.17888 (6)0.86595 (6)0.0364 (3)
O30.2814 (3)0.13101 (8)0.49571 (9)0.0657 (5)
O40.1370 (2)0.23385 (6)0.61212 (6)0.0350 (3)
N10.9707 (3)0.17207 (7)0.74406 (8)0.0280 (3)
N20.2276 (3)0.29041 (7)0.51023 (8)0.0286 (3)
C11.3117 (3)0.37529 (9)0.78825 (11)0.0398 (5)
H1A1.32440.38220.73610.060*
H1B1.49250.37040.81110.060*
H1C1.22270.41240.80950.060*
C21.1525 (3)0.31581 (8)0.80048 (9)0.0286 (4)
C31.2890 (3)0.25125 (8)0.79085 (9)0.0283 (4)
H3A1.35190.24800.74110.034*
H3B1.44770.24790.82520.034*
C41.0979 (3)0.19680 (8)0.80404 (9)0.0270 (4)
C50.7702 (3)0.12322 (8)0.74025 (8)0.0256 (4)
C60.7142 (4)0.08381 (9)0.79735 (9)0.0368 (4)
H60.81080.08880.84270.044*
C70.5166 (4)0.03679 (9)0.78881 (10)0.0407 (5)
H70.47710.00940.82800.049*
C80.3803 (3)0.03054 (9)0.72346 (10)0.0345 (4)
C90.4310 (4)0.06848 (10)0.66580 (10)0.0430 (5)
H90.33450.06270.62060.052*
C100.6262 (3)0.11563 (9)0.67451 (9)0.0384 (5)
H100.66210.14310.63510.046*
C110.1344 (4)0.08412 (9)0.45956 (12)0.0467 (5)
H11A0.02310.04890.44240.070*
H11B0.25550.09930.41970.070*
H11C0.24050.06860.49920.070*
C120.0416 (3)0.13803 (9)0.48593 (9)0.0351 (4)
C130.0893 (3)0.20255 (8)0.50039 (9)0.0298 (4)
H13A0.13500.22460.45390.036*
H13B0.25770.19560.52540.036*
C140.0998 (3)0.24434 (8)0.54685 (9)0.0272 (4)
C150.4270 (3)0.33405 (8)0.53680 (8)0.0270 (4)
C160.5582 (3)0.32950 (9)0.60445 (9)0.0360 (4)
H160.51320.29580.63650.043*
C170.7553 (3)0.37394 (9)0.62576 (10)0.0391 (5)
H170.84370.37130.67250.047*
C180.8198 (3)0.42101 (9)0.57919 (10)0.0359 (4)
C190.6977 (4)0.42670 (10)0.51170 (10)0.0468 (5)
H190.74800.46000.47980.056*
C200.5000 (4)0.38311 (9)0.49074 (10)0.0424 (5)
H200.41220.38670.44400.051*
H1N1.012 (3)0.1881 (9)0.7014 (10)0.034 (5)*
H2N0.178 (3)0.2956 (9)0.4644 (11)0.036 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0435 (6)0.0401 (7)0.0708 (8)0.0167 (5)0.0005 (5)0.0092 (6)
F20.0561 (7)0.0519 (8)0.0511 (7)0.0256 (6)0.0039 (5)0.0096 (6)
O10.0258 (7)0.0412 (8)0.0721 (10)0.0028 (6)0.0112 (6)0.0058 (7)
O20.0486 (7)0.0381 (8)0.0221 (6)0.0084 (6)0.0017 (5)0.0008 (5)
O30.0300 (8)0.0649 (11)0.1011 (13)0.0088 (7)0.0071 (7)0.0276 (9)
O40.0387 (7)0.0434 (8)0.0227 (7)0.0092 (6)0.0006 (5)0.0078 (5)
N10.0331 (8)0.0309 (9)0.0203 (7)0.0050 (6)0.0036 (6)0.0005 (6)
N20.0334 (8)0.0331 (9)0.0192 (8)0.0037 (6)0.0018 (6)0.0035 (6)
C10.0304 (10)0.0319 (11)0.0571 (13)0.0004 (8)0.0009 (8)0.0009 (9)
C20.0253 (9)0.0310 (11)0.0290 (9)0.0000 (7)0.0042 (6)0.0008 (7)
C30.0261 (8)0.0302 (10)0.0285 (9)0.0014 (7)0.0001 (7)0.0022 (7)
C40.0285 (8)0.0276 (10)0.0249 (9)0.0021 (7)0.0010 (6)0.0025 (7)
C50.0280 (8)0.0232 (10)0.0259 (9)0.0006 (7)0.0025 (6)0.0025 (7)
C60.0445 (10)0.0370 (11)0.0286 (10)0.0098 (9)0.0025 (7)0.0018 (8)
C70.0502 (11)0.0355 (12)0.0370 (11)0.0127 (9)0.0073 (8)0.0026 (9)
C80.0286 (9)0.0252 (10)0.0497 (12)0.0045 (7)0.0035 (8)0.0082 (8)
C90.0453 (11)0.0437 (13)0.0385 (11)0.0102 (9)0.0114 (8)0.0039 (9)
C100.0468 (11)0.0404 (12)0.0274 (10)0.0095 (9)0.0031 (8)0.0049 (8)
C110.0444 (11)0.0359 (12)0.0593 (13)0.0001 (9)0.0001 (9)0.0036 (10)
C120.0335 (10)0.0410 (12)0.0306 (10)0.0010 (8)0.0014 (7)0.0009 (8)
C130.0273 (8)0.0358 (11)0.0260 (9)0.0013 (8)0.0007 (6)0.0024 (8)
C140.0260 (8)0.0310 (10)0.0245 (9)0.0023 (7)0.0020 (6)0.0027 (7)
C150.0277 (9)0.0284 (10)0.0251 (9)0.0024 (7)0.0043 (7)0.0008 (7)
C160.0390 (10)0.0403 (12)0.0284 (10)0.0069 (9)0.0021 (7)0.0075 (8)
C170.0395 (10)0.0471 (13)0.0302 (10)0.0078 (9)0.0026 (8)0.0001 (9)
C180.0354 (10)0.0340 (11)0.0387 (11)0.0086 (8)0.0054 (8)0.0100 (9)
C190.0624 (13)0.0410 (13)0.0372 (11)0.0179 (10)0.0044 (9)0.0079 (9)
C200.0540 (12)0.0438 (13)0.0287 (10)0.0139 (10)0.0033 (8)0.0084 (9)
Geometric parameters (Å, º) top
F1—C81.3655 (19)C7—C81.360 (3)
F2—C181.3685 (19)C7—H70.9500
O1—C21.2146 (19)C8—C91.359 (3)
O2—C41.2317 (19)C9—C101.382 (2)
O3—C121.208 (2)C9—H90.9500
O4—C141.2304 (18)C10—H100.9500
N1—C41.349 (2)C11—C121.487 (3)
N1—C51.422 (2)C11—H11A0.9800
N1—H1N0.889 (18)C11—H11B0.9800
N2—C141.350 (2)C11—H11C0.9800
N2—C151.413 (2)C12—C131.518 (3)
N2—H2N0.876 (19)C13—C141.513 (2)
C1—C21.490 (2)C13—H13A0.9900
C1—H1A0.9800C13—H13B0.9900
C1—H1B0.9800C15—C161.383 (2)
C1—H1C0.9800C15—C201.387 (2)
C2—C31.517 (2)C16—C171.388 (2)
C3—C41.505 (2)C16—H160.9500
C3—H3A0.9900C17—C181.351 (3)
C3—H3B0.9900C17—H170.9500
C5—C61.375 (2)C18—C191.364 (3)
C5—C101.387 (2)C19—C201.377 (3)
C6—C71.389 (2)C19—H190.9500
C6—H60.9500C20—H200.9500
C4—N1—C5127.60 (14)C9—C10—C5120.68 (17)
C4—N1—H1N117.8 (12)C9—C10—H10119.7
C5—N1—H1N114.6 (11)C5—C10—H10119.7
C14—N2—C15128.37 (14)C12—C11—H11A109.5
C14—N2—H2N117.2 (12)C12—C11—H11B109.5
C15—N2—H2N114.4 (12)H11A—C11—H11B109.5
C2—C1—H1A109.5C12—C11—H11C109.5
C2—C1—H1B109.5H11A—C11—H11C109.5
H1A—C1—H1B109.5H11B—C11—H11C109.5
C2—C1—H1C109.5O3—C12—C11121.33 (18)
H1A—C1—H1C109.5O3—C12—C13120.69 (17)
H1B—C1—H1C109.5C11—C12—C13117.98 (15)
O1—C2—C1121.89 (16)C14—C13—C12110.15 (13)
O1—C2—C3120.23 (15)C14—C13—H13A109.6
C1—C2—C3117.88 (14)C12—C13—H13A109.6
C4—C3—C2110.61 (13)C14—C13—H13B109.6
C4—C3—H3A109.5C12—C13—H13B109.6
C2—C3—H3A109.5H13A—C13—H13B108.1
C4—C3—H3B109.5O4—C14—N2124.49 (15)
C2—C3—H3B109.5O4—C14—C13120.82 (15)
H3A—C3—H3B108.1N2—C14—C13114.62 (14)
O2—C4—N1123.60 (16)C16—C15—C20118.58 (16)
O2—C4—C3121.12 (14)C16—C15—N2124.10 (15)
N1—C4—C3115.21 (14)C20—C15—N2117.29 (14)
C6—C5—C10119.25 (16)C15—C16—C17120.30 (16)
C6—C5—N1123.77 (14)C15—C16—H16119.9
C10—C5—N1116.98 (15)C17—C16—H16119.9
C5—C6—C7120.09 (16)C18—C17—C16119.14 (16)
C5—C6—H6120.0C18—C17—H17120.4
C7—C6—H6120.0C16—C17—H17120.4
C8—C7—C6119.03 (17)C17—C18—C19122.40 (17)
C8—C7—H7120.5C17—C18—F2118.69 (16)
C6—C7—H7120.5C19—C18—F2118.90 (17)
C7—C8—C9122.46 (16)C18—C19—C20118.56 (18)
C9—C8—F1118.85 (16)C18—C19—H19120.7
C7—C8—F1118.69 (17)C20—C19—H19120.7
C8—C9—C10118.48 (17)C19—C20—C15121.01 (17)
C8—C9—H9120.8C19—C20—H20119.5
C10—C9—H9120.8C15—C20—H20119.5
O1—C2—C3—C40.5 (2)O3—C12—C13—C1416.8 (2)
C1—C2—C3—C4179.02 (15)C11—C12—C13—C14163.15 (16)
C5—N1—C4—O20.7 (3)C15—N2—C14—O41.4 (3)
C5—N1—C4—C3176.31 (14)C15—N2—C14—C13175.66 (15)
C2—C3—C4—O281.11 (19)C12—C13—C14—O475.38 (19)
C2—C3—C4—N195.98 (17)C12—C13—C14—N2101.76 (17)
C4—N1—C5—C614.2 (3)C14—N2—C15—C1611.2 (3)
C4—N1—C5—C10166.01 (16)C14—N2—C15—C20170.91 (16)
C10—C5—C6—C70.4 (3)C20—C15—C16—C171.0 (3)
N1—C5—C6—C7179.36 (16)N2—C15—C16—C17178.89 (16)
C5—C6—C7—C80.1 (3)C15—C16—C17—C181.0 (3)
C6—C7—C8—C90.3 (3)C16—C17—C18—C190.1 (3)
C6—C7—C8—F1179.61 (15)C16—C17—C18—F2179.85 (16)
C7—C8—C9—C100.8 (3)C17—C18—C19—C200.6 (3)
F1—C8—C9—C10179.86 (16)F2—C18—C19—C20179.43 (17)
C8—C9—C10—C51.1 (3)C18—C19—C20—C150.5 (3)
C6—C5—C10—C90.9 (3)C16—C15—C20—C190.3 (3)
N1—C5—C10—C9178.83 (16)N2—C15—C20—C19178.31 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4i0.89 (2)2.03 (2)2.914 (2)172.0 (16)
N2—H2N···O2ii0.88 (2)1.96 (2)2.830 (2)171.2 (18)
Symmetry codes: (i) x+1, y, z; (ii) x1, y+1/2, z1/2.

Experimental details

(II)(III)(IV)
Crystal data
Chemical formulaC10H10FNO2C10H10FNO2C10H10FNO2
Mr195.19195.19195.19
Crystal system, space groupMonoclinic, P21/cOrthorhombic, PbcaMonoclinic, P21/c
Temperature (K)150150150
a, b, c (Å)7.3215 (2), 12.0480 (3), 10.5082 (3)9.4933 (3), 9.7792 (3), 20.2345 (7)4.9811 (1), 20.7383 (4), 18.4869 (5)
α, β, γ (°)90, 98.877 (1), 9090, 90, 9090, 93.021 (1), 90
V3)915.82 (4)1878.51 (11)1907.03 (7)
Z488
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.110.110.11
Crystal size (mm)0.35 × 0.30 × 0.200.50 × 0.30 × 0.050.60 × 0.20 × 0.03
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3637, 2092, 1812 3999, 2158, 1387 8284, 4372, 2728
Rint0.0150.0440.035
(sin θ/λ)max1)0.6490.6500.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.094, 1.06 0.043, 0.104, 1.02 0.046, 0.113, 1.03
No. of reflections209221584372
No. of parameters132167263
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementAll H-atom parameters refinedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.180.18, 0.210.21, 0.22

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998), DENZO and COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) for (II) top
F1—C101.3621 (12)N1—C41.3571 (13)
O1—C21.2189 (13)N1—C51.4011 (14)
O2—C41.2205 (13)
C4—N1—C5128.08 (9)C10—C5—N1117.20 (10)
C2—C3—C4122.13 (9)C6—C5—N1125.66 (10)
N1—C4—C3116.26 (9)C9—C10—C5123.35 (10)
C10—C5—C6117.14 (10)
O1—C2—C3—C42.63 (16)C4—N1—C5—C10176.57 (9)
C5—N1—C4—O20.84 (17)C4—N1—C5—C64.27 (17)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.883 (15)1.917 (16)2.6869 (12)144.7 (13)
Selected geometric parameters (Å, º) for (III) top
F1—C71.3661 (17)N1—C41.3536 (19)
O1—C21.211 (2)N1—C51.4101 (19)
O2—C41.2283 (16)
C4—N1—C5127.78 (13)N1—C4—C3114.63 (13)
C1—C2—C3115.74 (15)C8—C7—C6124.36 (15)
C4—C3—C2112.62 (14)
O1—C2—C3—C47.5 (2)C4—N1—C5—C624.7 (2)
C5—N1—C4—O24.2 (3)C4—N1—C5—C10156.07 (16)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.89 (2)2.05 (2)2.903 (2)158.9 (15)
Symmetry code: (i) x+1/2, y, z+1/2.
Selected geometric parameters (Å, º) for (IV) top
F1—C81.3655 (19)O4—C141.2304 (18)
F2—C181.3685 (19)N1—C41.349 (2)
O1—C21.2146 (19)N1—C51.422 (2)
O2—C41.2317 (19)N2—C141.350 (2)
O3—C121.208 (2)N2—C151.413 (2)
C4—N1—C5127.60 (14)C7—C8—C9122.46 (16)
C14—N2—C15128.37 (14)C14—C13—C12110.15 (13)
C4—C3—C2110.61 (13)N2—C14—C13114.62 (14)
N1—C4—C3115.21 (14)C17—C18—C19122.40 (17)
O1—C2—C3—C40.5 (2)O3—C12—C13—C1416.8 (2)
C5—N1—C4—O20.7 (3)C15—N2—C14—O41.4 (3)
C2—C3—C4—O281.11 (19)C12—C13—C14—O475.38 (19)
C4—N1—C5—C614.2 (3)C14—N2—C15—C1611.2 (3)
C4—N1—C5—C10166.01 (16)C14—N2—C15—C20170.91 (16)
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4i0.89 (2)2.03 (2)2.914 (2)172.0 (16)
N2—H2N···O2ii0.88 (2)1.96 (2)2.830 (2)171.2 (18)
Symmetry codes: (i) x+1, y, z; (ii) x1, y+1/2, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds