Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of N-(L-2-amino­butyryl)-L-alanine, C7H14N2O3, is closely related to the structure of L-alanyl-L-alanine, both being tetragonal, while the retro-analogue 2-(L-alanyl­amino)-L-butyric acid 0.33-hydrate, C7H14N2O3·­0.33H2O, forms a new type of molecular columnar structure with three peptide mol­ecules in the asymmetric unit.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102011691/gd1209sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102011691/gd1209Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102011691/gd1209IIsup3.hkl
Contains datablock II

CCDC references: 193457; 193458

Comment top

Recent investigations into the structures of dipeptides with two hydrophobic residues (Ala, Val, Leu, Ile or Phe; the stereochemical indicator L is common to all residues discussed in this paper and so is omitted) have revealed a diverse set of hydrogen-bond and crystal-packing arrangements [see Görbitz (2002a) for an overview and a complete set of references]. Some patterns, however, recur in two or more structures. One example is the hexagonally symmetric hydrophobic columns with empty central channels first observed for Val-Ala (Görbitz & Gundersen, 1996), which were subsequently found not only for the retroanalogue Ala-Val (Görbitz, 2002b), but also for a series of other dipeptides containing Ala, Val and Ile residues (Görbitz, 2003). Finding such stable motifs is a key element in establishing peptides as useful model molecules for the design of materials by crystal engineering (Desiraju, 2001).

The size of the pores in a Val-Ala class structure is inversely related to the bulk of the two side chains. Val-Ala (Görbitz & Gundersen, 1996) and Ala-Val (Görbitz, 2002b) possess the largest known pores, with diameters of around 5 Å. Both these dipeptides have a total of four side-chain C atoms. In order to see if still larger pores could be attained by reducing the number of side-chain C atoms to three, a crystal structure investigation was undertaken for the two title compounds, N-(L-2-aminobutyryl)-L-alanine or Abu-Ala, (I) (Fig. 1), and 2-(L-alanylamino)-L-butyric acid 0.33-hydrate or Ala-Abu, (II) (Fig. 2). As for a further reduction of the number of side-chain C atoms to two, the structure of Ala-Ala (Fletterick et al., 1971) is the only peptide structure in the Cambridge Structural Database (Version?; Allen & Kennard, 1993) with tetragonal symmetry, and is not a member of the Val-Ala class. \sch

The crystal packing of (I) is shown together with that of Ala-Ala (Fletterick et al., 1971) in Fig. 3. The two structures are almost indistinguishable, except that the empty central channels of the Ala1 hydrophobic columns in Ala-Ala are filled by Abu2 Cγ methyl groups in (I). The calculated density for (I) (1.379 Mg m-3) is well above the value of 1.276 Mg m-3 for Ala-Ala (Fletterick et al., 1971), which used to be the highest value observed for a hydrophobic dipeptide.

The peptide main chain of (I) is in an extended conformation (Fig. 1) and the bond lengths and angles are normal. To avoid steric conflict, there is a 1:1 disorder for the Abu side chain (Fig. 4). The somewhat unusual torsion angles associated with the two alternative orientations, -81.8 (7) and 79.1 (8)° (Table 1), have the curious effect of putting the two Cγ methyl positions on top of each other when viewed along the c axis, as in Fig. 3. The shortest intermolecular H···H contacts between the four molecules related by fourfold symmetry is 2.44 Å, while H···H contacts between quartets related by translation along the c axis start at 2.80 Å. As for Ala-Ala, the tetragonal symmetry renders possible the formation of three strong –NH3+···-OOC– hydrogen bonds (Table 2), which set these two structures apart from all other structures of hydrophobic dipeptides.

As is evident from Fig. 3, the columns formed by Ala2 in the Ala-Ala structure (Fletterick et al., 1971) are more densely packed than the Ala1 columns. Compared with (I), it thus seemed less likely that (II) would retain an Ala-Ala class structure. Indeed, Fig. 5 shows a completely new type of packing pattern that combines elements from the Ala-Ala class, such as the separation of residue 1 and residue 2 side chains into independent columns, with elements from the Val-Ala class, such as the pseudohexagonal arrangement of Ala1 columns around Abu2 columns. A unique feature of (II) is a co-crystallized water molecule that is essential for completing the hydrogen-bond network in the crystal. The result is a well defined structure with Dx = 1.282 Mg m-3.

The three peptide molecules in the asymmetric unit of (II) are in extended conformations with normal bond lengths and angles, and are not related by pseudosymmetry. They differ mainly in the orientation of the Abu side chain, which is trans for molecule B but gauche for A and C (Fig. 2 and Table 4). The observation of Z' = 3 is actually quite rare for peptides, and only eight other examples were found in the Cambridge Structural Database (Version?; Allen & Kennard, 1993).

In conclusion, since neither (I) nor (II) form Val-Ala class structures, the largest known hydrophobic pores still occur in the structures of Val-Ala (Görbitz & Gundersen, 1996) and Ala-Val (Görbitz, 2002b).

Experimental top

Both title compounds were obtained from Bachem and used as received. Crystals were grown by fast evaporation of aqueous solutions at ambient temperature. The crystals of (II) were of high quality, but the crystals of (I) were usually twinned and/or displayed obvious orientational disorder for layers along the c axis. The specimen selected for data collection was fairly small, but not twinned.

Refinement top

Due to problems with the crystal quality for (I), the refinement converged at a considerably higher R-factor than for (II), with higher s.u.s for the geometric parameters. Isotropic refinement of H atoms was thus limited to those bonded to N and O in (II); other H atoms were placed geometrically and refined with C—H = 0.92–1.01 Å and N—H 0.86–0.92 Å. Are these the correct constraints? Free rotation of amino and methyl groups (without disorder) was permitted. Uiso values were 1.2Ueq of the carrier atom, or 1.5Ueq for methyl and amino groups. Friedel pairs were merged in the final refinement of (I). The Flack parameter [-0.6 (4); Flack, 1983] for (II) did not allow the absolute structure, which was known for the purchased material, to be determined from the refinement (Flack & Bernadinelli, 2000).

Computing details top

For both compounds, data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) with the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Two alternative Abu side chain orientations, each with occupancy 1/2, are shown. The H atoms bonded to C2 have been omitted for clarity.
[Figure 2] Fig. 2. A view of the three independent molecules of (II) with the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The molecular packing and unit cells of (a) Ala-Ala (Fletterick et al., 1971) and (b) (I), both viewed along the c axis. A volume contour surface surrounds selected molecules in each structure to illustrate the presence of two types of hydrophobic columns. Atoms in the side chain of residue 2 are shown in a darker tone than atoms in the side chain of residue 1.
[Figure 4] Fig. 4. A stereo drawing of the hydrophobic interactions of an Abu column in the structure of (I). Alternative side-chain positions prohibited by steric conflict are shown by fine lines. Directly opposing mutually exclusive methyl positions have H···H separations as short as 1.09 Å.
[Figure 5] Fig. 5. The molecular packing and unit cell of (II) viewed along the b axis. Atoms in the Abu side chain are shown in a darker tone than those in the Ala side chain. The three peptide molecules in the asymmetric unit are labelled A, B and C.
(I) N-(L-2-aminobutyryl)-L-alanine top
Crystal data top
C7H14N2O3Dx = 1.379 Mg m3
Mr = 174.20Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4Cell parameters from 3540 reflections
Hall symbol: I 4θ = 1.6–27.1°
a = 17.9290 (12) ŵ = 0.11 mm1
c = 5.2196 (5) ÅT = 105 K
V = 1677.8 (2) Å3Needle, colourless
Z = 80.65 × 0.12 × 0.05 mm
F(000) = 752
Data collection top
Bruker SMART CCD area-detector
diffractometer
1029 independent reflections
Radiation source: fine-focus sealed tube1001 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 8.3 pixels mm-1θmax = 27.1°, θmin = 1.6°
Sets of exposures each taken over 0.3° ω rotation scansh = 2216
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 2222
Tmin = 0.932, Tmax = 0.995l = 66
5085 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.27 w = 1/[σ2(Fo2) + (0.0203P)2 + 13.6465P]
where P = (Fo2 + 2Fc2)/3
1029 reflections(Δ/σ)max = 0.003
121 parametersΔρmax = 0.36 e Å3
13 restraintsΔρmin = 0.39 e Å3
Crystal data top
C7H14N2O3Z = 8
Mr = 174.20Mo Kα radiation
Tetragonal, I4µ = 0.11 mm1
a = 17.9290 (12) ÅT = 105 K
c = 5.2196 (5) Å0.65 × 0.12 × 0.05 mm
V = 1677.8 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1029 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
1001 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.995Rint = 0.041
5085 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07913 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.27 w = 1/[σ2(Fo2) + (0.0203P)2 + 13.6465P]
where P = (Fo2 + 2Fc2)/3
1029 reflectionsΔρmax = 0.36 e Å3
121 parametersΔρmin = 0.39 e Å3
Special details top

Experimental. Data were collected by measuring three sets (I) and five sets (II) of exposures with the detector set at 2θ = 29°, crystal-to-detector distance 4.98 cm.

Refinement. Refinement of F2 against ALL reflections.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.7237 (2)0.1241 (2)0.2407 (8)0.0183 (9)
O20.7414 (2)0.1470 (2)0.2108 (10)0.0191 (9)
O30.7550 (3)0.0763 (3)0.1333 (9)0.0250 (11)
N10.7920 (3)0.1870 (3)0.6360 (12)0.0168 (11)
H10.827 (3)0.2019 (7)0.755 (8)0.025*
H20.808 (3)0.2014 (7)0.476 (8)0.025*
H30.747 (2)0.2088 (10)0.672 (10)0.025*
N20.7187 (3)0.0067 (3)0.4167 (11)0.0162 (11)
H40.73060.01960.54830.019*
C10.7841 (3)0.1040 (3)0.6442 (12)0.0122 (11)
H110.75670.09050.80000.015*
C20.8606 (3)0.0666 (3)0.6536 (13)0.0173 (12)
H210.89300.09390.76920.021*0.50
H220.85550.01610.71790.021*0.50
H230.85630.01590.59050.021*0.50
H240.89460.09330.54190.021*0.50
C310.8967 (7)0.0648 (8)0.374 (3)0.021 (3)0.50
H310.94450.04080.38190.032*0.50
H320.86460.03770.26030.032*0.50
H330.90270.11490.31260.032*0.50
C320.8943 (8)0.0652 (7)0.941 (3)0.019 (3)0.50
H340.94210.04110.94000.028*0.50
H350.89980.11541.00270.028*0.50
H360.86100.03841.05200.028*0.50
C40.7382 (3)0.0795 (3)0.4127 (12)0.0137 (11)
C50.6781 (3)0.0294 (3)0.2067 (13)0.0184 (13)
H510.66560.00840.07810.022*
C60.6060 (4)0.0644 (4)0.3054 (15)0.0280 (16)
H610.57300.02580.36380.042*
H620.58250.09180.16970.042*
H630.61710.09750.44480.042*
C70.7291 (3)0.0887 (3)0.0812 (13)0.0153 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.027 (2)0.019 (2)0.0091 (19)0.0028 (17)0.005 (2)0.0056 (19)
O20.025 (2)0.0136 (19)0.019 (2)0.0019 (16)0.005 (2)0.0054 (18)
O30.038 (3)0.022 (2)0.015 (2)0.0038 (19)0.002 (2)0.000 (2)
N10.011 (2)0.015 (2)0.024 (3)0.0020 (18)0.003 (2)0.009 (2)
N20.024 (3)0.010 (2)0.015 (3)0.0022 (18)0.008 (2)0.005 (2)
C10.016 (3)0.012 (2)0.009 (2)0.0014 (19)0.002 (2)0.000 (2)
C20.015 (3)0.018 (3)0.019 (3)0.003 (2)0.002 (3)0.004 (3)
C310.012 (5)0.032 (6)0.020 (6)0.008 (5)0.002 (5)0.001 (5)
C320.023 (5)0.013 (5)0.021 (6)0.003 (4)0.009 (5)0.006 (5)
C40.013 (3)0.017 (3)0.011 (3)0.004 (2)0.001 (2)0.002 (2)
C50.022 (3)0.013 (3)0.020 (3)0.004 (2)0.008 (3)0.009 (3)
C60.017 (3)0.033 (4)0.035 (4)0.001 (3)0.001 (3)0.015 (3)
C70.014 (3)0.014 (3)0.017 (3)0.002 (2)0.005 (2)0.002 (2)
Geometric parameters (Å, º) top
O1—C41.230 (7)C2—H220.9700
O2—C71.265 (7)C2—H230.9700
O3—C71.233 (8)C2—H240.9700
N1—C11.497 (7)C31—H310.9600
N1—H10.9184C31—H320.9600
N1—H20.9184C31—H330.9600
N1—H30.9184C32—H340.9600
N2—C41.351 (7)C32—H350.9600
N2—C51.467 (7)C32—H360.9600
N2—H40.8600C5—C61.527 (9)
C1—C41.526 (8)C5—C71.546 (8)
C1—C21.526 (7)C5—H510.9800
C1—H110.9800C6—H610.9600
C2—C311.595 (14)C6—H620.9600
C2—C321.620 (14)C6—H630.9600
C2—H210.9700
C1—N1—H1109.5C2—C31—H32109.5
C1—N1—H2109.5H31—C31—H32109.5
H1—N1—H2109.5C2—C31—H33109.5
C1—N1—H3109.5H31—C31—H33109.5
H1—N1—H3109.5H32—C31—H33109.5
H2—N1—H3109.5C2—C32—H34109.5
C4—N2—C5122.9 (5)C2—C32—H35109.5
C4—N2—H4118.5H34—C32—H35109.5
C5—N2—H4118.5C2—C32—H36109.5
N1—C1—C4108.3 (5)H34—C32—H36109.5
N1—C1—C2110.6 (4)H35—C32—H36109.5
C4—C1—C2112.5 (5)O1—C4—N2125.7 (6)
N1—C1—H11108.4O1—C4—C1120.4 (5)
C4—C1—H11108.4N2—C4—C1113.9 (5)
C2—C1—H11108.4N2—C5—C6110.5 (6)
C1—C2—C31110.1 (7)N2—C5—C7109.1 (5)
C1—C2—C32111.8 (7)C6—C5—C7111.2 (5)
C31—C2—C32134.1 (6)N2—C5—H51108.7
C1—C2—H21109.6C6—C5—H51108.7
C31—C2—H21109.6C7—C5—H51108.7
C1—C2—H22109.6C5—C6—H61109.5
C31—C2—H22109.6C5—C6—H62109.5
H21—C2—H22108.2H61—C6—H62109.5
C1—C2—H23109.3C5—C6—H63109.5
C32—C2—H23109.3H61—C6—H63109.5
C1—C2—H24109.3H62—C6—H63109.5
C32—C2—H24109.3O3—C7—O2124.6 (6)
H23—C2—H24107.9O3—C7—C5119.0 (6)
C2—C31—H31109.5O2—C7—C5116.4 (6)
N1—C1—C4—N2171.6 (5)C5—N2—C4—O11.6 (9)
C1—C4—N2—C5176.5 (5)N1—C1—C4—O110.1 (7)
C4—N2—C5—C7114.3 (6)C2—C1—C4—O1112.5 (6)
N2—C5—C7—O271.7 (7)C2—C1—C4—N265.8 (6)
N1—C1—C2—C3179.1 (8)C4—N2—C5—C6123.2 (6)
N1—C1—C2—C3281.8 (7)N2—C5—C7—O3107.9 (6)
C4—C1—C2—C3142.2 (8)C6—C5—C7—O3130.1 (6)
C4—C1—C2—C32156.9 (6)C6—C5—C7—O250.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.921.992.846 (7)154
N1—H2···O2ii0.921.902.787 (7)160
N1—H3···O2iii0.921.892.804 (6)170
N2—H4···O3iv0.862.002.856 (7)177
C1—H11···O1iv0.982.453.316 (7)147
Symmetry codes: (i) y+1, x1, z+1; (ii) y+1, x1, z; (iii) y+1/2, x+1/2, z+1/2; (iv) x, y, z+1.
(II) 2-(L-alanylamino)-L-butyric acid top
Crystal data top
C7H14N2O3·0.33H2OF(000) = 584
Mr = 180.21Dx = 1.282 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 7806 reflections
a = 15.4292 (5) Åθ = 2.2–35.0°
b = 5.4602 (2) ŵ = 0.10 mm1
c = 18.1320 (6) ÅT = 105 K
β = 113.505 (1)°Needle, colourless
V = 1400.81 (8) Å31.30 × 0.12 × 0.08 mm
Z = 6
Data collection top
Siemens SMART CCD area-detector
diffractometer
10606 independent reflections
Radiation source: fine-focus sealed tube7926 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 8.3 pixels mm-1θmax = 35.0°, θmin = 2.2°
Sets of exposures each taken over 0.3° ω rotation scansh = 2419
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 88
Tmin = 0.876, Tmax = 0.992l = 2928
19775 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0371P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max = 0.002
10606 reflectionsΔρmax = 0.33 e Å3
406 parametersΔρmin = 0.27 e Å3
1 restraintAbsolute structure: Flack (1983), with 3916 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.6 (4)
Crystal data top
C7H14N2O3·0.33H2OV = 1400.81 (8) Å3
Mr = 180.21Z = 6
Monoclinic, P21Mo Kα radiation
a = 15.4292 (5) ŵ = 0.10 mm1
b = 5.4602 (2) ÅT = 105 K
c = 18.1320 (6) Å1.30 × 0.12 × 0.08 mm
β = 113.505 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
10606 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
7926 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 0.992Rint = 0.030
19775 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074Δρmax = 0.33 e Å3
S = 0.94Δρmin = 0.27 e Å3
10606 reflectionsAbsolute structure: Flack (1983), with 3916 Friedel pairs
406 parametersAbsolute structure parameter: 0.6 (4)
1 restraint
Special details top

Experimental. Data were collected by measuring three sets (I) and five sets (II) of exposures with the detector set at 2θ = 29°, crystal-to-detector distance 4.98 cm.

Refinement. Refinement of F2 against ALL reflections.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.66764 (6)0.23626 (15)0.07991 (5)0.02516 (18)
O2A0.87241 (6)0.25972 (16)0.27773 (5)0.02757 (19)
O3A0.90727 (6)0.57948 (15)0.21725 (5)0.02571 (18)
N1A0.54763 (7)0.11879 (18)0.07177 (5)0.01675 (18)
H1A0.5072 (10)0.220 (3)0.0868 (8)0.027 (2)*
H2A0.5331 (9)0.125 (3)0.0191 (9)0.027 (2)*
H3A0.5355 (9)0.033 (3)0.0860 (8)0.027 (2)*
N2A0.80056 (7)0.00452 (17)0.13449 (5)0.01690 (18)
H4A0.8261 (9)0.126 (3)0.1563 (8)0.020*
C1A0.64989 (7)0.1791 (2)0.11520 (6)0.0161 (2)
H11A0.6646 (2)0.315 (2)0.0912 (4)0.019*
C2A0.67105 (9)0.2368 (3)0.20291 (7)0.0290 (3)
H21A0.6325 (6)0.3796 (16)0.20578 (8)0.035 (2)*
H22A0.7393 (6)0.2761 (17)0.2317 (3)0.035 (2)*
H23A0.6551 (6)0.0925 (14)0.2285 (3)0.035 (2)*
C3A0.70650 (7)0.0416 (2)0.10763 (6)0.0160 (2)
C4A0.86442 (7)0.2082 (2)0.14295 (6)0.0175 (2)
H41A0.8358 (4)0.3157 (15)0.0951 (6)0.021*
C5A0.95980 (8)0.1159 (2)0.14623 (7)0.0234 (2)
H51A0.9921 (3)0.0190 (10)0.1974 (5)0.028*
H52A1.0011 (4)0.2616 (15)0.14851 (7)0.028*
C6A0.95190 (9)0.0441 (3)0.07488 (8)0.0303 (3)
H61A1.0146 (6)0.0880 (15)0.0792 (3)0.041 (2)*
H62A0.9168 (6)0.1915 (16)0.0748 (3)0.041 (2)*
H63A0.9192 (6)0.0455 (10)0.0253 (5)0.041 (2)*
C7A0.88194 (8)0.3631 (2)0.21884 (6)0.0191 (2)
O1B0.89076 (6)0.11117 (14)0.49263 (5)0.02087 (16)
O2B0.62797 (5)0.08467 (14)0.53299 (4)0.01756 (15)
O3B0.69540 (5)0.28414 (14)0.56143 (5)0.02018 (16)
N1B0.91399 (7)0.51356 (19)0.42298 (6)0.01827 (18)
H1B0.9720 (10)0.562 (3)0.4563 (8)0.025 (2)*
H2B0.9194 (10)0.360 (3)0.4080 (8)0.025 (2)*
H3B0.8906 (9)0.608 (3)0.3749 (8)0.025 (2)*
N2B0.80086 (6)0.28465 (17)0.55201 (5)0.01624 (18)
H4B0.7730 (9)0.416 (3)0.5563 (8)0.019*
C1B0.84414 (7)0.53200 (19)0.46086 (6)0.0161 (2)
H11B0.8627 (3)0.6636 (18)0.4998 (5)0.019*
C2B0.74622 (8)0.5856 (2)0.39696 (7)0.0244 (2)
H21B0.74776 (15)0.7349 (14)0.3702 (4)0.0222 (18)*
H22B0.7024 (4)0.6005 (14)0.4218 (2)0.0222 (18)*
H23B0.7272 (3)0.4551 (12)0.3589 (4)0.0222 (18)*
C3B0.84762 (7)0.28960 (19)0.50425 (6)0.0153 (2)
C4B0.79675 (7)0.06676 (19)0.59754 (6)0.01534 (19)
H41B0.8430 (7)0.0484 (16)0.59611 (6)0.018*
C5B0.82108 (8)0.1379 (2)0.68550 (6)0.0218 (2)
H51B0.8771 (6)0.2210 (10)0.7047 (2)0.026*
H52B0.7755 (5)0.2413 (12)0.68746 (7)0.026*
C6B0.82897 (9)0.0813 (3)0.73994 (7)0.0292 (3)
H61B0.8474 (6)0.0254 (5)0.7949 (5)0.044 (3)*
H62B0.8762 (6)0.1941 (13)0.7373 (4)0.044 (3)*
H63B0.7684 (5)0.1638 (13)0.7223 (4)0.044 (3)*
C7B0.69873 (7)0.0548 (2)0.56032 (6)0.01402 (19)
O1C0.59661 (6)0.14929 (14)0.69421 (4)0.02234 (17)
O2C0.53247 (6)0.17473 (15)0.91328 (5)0.02070 (16)
O3C0.57229 (6)0.16241 (15)0.86590 (5)0.02214 (17)
N1C0.54905 (7)0.49187 (17)0.58420 (5)0.01371 (17)
H1C0.5945 (9)0.577 (3)0.5714 (8)0.0211 (19)*
H2C0.5669 (9)0.330 (3)0.5892 (8)0.0211 (19)*
H3C0.4941 (10)0.502 (3)0.5487 (8)0.0211 (19)*
N2C0.60627 (7)0.39411 (17)0.79846 (5)0.01611 (18)
H4C0.5972 (9)0.541 (3)0.8130 (8)0.019*
C1C0.55322 (7)0.57171 (19)0.66439 (6)0.01407 (19)
H11C0.5976 (7)0.6950 (18)0.6837 (3)0.017*
C2C0.45825 (8)0.6697 (2)0.65850 (7)0.0241 (2)
H21C0.4381 (3)0.8017 (15)0.6196 (5)0.031 (2)*
H22C0.46445 (17)0.7303 (15)0.7106 (4)0.031 (2)*
H23C0.4118 (4)0.5395 (11)0.6415 (5)0.031 (2)*
C3C0.58710 (7)0.3500 (2)0.72085 (6)0.01440 (19)
C4C0.65199 (7)0.2088 (2)0.86028 (6)0.0148 (2)
H41C0.6842 (5)0.1011 (16)0.8408 (3)0.018*
C5C0.72384 (8)0.3338 (2)0.93545 (6)0.0199 (2)
H51C0.6921 (3)0.4525 (12)0.9543 (2)0.024*
H52C0.7508 (3)0.2143 (12)0.9768 (4)0.024*
C6C0.80285 (9)0.4594 (3)0.91912 (7)0.0298 (3)
H61C0.8482 (6)0.5292 (17)0.9686 (5)0.045 (3)*
H62C0.7763 (3)0.5884 (16)0.8798 (6)0.045 (3)*
H63C0.8342 (5)0.3404 (12)0.8986 (6)0.045 (3)*
C7C0.57943 (7)0.06209 (19)0.88070 (6)0.01451 (19)
O1W0.98203 (7)0.14204 (19)0.35508 (5)0.0307 (2)
H1W0.9521 (12)0.016 (4)0.3371 (11)0.046*
H2W0.9659 (12)0.241 (4)0.3163 (11)0.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0225 (4)0.0170 (4)0.0394 (5)0.0009 (3)0.0159 (4)0.0042 (3)
O2A0.0443 (5)0.0202 (4)0.0221 (4)0.0007 (4)0.0174 (4)0.0017 (3)
O3A0.0294 (4)0.0175 (4)0.0281 (4)0.0030 (4)0.0093 (3)0.0018 (3)
N1A0.0195 (4)0.0152 (4)0.0181 (4)0.0007 (4)0.0103 (4)0.0001 (3)
N2A0.0182 (4)0.0139 (4)0.0196 (4)0.0006 (4)0.0085 (3)0.0005 (3)
C1A0.0185 (5)0.0133 (5)0.0197 (5)0.0011 (4)0.0110 (4)0.0013 (4)
C2A0.0244 (6)0.0422 (8)0.0218 (5)0.0025 (6)0.0107 (5)0.0104 (5)
C3A0.0189 (5)0.0170 (5)0.0160 (4)0.0026 (4)0.0111 (4)0.0038 (4)
C4A0.0174 (5)0.0175 (5)0.0184 (5)0.0033 (4)0.0080 (4)0.0005 (4)
C5A0.0180 (5)0.0276 (6)0.0250 (5)0.0054 (5)0.0090 (4)0.0059 (5)
C6A0.0260 (6)0.0378 (8)0.0331 (6)0.0063 (6)0.0181 (5)0.0112 (6)
C7A0.0187 (5)0.0163 (5)0.0216 (5)0.0020 (4)0.0073 (4)0.0003 (4)
O1B0.0249 (4)0.0158 (4)0.0269 (4)0.0021 (3)0.0157 (3)0.0015 (3)
O2B0.0147 (3)0.0190 (4)0.0161 (3)0.0026 (3)0.0031 (3)0.0013 (3)
O3B0.0202 (4)0.0147 (4)0.0292 (4)0.0007 (3)0.0135 (3)0.0005 (3)
N1B0.0196 (5)0.0160 (5)0.0222 (4)0.0008 (4)0.0116 (4)0.0022 (4)
N2B0.0178 (4)0.0129 (4)0.0212 (4)0.0012 (4)0.0110 (3)0.0022 (3)
C1B0.0190 (5)0.0140 (5)0.0174 (5)0.0003 (4)0.0095 (4)0.0002 (4)
C2B0.0206 (5)0.0313 (7)0.0214 (5)0.0039 (5)0.0086 (4)0.0083 (5)
C3B0.0138 (5)0.0156 (5)0.0155 (4)0.0024 (4)0.0049 (4)0.0004 (4)
C4B0.0141 (5)0.0143 (5)0.0183 (4)0.0006 (4)0.0071 (4)0.0029 (4)
C5B0.0196 (5)0.0265 (6)0.0167 (5)0.0052 (5)0.0044 (4)0.0001 (4)
C6B0.0282 (6)0.0375 (7)0.0184 (5)0.0029 (6)0.0057 (5)0.0077 (5)
C7B0.0166 (5)0.0166 (5)0.0116 (4)0.0016 (4)0.0086 (4)0.0014 (4)
O1C0.0357 (5)0.0156 (4)0.0170 (3)0.0030 (4)0.0119 (3)0.0006 (3)
O2C0.0237 (4)0.0199 (4)0.0255 (4)0.0040 (3)0.0172 (3)0.0020 (3)
O3C0.0290 (4)0.0170 (4)0.0268 (4)0.0022 (3)0.0179 (3)0.0017 (3)
N1C0.0139 (4)0.0145 (4)0.0122 (4)0.0012 (3)0.0047 (3)0.0009 (3)
N2C0.0222 (4)0.0133 (4)0.0149 (4)0.0018 (4)0.0097 (3)0.0011 (3)
C1C0.0151 (5)0.0139 (5)0.0131 (4)0.0000 (4)0.0056 (4)0.0000 (4)
C2C0.0231 (6)0.0313 (6)0.0189 (5)0.0094 (5)0.0093 (4)0.0001 (4)
C3C0.0148 (5)0.0147 (5)0.0152 (4)0.0012 (4)0.0076 (4)0.0010 (4)
C4C0.0165 (5)0.0163 (5)0.0138 (4)0.0020 (4)0.0084 (4)0.0023 (4)
C5C0.0186 (5)0.0245 (6)0.0162 (5)0.0035 (5)0.0066 (4)0.0011 (4)
C6C0.0250 (6)0.0385 (7)0.0249 (6)0.0125 (6)0.0089 (5)0.0006 (5)
C7C0.0146 (5)0.0166 (5)0.0122 (4)0.0011 (4)0.0052 (4)0.0020 (4)
O1W0.0423 (6)0.0230 (5)0.0254 (4)0.0024 (4)0.0121 (4)0.0008 (4)
Geometric parameters (Å, º) top
O1A—C3A1.2255 (14)C2B—H22B0.9537
O2A—C7A1.2672 (14)C2B—H23B0.9537
O3A—C7A1.2482 (14)C4B—C5B1.5355 (14)
N1A—C1A1.4923 (14)C4B—C7B1.5392 (15)
N1A—H1A0.952 (15)C4B—H41B0.9595
N1A—H2A0.890 (14)C5B—C6B1.5249 (17)
N1A—H3A0.910 (16)C5B—H51B0.9137
N2A—C3A1.3492 (14)C5B—H52B0.9137
N2A—C4A1.4530 (14)C6B—H61B0.9701
N2A—H4A0.834 (15)C6B—H62B0.9701
C1A—C2A1.5235 (14)C6B—H63B0.9701
C1A—C3A1.5262 (15)O1C—C3C1.2298 (13)
C1A—H11A0.9331O2C—C7C1.2624 (13)
C2A—H21A0.9942O3C—C7C1.2503 (14)
C2A—H22A0.9942N1C—C1C1.4945 (13)
C2A—H23A0.9942N1C—H1C0.944 (14)
C4A—C5A1.5342 (15)N1C—H2C0.918 (15)
C4A—C7A1.5444 (15)N1C—H3C0.837 (14)
C4A—H41A0.9935N2C—C3C1.3394 (13)
C5A—C6A1.5250 (16)N2C—C4C1.4653 (13)
C5A—H51A1.0095N2C—H4C0.874 (15)
C5A—H52A1.0095C1C—C2C1.5232 (15)
C6A—H61A0.9694C1C—C3C1.5362 (14)
C6A—H62A0.9694C1C—H11C0.9237
C6A—H63A0.9694C2C—H21C0.9681
O1B—C3B1.2444 (13)C2C—H22C0.9681
O2B—C7B1.2592 (13)C2C—H23C0.9681
O3B—C7B1.2539 (13)C4C—C5C1.5320 (15)
N1B—C1B1.4946 (14)C4C—C7C1.5372 (14)
N1B—H1B0.896 (14)C4C—H41C0.9265
N1B—H2B0.898 (16)C5C—C6C1.5271 (17)
N1B—H3B0.950 (14)C5C—H51C0.9549
N2B—C3B1.3301 (13)C5C—H52C0.9549
N2B—C4B1.4638 (13)C6C—H61C0.9694
N2B—H4B0.855 (15)C6C—H62C0.9694
C1B—C2B1.5213 (15)C6C—H63C0.9694
C1B—C3B1.5297 (15)O1W—H1W0.82 (2)
C1B—H11B0.9674O1W—H2W0.840 (19)
C2B—H21B0.9537
C1A—N1A—H1A113.4 (8)N2B—C3B—C1B115.82 (9)
C1A—N1A—H2A108.6 (8)N2B—C4B—C5B109.43 (9)
H1A—N1A—H2A111.9 (12)N2B—C4B—C7B111.05 (8)
C1A—N1A—H3A110.2 (9)C5B—C4B—C7B110.78 (8)
H1A—N1A—H3A102.5 (12)N2B—C4B—H41B108.5
H2A—N1A—H3A110.1 (13)C5B—C4B—H41B108.5
C3A—N2A—C4A120.65 (9)C7B—C4B—H41B108.5
C3A—N2A—H4A122.5 (9)C6B—C5B—C4B113.41 (10)
C4A—N2A—H4A115.6 (9)C6B—C5B—H51B108.9
N1A—C1A—C2A109.74 (9)C4B—C5B—H51B108.9
N1A—C1A—C3A107.52 (8)C6B—C5B—H52B108.9
C2A—C1A—C3A111.42 (9)C4B—C5B—H52B108.9
N1A—C1A—H11A109.4H51B—C5B—H52B107.7
C2A—C1A—H11A109.4C5B—C6B—H61B109.5
C3A—C1A—H11A109.4C5B—C6B—H62B109.5
C1A—C2A—H21A109.5H61B—C6B—H62B109.5
C1A—C2A—H22A109.5C5B—C6B—H63B109.5
H21A—C2A—H22A109.5H61B—C6B—H63B109.5
C1A—C2A—H23A109.5H62B—C6B—H63B109.5
H21A—C2A—H23A109.5O3B—C7B—O2B125.14 (10)
H22A—C2A—H23A109.5O2B—C7B—C4B117.25 (9)
O1A—C3A—N2A123.92 (10)O3B—C7B—C4B117.58 (9)
O1A—C3A—C1A121.18 (9)C1C—N1C—H1C110.4 (8)
N2A—C3A—C1A114.89 (9)C1C—N1C—H2C106.9 (8)
N2A—C4A—C5A110.61 (9)H1C—N1C—H2C105.7 (11)
N2A—C4A—C7A112.56 (8)C1C—N1C—H3C111.4 (9)
C5A—C4A—C7A108.73 (8)H1C—N1C—H3C113.8 (12)
N2A—C4A—H41A108.3H2C—N1C—H3C108.1 (13)
C5A—C4A—H41A108.3C3C—N2C—C4C121.12 (9)
C7A—C4A—H41A108.3C3C—N2C—H4C119.2 (8)
C6A—C5A—C4A113.86 (9)C4C—N2C—H4C119.4 (8)
C6A—C5A—H51A108.8N1C—C1C—C2C111.55 (8)
C4A—C5A—H51A108.8N1C—C1C—C3C106.83 (8)
C6A—C5A—H52A108.8C2C—C1C—C3C112.70 (9)
C4A—C5A—H52A108.8N1C—C1C—H11C108.5
H51A—C5A—H52A107.7C2C—C1C—H11C108.5
C5A—C6A—H61A109.5C3C—C1C—H11C108.5
C5A—C6A—H62A109.5C1C—C2C—H21C109.5
H61A—C6A—H62A109.5C1C—C2C—H22C109.5
C5A—C6A—H63A109.5H21C—C2C—H22C109.5
H61A—C6A—H63A109.5C1C—C2C—H23C109.5
H62A—C6A—H63A109.5H21C—C2C—H23C109.5
O3A—C7A—O2A125.72 (10)H22C—C2C—H23C109.5
O2A—C7A—C4A117.96 (10)O1C—C3C—N2C124.19 (10)
O3A—C7A—C4A116.28 (9)O1C—C3C—C1C120.18 (9)
C1B—N1B—H1B112.3 (9)N2C—C3C—C1C115.62 (9)
C1B—N1B—H2B111.9 (9)N2C—C4C—C5C109.26 (9)
H1B—N1B—H2B106.9 (13)N2C—C4C—C7C111.68 (8)
C1B—N1B—H3B107.8 (8)C5C—C4C—C7C110.85 (8)
H1B—N1B—H3B111.8 (12)N2C—C4C—H41C108.3
H2B—N1B—H3B106.0 (12)C5C—C4C—H41C108.3
C3B—N2B—C4B122.71 (9)C7C—C4C—H41C108.3
C3B—N2B—H4B117.7 (9)C6C—C5C—C4C112.20 (9)
C4B—N2B—H4B119.6 (9)C6C—C5C—H51C109.2
N1B—C1B—C2B110.00 (9)C4C—C5C—H51C109.2
N1B—C1B—C3B107.11 (9)C6C—C5C—H52C109.2
C2B—C1B—C3B112.25 (9)C4C—C5C—H52C109.2
N1B—C1B—H11B109.1H51C—C5C—H52C107.9
C2B—C1B—H11B109.1C5C—C6C—H61C109.5
C3B—C1B—H11B109.1C5C—C6C—H62C109.5
C1B—C2B—H21B109.5H61C—C6C—H62C109.5
C1B—C2B—H22B109.5C5C—C6C—H63C109.5
H21B—C2B—H22B109.5H61C—C6C—H63C109.5
C1B—C2B—H23B109.5H62C—C6C—H63C109.5
H21B—C2B—H23B109.5O3C—C7C—O2C124.07 (10)
H22B—C2B—H23B109.5O2C—C7C—C4C117.90 (9)
O1B—C3B—N2B124.06 (10)O3C—C7C—C4C118.00 (9)
O1B—C3B—C1B120.11 (9)H1W—O1W—H2W105.8 (17)
N1A—C1A—C3A—N2A171.50 (8)C2B—C1B—C3B—O1B109.52 (11)
C1A—C3A—N2A—C4A170.07 (9)C2B—C1B—C3B—N2B69.12 (12)
C3A—N2A—C4A—C7A77.26 (12)C3B—N2B—C4B—C5B130.93 (10)
N2A—C4A—C7A—O2A25.90 (14)C7B—C4B—C5B—C6B63.36 (12)
N2A—C4A—C5A—C6A54.93 (13)N2B—C4B—C7B—O3B143.59 (9)
C4A—N2A—C3A—O1A9.05 (15)C5B—C4B—C7B—O3B94.58 (11)
N1A—C1A—C3A—O1A9.35 (13)C5B—C4B—C7B—O2B83.64 (11)
C2A—C1A—C3A—O1A110.94 (12)N1C—C1C—C3C—N2C172.27 (9)
C2A—C1A—C3A—N2A68.21 (12)C1C—C3C—N2C—C4C171.04 (9)
C3A—N2A—C4A—C5A160.88 (9)C3C—N2C—C4C—C7C96.62 (11)
C7A—C4A—C5A—C6A179.00 (10)N2C—C4C—C7C—O2C65.36 (11)
N2A—C4A—C7A—O3A156.20 (10)N2C—C4C—C5C—C6C62.38 (12)
C5A—C4A—C7A—O3A80.88 (12)C4C—N2C—C3C—O1C7.70 (16)
C5A—C4A—C7A—O2A97.02 (12)N1C—C1C—C3C—O1C6.53 (13)
N1B—C1B—C3B—N2B170.04 (9)C2C—C1C—C3C—O1C116.33 (11)
C1B—C3B—N2B—C4B179.71 (9)C2C—C1C—C3C—N2C64.88 (12)
C3B—N2B—C4B—C7B106.46 (11)C3C—N2C—C4C—C5C140.39 (10)
N2B—C4B—C7B—O2B38.19 (12)C7C—C4C—C5C—C6C174.13 (10)
N2B—C4B—C5B—C6B173.87 (9)N2C—C4C—C7C—O3C116.42 (10)
C4B—N2B—C3B—O1B1.13 (16)C5C—C4C—C7C—O3C121.50 (11)
N1B—C1B—C3B—O1B11.32 (13)C5C—C4C—C7C—O2C56.72 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O3Ci0.952 (15)1.868 (15)2.7921 (12)163.0 (13)
N1A—H2A···O2Cii0.890 (14)1.934 (15)2.8054 (12)165.6 (12)
N1A—H3A···O2Ciii0.910 (16)1.912 (16)2.7834 (13)159.7 (13)
N2A—H4A···O3Aiv0.834 (15)2.067 (15)2.8945 (13)171.8 (13)
N1B—H1B···O1Bv0.896 (14)1.963 (15)2.8327 (13)163.3 (13)
N1B—H2B···O1W0.898 (16)2.001 (15)2.7864 (14)145.3 (12)
N1B—H3B···O2Aiv0.950 (14)1.820 (14)2.7446 (12)163.4 (12)
N2B—H4B···O3Biv0.855 (15)2.053 (15)2.9056 (12)175.2 (13)
N1C—H1C···O3Biv0.944 (14)1.805 (14)2.7403 (12)170.7 (12)
N1C—H2C···O2B0.918 (16)2.119 (14)2.8619 (12)137.3 (11)
N1C—H3C···O2Bi0.837 (14)1.929 (14)2.7573 (12)170.1 (14)
N2C—H4C···O3Civ0.874 (15)1.995 (15)2.8539 (12)167.2 (12)
O1W—H1W···O2A0.82 (2)1.97 (2)2.7835 (14)171.1 (18)
O1W—H2W···O3Aiv0.84 (2)1.93 (2)2.7548 (12)168.1 (17)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y, z1; (iii) x+1, y1/2, z+1; (iv) x, y+1, z; (v) x+2, y+1/2, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC7H14N2O3C7H14N2O3·0.33H2O
Mr174.20180.21
Crystal system, space groupTetragonal, I4Monoclinic, P21
Temperature (K)105105
a, b, c (Å)17.9290 (12), 17.9290 (12), 5.2196 (5)15.4292 (5), 5.4602 (2), 18.1320 (6)
α, β, γ (°)90, 90, 9090, 113.505 (1), 90
V3)1677.8 (2)1400.81 (8)
Z86
Radiation typeMo KαMo Kα
µ (mm1)0.110.10
Crystal size (mm)0.65 × 0.12 × 0.051.30 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Siemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.932, 0.9950.876, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
5085, 1029, 1001 19775, 10606, 7926
Rint0.0410.030
(sin θ/λ)max1)0.6410.806
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.180, 1.27 0.037, 0.074, 0.94
No. of reflections102910606
No. of parameters121406
No. of restraints131
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0203P)2 + 13.6465P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0371P)2]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.36, 0.390.33, 0.27
Absolute structure?Flack (1983), with 3916 Friedel pairs
Absolute structure parameter?0.6 (4)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXTL (Bruker, 2000), SHELXTL.

Selected geometric parameters (Å, º) for (I) top
O1—C41.230 (7)N1—C11.497 (7)
O2—C71.265 (7)N2—C41.351 (7)
O3—C71.233 (8)
O3—C7—C5119.0 (6)O2—C7—C5116.4 (6)
N1—C1—C4—N2171.6 (5)N2—C5—C7—O271.7 (7)
C1—C4—N2—C5176.5 (5)N1—C1—C2—C3179.1 (8)
C4—N2—C5—C7114.3 (6)N1—C1—C2—C3281.8 (7)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.921.992.846 (7)154
N1—H2···O2ii0.921.902.787 (7)160
N1—H3···O2iii0.921.892.804 (6)170
N2—H4···O3iv0.862.002.856 (7)177
C1—H11···O1iv0.982.453.316 (7)147
Symmetry codes: (i) y+1, x1, z+1; (ii) y+1, x1, z; (iii) y+1/2, x+1/2, z+1/2; (iv) x, y, z+1.
Selected geometric parameters (Å, º) for (II) top
O1A—C3A1.2255 (14)N1B—C1B1.4946 (14)
O2A—C7A1.2672 (14)N2B—C3B1.3301 (13)
O3A—C7A1.2482 (14)O1C—C3C1.2298 (13)
N1A—C1A1.4923 (14)O2C—C7C1.2624 (13)
N2A—C3A1.3492 (14)O3C—C7C1.2503 (14)
O1B—C3B1.2444 (13)N1C—C1C1.4945 (13)
O2B—C7B1.2592 (13)N2C—C3C1.3394 (13)
O3B—C7B1.2539 (13)
O2A—C7A—C4A117.96 (10)O2C—C7C—C4C117.90 (9)
O3A—C7A—C4A116.28 (9)O3C—C7C—C4C118.00 (9)
O2B—C7B—C4B117.25 (9)H1W—O1W—H2W105.8 (17)
O3B—C7B—C4B117.58 (9)
N1A—C1A—C3A—N2A171.50 (8)N2B—C4B—C7B—O2B38.19 (12)
C1A—C3A—N2A—C4A170.07 (9)N2B—C4B—C5B—C6B173.87 (9)
C3A—N2A—C4A—C7A77.26 (12)N1C—C1C—C3C—N2C172.27 (9)
N2A—C4A—C7A—O2A25.90 (14)C1C—C3C—N2C—C4C171.04 (9)
N2A—C4A—C5A—C6A54.93 (13)C3C—N2C—C4C—C7C96.62 (11)
N1B—C1B—C3B—N2B170.04 (9)N2C—C4C—C7C—O2C65.36 (11)
C1B—C3B—N2B—C4B179.71 (9)N2C—C4C—C5C—C6C62.38 (12)
C3B—N2B—C4B—C7B106.46 (11)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O3Ci0.952 (15)1.868 (15)2.7921 (12)163.0 (13)
N1A—H2A···O2Cii0.890 (14)1.934 (15)2.8054 (12)165.6 (12)
N1A—H3A···O2Ciii0.910 (16)1.912 (16)2.7834 (13)159.7 (13)
N2A—H4A···O3Aiv0.834 (15)2.067 (15)2.8945 (13)171.8 (13)
N1B—H1B···O1Bv0.896 (14)1.963 (15)2.8327 (13)163.3 (13)
N1B—H2B···O1W0.898 (16)2.001 (15)2.7864 (14)145.3 (12)
N1B—H3B···O2Aiv0.950 (14)1.820 (14)2.7446 (12)163.4 (12)
N2B—H4B···O3Biv0.855 (15)2.053 (15)2.9056 (12)175.2 (13)
N1C—H1C···O3Biv0.944 (14)1.805 (14)2.7403 (12)170.7 (12)
N1C—H2C···O2B0.918 (16)2.119 (14)2.8619 (12)137.3 (11)
N1C—H3C···O2Bi0.837 (14)1.929 (14)2.7573 (12)170.1 (14)
N2C—H4C···O3Civ0.874 (15)1.995 (15)2.8539 (12)167.2 (12)
O1W—H1W···O2A0.82 (2)1.97 (2)2.7835 (14)171.1 (18)
O1W—H2W···O3Aiv0.84 (2)1.93 (2)2.7548 (12)168.1 (17)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y, z1; (iii) x+1, y1/2, z+1; (iv) x, y+1, z; (v) x+2, y+1/2, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds