Download citation
Download citation
link to html
The crystal structure of the new melaminium salt, hexa­kis(2,4,6-tri­amino-1,3,5-triazin-1-ium) tetrakis­(di­hydrogenphos­phate) mono­hydrogenphosphate tetrahydrate, 6C3H7N6+·4H2PO4·HPO42−·4H2O, is built up from singly protonated melaminium residues, di­hydrogenphosphate and mono­hydrogen­phosphate anions, and water mol­ecules. The melaminium residues are interconnected by four N—H...N hydrogen bonds, forming chains along the [001] direction. These chains of melaminium residues form stacks aligned along [100]. The di­hydrogenphosphate anions interact with the mono­hydrogenphosphate anions via the H atoms and, together with hydrogen-bonded dimers of the water mol­ecules, develop layers parallel to the (010) plane. The oppositely charged moieties interact via multiple N—H...O hydrogen bonds that stabilize the stacking structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102010521/gd1207sup1.cif
Contains datablocks melpo4, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102010521/gd1207Isup2.hkl
Contains datablock I

CCDC reference: 193417

Comment top

This study is a continuation of our investigation of the characterization of the hydrogen bonds formed by melamine in the solid state (Janczak & Perpétuo, 2001a,b,c,d; Perpétuo & Janczak, 2002). Melamine and its organic and inorganic complexes or salts can develop supramolecular structures via multiple hydrogen bonds via self-assembly of components which contain complementary arrays of hydrogen-bonding sites (MacDonald & Whitesides, 1994; Row, 1999; Krische & Lehn, 2000; Sherrington & Taskinen, 2001). As part of a study of the solid-state properties of these compounds, we report here the structure of the title compound, (I). \sch

Crystals of melaminium selenate exhibit second-harmonic generation (SHG) with about 40% efficiency (Marchewka et al., 2002). Compound (I) is being studied as a potential material for non-linear optics since, like the selenate salt, it crystallizes in a non-centrosymmetric space group. Additionally, the X-ray geometry of (I) is compared here with the ab initio fully optimized parameters calculated at the HF/6–31 G(d,p) level (Frisch et al., 1995). The ab initio molecular-orbital calculations were carried out on the isolated ions, i.e. the monoprotonated melaminium cation and the phosphate H2PO4- and HPO42- anions, and the results are illustrated in Schemes 1 and 2, where values are given in Å and in °.

The asymmetric unit of (I) consists of six melaminium residues protonated at one ring N atom, four dihydrogenphosphate anions, H2PO4-, one monohydrogenphosphate anion, HPO42-, and four water molecules (Fig. 1). The six independent melaminium cations do not differ significantly, but the six-membered aromatic rings exhibit significant distortions from the ideal hexagonal form. In all the melaminium residues, the internal C—N—C angle at the protonated N atom (N11, N21, N31, N41, N51 and N61) is significantly greater (mean 119.4°) than the other two C—N—C angles within the rings (mean 115.9°). This is a result of the steric effect of a lone-pair electron, predicted by the valence-shell electron-pair repulsion theory (VSEPR; Gillespie, 1963, 1992).

As a result of the protonation of the melamine ring at one ring N atom (N11, N21, N31, N41, N51 and N61), the internal N—C—N angles containing only non-protonated N atoms (mean 125.5°) are significantly greater than the N—C—N angles containing protonated and non-protonated N atoms (mean 121.5°). The correlation between the internal C—N—C angles within the melaminium rings is similar to those reported for the crystals of barbituric acid with melamine (Zerkowski et al., 1994), melaminium phthalate (Janczak & Perpétuo, 2001a), melaminium chloride hemihydrate (Janczak & Perpétuo, 2001c), bis(melaminium) sulfate dihydrate (Janczak & Perpétuo, 2001 d) and melaminium acetate monohydrate acetic acid solvate (Perpétuo & Janczak, 2002), i.e. those singly protonated melaminium salts that have been previously structurally characterized. The ab initio optimized geometry calculated at the HF/6–31 G(d,p) level (Frisch et al., 1995) on the singly protonated melaminium residue (Scheme 1) shows a similar correlation between the C—N—C and N—C—N angles within the ring as in the crystal. Thus, the ring distortion of singly protonated melaminium residues results mainly from the protonation, and, to a lesser degree, from the hydrogen-bonding system and the crystal packing.

Each melaminium residue in the crystal of (I) is involved in nine hydrogen bonds, in seven of them as donor H and in the remaining two as acceptor H. The four almost linear N—H···N bonds link the melaminium residue with two neighbouring melaminium residues to form a chain along the [001] direction (Fig. 2a), while the remaining five much more bent N—H···O bonds link chains of melaminium residues with phosphate anions and/or a water molecule. The melaminium residue M1 (containing the atoms N11, N12, N13, N14, N15, N16, C11, C12 and C13; the first number is the number of the melaminium residue and the second is the atom number) is involved in N—H···O hydrogen bonds with a water molecule (O2W), the monohydrogenphosphate anion (O11) and two different dihydrogenphosphate anions, forming two hydrogen bonds with one of them (O21 and O24). The melaminium residues M2 and M3 are involved in N—H···O hydrogen bonds with two water molcules, M2 with O2W and O3W, and M3 with O1W and O4W. Additionally, residue M2 links two H2PO4- anions and one HPO42- anion, while residue M3 is involved in N—H···O hydrogen bonds with three different H2PO4- anions. Residues M4 and M5 do not form any hydrogen bonds with water molecules. Residue M4 forms N—H···O hydrogen bonds with two different H2PO4- anions and with two HPO42- anions, forming two hydrogen bonds to one of them. Residue M6 forms hydrogen bonds with a water molecule (O4W) and with three different H2PO4- anions, forming two hydrogen bonds with one of them (O31 and O32 of the same H2PO4- anion).

The geometries of the four independent dihydrogenphosphate anions, H2PO4-, do not differ significantly, the two single P—OH bonds ranging from 1.545 (2) to 1.569 (2) Å, and the other two P—O bonds from 1.485 (2) to 1.524 (2) Å. These values correlate well with those observed in the crystals of other compounds containing the dihydrogenphosphate anion (Allen et al., 1987), but they differ from the optimized bond lengths calculated for the dihydrogenphosphate anion. The greatest differences are observed between the values of the O—P—O angle containing both non-protonated O atoms and in the P—OH bond lengths (Scheme 2). The optimized O—P—O angle in the H2PO4- anion is about 10° greater than those in the crystal, and can be explained by the steric effect of the three lone pairs of electrons on both non-protonated O atoms. The observed P—OH bond lengths in the crystal are shorter than the optimized values, which is likely to be due to the intermolecular interactions present in the crystal, since the calculated values refer to the isolated non-interacting H2PO4- anion. The X-ray geometry of the monohydrogenphosphate anion, HPO42-, differs slightly from the optimized results (Scheme 2). In particular, the single P—OH bond is significantly longer (0.145 Å) in the optimized HPO42- anion than in the crystal. The differences in the P—O distances for equivalent bonds in the H2PO4- and HPO42- anions correlate with the number and strength of the hydrogen bonds in which the O atoms are involved (Table 2).

The monohydrogenphosphate anion, HPO42-, is involved in nine hydrogen bonds, in eight of them as acceptor H and in one as donor H. The HPO42- anion forms hydrogen bonds as acceptor H, with four melaminium residues via their amine H atoms, forming two hydrogen bonds with one melaminium residue (via an amine H atom and the H atom at the protonated ring N atom), and with two H2PO4- anions, and acts as a donor H to atom O34 of one H2PO4- anion.

Each of the four independent H2PO4- anions is involved in nine hydrogen bonds, in seven as acceptor H and in two as donor H. The dihydrogenphosphate anion containing atom P21 forms hydrogen bonds with four different melaminium residues, forming two hydrogen bonds with one of them via an amine H atom and the H atom at the protonated ring N atom, and with two other H2PO4- anions (containing P31 and P41), a monohydrogenphosphate anion (HPO42-) and two water molecules (O2W and O3W). The P21—O24 bond is longer than P21—O23 (both bonds chemically equivalent), since atom O24 acts as acceptor H in two stronger hydrogen bonds than atom 23. The H2PO4- anion containing atom P31 is involved as acceptor H with four melaminium residues (forming two hydrogen bonds with one), three different H2PO4- anions and the HPO42- anion, and does not form hydrogen bonds with water molecules. The H2PO4- anion containing atom P41 is involved as acceptor H with three melaminium residues (forming two hydrogen bonds with one), two H2PO4- anions and one water molecule (O1W), and as donor H with H2PO4- and HPO42- anions. The H2PO4- anion containing atom P51 as acceptor H forms hydrogen bonds with four different melminium residues, one water molecule (O3W) and one H2PO4- ion (containing atom P31), and as donor H, it forms hydrogen bonds with H2PO4- (containing atom P41) and the HPO42- anion.

The water molecules form hydrogen-bonded dimeric structures, with O2W—H22W···O1W(x - 1, y, z) 2.825 (2) and O4W—H24W···O3W(x, y, z - 1) 2.863 (2) Å. This hydrogen-bonded dimeric structure of the water molecules forms a two-dimensional layer, parallel to the (010) plane, with the mono- and dihydrogenphosphate anions via O—H···O hydrogen bonds (Fig. 2 b).

In the crystal of (I), the melaminium residues form planar positively charged chains, interconnected by complementary N—H···N bonds, forming stacks parallel to the (010) plane (Fig. 2a). The hydrogen-bonded dihydrogenphosphate and monohydrogenphosphate anions are interconnected by water molecules, forming negatively charged layers that are located in the crystal parallel to the (010) plane. Both oppositely charged moieties are extensively interconnected by multiple hydrogen bonds that stabilize the structure (Fig. 2a). Full details of the hydrogen-bonding geometry are given in Table 2.

Experimental top

Melanine was dissolved in a 20% solution of phosphoric Please check rephrasing acid and the resulting solution was slowly evaporated. After several days, colourless crystals of the title salt, (I), appeared.

Refinement top

All H atoms were located from difference Fourier maps. In the final refinement, H atoms bonded to the N atoms of the melamine residues were treated as riding, with N—H = 0.86 Å; the H atoms of the phosphate anions were constrained, with O—H = 0.82 Å. The H atoms of the water molecules were refined and the resulting range of O—H distances was 0.78 (2)–0.86 (2) Å.

Computing details top

Data collection: KM-4 CCD Software (Kuma Diffraction, 2000); cell refinement: KM-4 CCD Software; data reduction: KM-4 CCD Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing (a) the melaminium cations and (b) the phosphate anions and water molecules. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of (I), showing (a) the stacking structure, where the dashed lines represent hydrogen bonds and H atoms have been omitted for clarity, and (b) the layer of hydrogen-bonded dihydrogenphosphate and monohydrogenphosphate anions with the hydrogen-bonded dimeric structure of the water molecules. The layer in (b) is parallel to the (010) plane.
hexakis(2,4,6-triamino-1,3,5-triazin-1-ium) tetrakis(dihydrogenphosphate) monohydrogenphosphate tetrahydrate top
Crystal data top
6C3H7N6+·4H2O4P·HO4P2·4H2OF(000) = 1372
Mr = 1318.86Dx = 1.689 Mg m3
Dm = 1.69 Mg m3
Dm measured by flotation
Monoclinic, P21Melting point: dehydrated K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 11.341 (2) ÅCell parameters from 4999 reflections
b = 20.965 (4) Åθ = 2.7–29°
c = 12.334 (2) ŵ = 0.29 mm1
β = 117.80 (3)°T = 293 K
V = 2594.1 (11) Å3Parallelepiped, colourless
Z = 20.32 × 0.28 × 0.25 mm
Data collection top
Kuma KM-4 with two dimensional CCD area-detector
diffractometer
12689 independent reflections
Radiation source: fine-focus sealed tube10664 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 1024x1024 with blocks 2x2 pixels mm-1θmax = 29.1°, θmin = 2.7°
ω scanh = 1510
Absorption correction: analytical
face-indexed (SHELXTL; Sheldrick, 1990)
k = 2828
Tmin = 0.913, Tmax = 0.931l = 1616
25398 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0333P)2 + 0.241P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067(Δ/σ)max = 0.002
S = 1.00Δρmax = 0.23 e Å3
12689 reflectionsΔρmin = 0.28 e Å3
773 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
13 restraintsExtinction coefficient: 0.00059 (12)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.11 (4)
Crystal data top
6C3H7N6+·4H2O4P·HO4P2·4H2OV = 2594.1 (11) Å3
Mr = 1318.86Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.341 (2) ŵ = 0.29 mm1
b = 20.965 (4) ÅT = 293 K
c = 12.334 (2) Å0.32 × 0.28 × 0.25 mm
β = 117.80 (3)°
Data collection top
Kuma KM-4 with two dimensional CCD area-detector
diffractometer
12689 independent reflections
Absorption correction: analytical
face-indexed (SHELXTL; Sheldrick, 1990)
10664 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.931Rint = 0.014
25398 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067Δρmax = 0.23 e Å3
S = 1.00Δρmin = 0.28 e Å3
12689 reflectionsAbsolute structure: Flack (1983)
773 parametersAbsolute structure parameter: 0.11 (4)
13 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P110.92220 (4)0.56987 (2)0.40951 (4)0.02376 (9)
O110.77409 (13)0.54384 (5)0.34836 (12)0.0327 (3)
H1110.72220.57330.31500.039*
O120.93402 (14)0.61722 (5)0.32006 (12)0.0335 (3)
O131.00971 (13)0.51257 (6)0.43373 (12)0.0332 (3)
O140.94753 (13)0.60581 (6)0.52597 (11)0.0330 (3)
P210.71312 (5)0.59261 (2)0.66340 (4)0.02695 (10)
O210.74719 (14)0.55949 (7)0.78754 (12)0.0443 (4)
H1210.81740.57390.84130.053*
O220.84907 (15)0.61769 (7)0.67589 (14)0.0504 (4)
H1220.85600.60760.61490.060*
O230.62297 (15)0.64837 (6)0.64478 (14)0.0445 (4)
O240.65503 (14)0.54269 (6)0.56393 (11)0.0350 (3)
P310.45578 (4)0.601720 (19)0.26028 (4)0.02517 (9)
O310.42243 (13)0.55755 (6)0.14696 (11)0.0350 (3)
H1310.42550.57850.09220.042*
O320.45777 (13)0.55288 (6)0.35641 (11)0.0378 (3)
H1320.51440.56350.42510.045*
O330.34529 (13)0.64948 (6)0.22653 (12)0.0336 (3)
O340.59100 (13)0.63241 (6)0.30535 (12)0.0335 (3)
P411.02529 (5)0.57193 (2)0.09333 (4)0.02786 (10)
O411.09433 (15)0.63827 (6)0.11460 (14)0.0450 (4)
H1411.17470.63410.15880.054*
O420.90033 (14)0.58376 (8)0.11020 (12)0.0498 (4)
H1420.91800.57640.18150.060*
O431.11754 (14)0.52386 (6)0.18132 (12)0.0430 (3)
O440.97792 (15)0.55303 (8)0.03989 (12)0.0504 (4)
P510.23791 (5)0.57995 (2)0.16345 (4)0.02875 (10)
O510.12876 (15)0.53750 (6)0.15284 (14)0.0466 (4)
H1510.09990.55630.11190.056*
O520.16548 (16)0.62679 (7)0.27323 (13)0.0484 (4)
H1520.08760.63090.28780.058*
O530.30748 (17)0.62349 (6)0.05428 (13)0.0462 (4)
O540.32582 (15)0.53359 (7)0.18215 (15)0.0480 (4)
N110.29884 (16)0.91856 (7)0.39128 (14)0.0304 (3)
H110.30070.95960.39220.037*
N120.29153 (16)0.82286 (7)0.48598 (13)0.0282 (3)
N130.29954 (16)0.82246 (7)0.29403 (13)0.0293 (3)
N140.28804 (17)0.91908 (7)0.57271 (15)0.0366 (4)
H14A0.28430.89960.63240.044*
H14B0.28880.96010.57100.044*
N150.29562 (17)0.73026 (7)0.39048 (15)0.0352 (4)
H15A0.29820.70930.33170.042*
H15B0.29310.71020.45010.042*
N160.30827 (18)0.91861 (8)0.20941 (15)0.0398 (4)
H16A0.31090.89930.14900.048*
H16B0.30980.95960.21250.048*
C110.29267 (18)0.88590 (8)0.48340 (16)0.0268 (4)
C120.29549 (18)0.79308 (8)0.38921 (17)0.0276 (4)
C130.30200 (19)0.88559 (8)0.29652 (16)0.0288 (4)
N210.29789 (16)0.75684 (7)0.88980 (14)0.0301 (3)
H210.30020.71580.89250.036*
N220.28756 (17)0.85168 (7)0.78464 (14)0.0314 (3)
N230.29597 (16)0.85442 (7)0.98310 (13)0.0292 (3)
N240.28289 (18)0.94562 (7)0.87582 (16)0.0409 (4)
H24A0.27790.96510.81250.049*
H24B0.28370.96710.93560.049*
N250.30135 (17)0.75921 (7)1.07742 (15)0.0365 (4)
H25A0.30160.77951.13810.044*
H25B0.30300.71821.07770.044*
N260.29541 (19)0.75510 (7)0.70155 (15)0.0395 (4)
H26A0.29260.77430.63880.047*
H26B0.29930.71410.70570.047*
C210.29364 (19)0.78825 (8)0.79097 (17)0.0290 (4)
C220.28927 (19)0.88279 (8)0.88128 (16)0.0283 (4)
C230.29846 (18)0.79098 (8)0.98396 (16)0.0281 (4)
N310.62384 (15)0.75942 (7)0.34300 (13)0.0279 (3)
H310.61770.71850.34090.033*
N320.63631 (16)0.85499 (7)0.24938 (13)0.0283 (3)
N330.63782 (16)0.85572 (7)0.44565 (13)0.0282 (3)
N340.65501 (17)0.94725 (7)0.35478 (14)0.0354 (4)
H34A0.65860.96780.29600.042*
H34B0.65940.96760.41710.042*
N350.62586 (18)0.76058 (7)0.53064 (15)0.0387 (4)
H35A0.62950.78060.59300.046*
H35B0.62020.71970.52730.046*
N360.62694 (17)0.75834 (8)0.15766 (15)0.0367 (4)
H36A0.63110.77750.09790.044*
H36B0.62180.71740.15790.044*
C310.62839 (18)0.79177 (8)0.24907 (16)0.0255 (4)
C320.64282 (18)0.88474 (8)0.34928 (15)0.0253 (4)
C330.62904 (18)0.79264 (8)0.44033 (16)0.0273 (4)
N410.96008 (15)0.74435 (7)0.35443 (13)0.0276 (3)
H410.96100.70330.35350.033*
N420.95639 (16)0.84155 (7)0.25823 (13)0.0282 (3)
N430.96318 (15)0.83950 (7)0.45602 (13)0.0264 (3)
N440.95858 (17)0.93328 (7)0.35976 (14)0.0336 (4)
H44A0.96030.95330.42130.040*
H44B0.95620.95430.29890.040*
N450.95740 (17)0.74201 (7)0.53958 (14)0.0334 (4)
H45A0.95650.76070.60130.040*
H45B0.95600.70100.53540.040*
N460.95541 (18)0.74588 (7)0.16632 (15)0.0385 (4)
H46A0.95290.76610.10460.046*
H46B0.95630.70490.16730.046*
C410.95780 (18)0.77788 (8)0.25965 (16)0.0264 (4)
C420.95951 (18)0.86995 (8)0.35865 (16)0.0259 (4)
C430.96094 (17)0.77607 (8)0.45180 (15)0.0249 (3)
N510.95549 (15)0.90377 (6)0.85348 (13)0.0266 (3)
H510.94830.94460.84850.032*
N520.96530 (16)0.80619 (6)0.76448 (13)0.0272 (3)
N530.97360 (16)0.80985 (7)0.96286 (13)0.0268 (3)
N540.96002 (18)0.90772 (7)1.04130 (14)0.0364 (4)
H54A0.96360.88951.10530.044*
H54B0.95380.94861.03430.044*
N550.97854 (19)0.71591 (7)0.87293 (15)0.0395 (4)
H55A0.98460.69680.93700.047*
H55B0.97730.69410.81340.047*
N560.95386 (17)0.90107 (7)0.66720 (14)0.0333 (4)
H56A0.95550.88070.60740.040*
H56B0.94930.94200.66550.040*
C510.95831 (18)0.86961 (7)0.76124 (15)0.0242 (4)
C520.97112 (18)0.77872 (8)0.86595 (16)0.0265 (4)
C530.96403 (18)0.87288 (8)0.95360 (16)0.0252 (4)
N610.62234 (16)0.92134 (7)0.84242 (13)0.0294 (3)
H610.61470.96220.84000.035*
N620.63406 (17)0.82433 (7)0.94292 (14)0.0296 (3)
N630.63828 (16)0.82592 (6)0.74920 (13)0.0272 (3)
N640.62448 (19)0.91953 (7)1.03036 (15)0.0396 (4)
H64A0.62710.89941.09220.047*
H64B0.62010.96051.02780.047*
N650.64632 (17)0.73275 (7)0.84855 (15)0.0361 (4)
H65A0.64730.71160.90880.043*
H65B0.64980.71290.78910.043*
N660.62832 (16)0.92254 (7)0.65708 (14)0.0337 (4)
H66A0.63280.90340.59740.040*
H66B0.62280.96340.65730.040*
C610.62724 (19)0.88756 (8)0.93927 (16)0.0272 (4)
C620.63938 (18)0.79545 (8)0.84736 (16)0.0265 (4)
C630.62988 (18)0.88891 (8)0.74885 (15)0.0251 (3)
O1W1.25313 (15)0.53801 (7)0.44953 (14)0.0415 (3)
H11W1.235 (2)0.5422 (12)0.3775 (16)0.062*
H21W1.1851 (19)0.5365 (13)0.451 (2)0.062*
O2W0.35955 (18)0.64734 (7)0.59725 (17)0.0523 (4)
H12W0.4386 (17)0.6419 (14)0.617 (3)0.078*
H22W0.331 (3)0.6125 (10)0.559 (2)0.078*
O3W0.59737 (17)0.52871 (9)0.91102 (16)0.0579 (4)
H13W0.614 (3)0.5493 (13)0.859 (2)0.087*
H23W0.5184 (19)0.5431 (14)0.882 (3)0.087*
O4W0.6321 (3)0.64834 (9)0.0343 (2)0.0829 (7)
H14W0.555 (2)0.6421 (19)0.012 (3)0.124*
H24W0.655 (4)0.6135 (11)0.025 (4)0.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P110.0317 (2)0.01741 (18)0.0257 (2)0.00032 (18)0.01633 (18)0.00132 (17)
O110.0360 (7)0.0214 (6)0.0403 (7)0.0006 (5)0.0174 (6)0.0017 (5)
O120.0539 (8)0.0219 (6)0.0352 (7)0.0014 (6)0.0296 (7)0.0012 (5)
O130.0411 (8)0.0226 (6)0.0422 (7)0.0066 (6)0.0249 (6)0.0032 (5)
O140.0417 (7)0.0302 (6)0.0325 (6)0.0029 (6)0.0218 (6)0.0059 (6)
P210.0326 (2)0.0245 (2)0.0236 (2)0.00185 (18)0.01296 (19)0.00018 (17)
O210.0390 (8)0.0553 (9)0.0297 (7)0.0113 (7)0.0085 (6)0.0106 (6)
O220.0497 (9)0.0673 (10)0.0485 (9)0.0209 (8)0.0349 (8)0.0214 (8)
O230.0561 (9)0.0301 (7)0.0505 (9)0.0031 (7)0.0275 (8)0.0047 (6)
O240.0494 (8)0.0215 (6)0.0252 (6)0.0027 (6)0.0100 (6)0.0002 (5)
P310.0306 (2)0.01671 (18)0.0262 (2)0.00055 (18)0.01157 (18)0.00067 (17)
O310.0521 (8)0.0231 (6)0.0279 (6)0.0002 (6)0.0171 (6)0.0026 (5)
O320.0430 (8)0.0345 (7)0.0273 (6)0.0126 (6)0.0091 (6)0.0043 (5)
O330.0323 (7)0.0277 (6)0.0408 (7)0.0061 (5)0.0170 (6)0.0008 (6)
O340.0338 (7)0.0225 (6)0.0436 (8)0.0031 (5)0.0175 (6)0.0005 (6)
P410.0346 (2)0.0247 (2)0.02187 (19)0.0014 (2)0.01113 (18)0.00042 (18)
O410.0391 (8)0.0255 (6)0.0615 (10)0.0015 (6)0.0159 (7)0.0067 (6)
O420.0429 (8)0.0751 (11)0.0359 (7)0.0006 (8)0.0222 (6)0.0014 (8)
O430.0453 (8)0.0254 (6)0.0410 (8)0.0031 (6)0.0057 (7)0.0063 (6)
O440.0432 (8)0.0732 (11)0.0300 (7)0.0094 (8)0.0131 (6)0.0044 (7)
P510.0367 (2)0.0228 (2)0.0261 (2)0.00296 (19)0.01416 (19)0.00080 (18)
O510.0648 (10)0.0317 (7)0.0643 (10)0.0048 (7)0.0477 (9)0.0078 (7)
O520.0511 (9)0.0351 (7)0.0421 (8)0.0020 (7)0.0076 (7)0.0084 (7)
O530.0675 (10)0.0291 (7)0.0334 (7)0.0043 (7)0.0163 (7)0.0003 (6)
O540.0497 (9)0.0382 (8)0.0641 (10)0.0012 (7)0.0333 (8)0.0082 (7)
N110.0458 (10)0.0187 (7)0.0311 (8)0.0028 (6)0.0215 (8)0.0038 (6)
N120.0403 (9)0.0214 (7)0.0278 (8)0.0001 (6)0.0199 (7)0.0014 (6)
N130.0401 (9)0.0251 (7)0.0279 (8)0.0030 (6)0.0202 (7)0.0060 (6)
N140.0577 (11)0.0235 (7)0.0357 (9)0.0044 (7)0.0277 (9)0.0020 (7)
N150.0584 (11)0.0207 (7)0.0336 (8)0.0023 (7)0.0275 (8)0.0052 (6)
N160.0646 (12)0.0285 (8)0.0350 (9)0.0021 (8)0.0305 (9)0.0004 (7)
C110.0305 (10)0.0255 (8)0.0264 (9)0.0024 (7)0.0149 (8)0.0022 (7)
C120.0317 (10)0.0254 (8)0.0280 (9)0.0018 (7)0.0158 (8)0.0011 (7)
C130.0322 (10)0.0295 (8)0.0263 (9)0.0013 (8)0.0149 (8)0.0027 (7)
N210.0405 (9)0.0233 (7)0.0312 (8)0.0036 (6)0.0207 (7)0.0003 (6)
N220.0441 (9)0.0263 (7)0.0285 (8)0.0029 (7)0.0209 (7)0.0013 (6)
N230.0394 (9)0.0250 (7)0.0267 (8)0.0028 (7)0.0184 (7)0.0003 (6)
N240.0661 (12)0.0274 (8)0.0364 (9)0.0006 (8)0.0299 (9)0.0010 (7)
N250.0548 (11)0.0258 (8)0.0364 (9)0.0012 (7)0.0276 (8)0.0029 (7)
N260.0639 (12)0.0272 (8)0.0377 (9)0.0027 (8)0.0323 (9)0.0025 (7)
C210.0323 (10)0.0276 (9)0.0304 (9)0.0012 (7)0.0173 (8)0.0012 (7)
C220.0334 (10)0.0261 (8)0.0279 (9)0.0030 (7)0.0165 (8)0.0007 (7)
C230.0300 (10)0.0294 (9)0.0259 (9)0.0002 (7)0.0139 (8)0.0018 (7)
N310.0389 (9)0.0197 (6)0.0275 (8)0.0022 (6)0.0176 (7)0.0015 (6)
N320.0375 (9)0.0252 (7)0.0250 (7)0.0034 (6)0.0169 (7)0.0027 (6)
N330.0415 (9)0.0228 (7)0.0244 (7)0.0059 (6)0.0189 (7)0.0015 (6)
N340.0587 (11)0.0239 (7)0.0307 (8)0.0042 (7)0.0270 (8)0.0018 (6)
N350.0667 (12)0.0239 (7)0.0349 (9)0.0058 (8)0.0317 (9)0.0007 (7)
N360.0537 (11)0.0313 (8)0.0330 (8)0.0044 (8)0.0269 (8)0.0051 (7)
C310.0262 (9)0.0261 (8)0.0246 (8)0.0041 (7)0.0121 (7)0.0038 (7)
C320.0301 (9)0.0237 (8)0.0247 (8)0.0031 (7)0.0150 (7)0.0018 (7)
C330.0321 (10)0.0261 (8)0.0253 (9)0.0045 (7)0.0149 (8)0.0014 (7)
N410.0419 (9)0.0196 (6)0.0267 (7)0.0026 (6)0.0205 (7)0.0010 (6)
N420.0434 (9)0.0209 (7)0.0263 (7)0.0039 (6)0.0214 (7)0.0014 (6)
N430.0377 (9)0.0228 (7)0.0232 (7)0.0002 (6)0.0179 (6)0.0017 (6)
N440.0556 (11)0.0204 (7)0.0321 (8)0.0000 (7)0.0266 (8)0.0002 (6)
N450.0569 (11)0.0222 (7)0.0278 (8)0.0011 (7)0.0252 (8)0.0021 (6)
N460.0724 (13)0.0198 (7)0.0354 (9)0.0057 (8)0.0353 (9)0.0010 (6)
C410.0353 (10)0.0229 (8)0.0257 (8)0.0014 (7)0.0182 (8)0.0003 (7)
C420.0319 (10)0.0236 (8)0.0260 (8)0.0017 (7)0.0166 (8)0.0016 (7)
C430.0269 (9)0.0259 (8)0.0227 (8)0.0023 (7)0.0121 (7)0.0001 (7)
N510.0381 (9)0.0178 (6)0.0269 (7)0.0015 (6)0.0176 (7)0.0004 (6)
N520.0436 (9)0.0176 (6)0.0234 (7)0.0013 (6)0.0182 (7)0.0011 (5)
N530.0376 (9)0.0218 (7)0.0240 (7)0.0008 (6)0.0170 (7)0.0001 (6)
N540.0606 (11)0.0245 (7)0.0316 (9)0.0014 (7)0.0280 (8)0.0012 (6)
N550.0701 (12)0.0214 (7)0.0327 (9)0.0018 (8)0.0289 (9)0.0008 (7)
N560.0578 (11)0.0185 (6)0.0306 (8)0.0003 (7)0.0264 (8)0.0023 (6)
C510.0313 (10)0.0201 (7)0.0231 (8)0.0007 (7)0.0144 (7)0.0009 (6)
C520.0347 (10)0.0212 (7)0.0272 (9)0.0004 (7)0.0173 (8)0.0002 (7)
C530.0291 (9)0.0238 (8)0.0259 (8)0.0006 (7)0.0154 (8)0.0017 (7)
N610.0448 (9)0.0196 (7)0.0280 (8)0.0020 (6)0.0205 (7)0.0001 (6)
N620.0447 (10)0.0208 (7)0.0286 (8)0.0007 (6)0.0216 (7)0.0007 (6)
N630.0393 (9)0.0213 (7)0.0250 (7)0.0012 (6)0.0183 (7)0.0009 (6)
N640.0672 (12)0.0233 (7)0.0377 (9)0.0028 (8)0.0324 (9)0.0050 (7)
N650.0588 (11)0.0203 (7)0.0369 (9)0.0010 (7)0.0288 (8)0.0013 (7)
N660.0500 (10)0.0256 (7)0.0313 (8)0.0027 (7)0.0239 (8)0.0026 (6)
C610.0355 (10)0.0213 (8)0.0285 (9)0.0020 (7)0.0182 (8)0.0027 (7)
C620.0317 (10)0.0215 (8)0.0274 (9)0.0010 (7)0.0148 (8)0.0005 (7)
C630.0268 (9)0.0254 (8)0.0247 (8)0.0004 (7)0.0134 (7)0.0004 (7)
O1W0.0450 (9)0.0406 (8)0.0434 (8)0.0008 (7)0.0245 (8)0.0057 (7)
O2W0.0586 (11)0.0390 (8)0.0682 (11)0.0005 (8)0.0372 (10)0.0021 (8)
O3W0.0512 (10)0.0641 (11)0.0595 (11)0.0042 (9)0.0268 (9)0.0025 (9)
O4W0.158 (2)0.0340 (9)0.0814 (15)0.0066 (12)0.0762 (15)0.0085 (9)
Geometric parameters (Å, º) top
P11—O131.4969 (13)N33—C321.360 (2)
P11—O141.5261 (12)N34—C321.316 (2)
P11—O121.5357 (12)N34—H34A0.8600
P11—O111.5832 (14)N34—H34B0.8600
O11—H1110.8200N35—C331.316 (2)
P21—O231.4985 (15)N35—H35A0.8600
P21—O241.5101 (13)N35—H35B0.8600
P21—O211.5569 (14)N36—C311.321 (2)
P21—O221.5672 (15)N36—H36A0.8600
O21—H1210.8200N36—H36B0.8600
O22—H1220.8200N41—C411.354 (2)
P31—O331.5030 (13)N41—C431.369 (2)
P31—O341.5098 (14)N41—H410.8600
P31—O321.5588 (12)N42—C411.335 (2)
P31—O311.5688 (12)N42—C421.360 (2)
O31—H1310.8200N43—C431.331 (2)
O32—H1320.8200N43—C421.343 (2)
P41—O431.4929 (14)N44—C421.328 (2)
P41—O441.5239 (15)N44—H44A0.8600
P41—O421.5454 (14)N44—H44B0.8600
P41—O411.5571 (14)N45—C431.313 (2)
O41—H1410.8200N45—H45A0.8600
O42—H1420.8200N45—H45B0.8600
P51—O541.4854 (15)N46—C411.322 (2)
P51—O531.5093 (15)N46—H46A0.8600
P51—O521.5605 (15)N46—H46B0.8600
P51—O511.5787 (14)N51—C531.357 (2)
O51—H1510.8200N51—C511.357 (2)
O52—H1520.8200N51—H510.8600
N11—C111.356 (2)N52—C511.331 (2)
N11—C131.373 (2)N52—C521.351 (2)
N11—H110.8600N53—C531.326 (2)
N12—C111.322 (2)N53—C521.351 (2)
N12—C121.366 (2)N54—C531.323 (2)
N13—C131.324 (2)N54—H54A0.8600
N13—C121.345 (2)N54—H54B0.8600
N14—C111.325 (2)N55—C521.320 (2)
N14—H14A0.8600N55—H55A0.8600
N14—H14B0.8600N55—H55B0.8600
N15—C121.317 (2)N56—C511.315 (2)
N15—H15A0.8600N56—H56A0.8600
N15—H15B0.8600N56—H56B0.8600
N16—C131.308 (2)N61—C611.367 (2)
N16—H16A0.8600N61—C631.376 (2)
N16—H16B0.8600N61—H610.8600
N21—C231.362 (2)N62—C611.327 (2)
N21—C211.366 (2)N62—C621.351 (2)
N21—H210.8600N63—C631.324 (2)
N22—C211.332 (2)N63—C621.364 (2)
N22—C221.351 (2)N64—C611.321 (2)
N23—C231.330 (2)N64—H64A0.8600
N23—C221.359 (2)N64—H64B0.8600
N24—C221.319 (2)N65—C621.316 (2)
N24—H24A0.8600N65—H65A0.8600
N24—H24B0.8600N65—H65B0.8600
N25—C231.319 (2)N66—C631.327 (2)
N25—H25A0.8600N66—H66A0.8600
N25—H25B0.8600N66—H66B0.8600
N26—C211.312 (2)O1W—H11W0.817 (15)
N26—H26A0.8600O1W—H21W0.778 (15)
N26—H26B0.8600O2W—H12W0.819 (17)
N31—C311.364 (2)O2W—H22W0.849 (16)
N31—C331.365 (2)O3W—H13W0.858 (16)
N31—H310.8600O3W—H23W0.850 (17)
N32—C311.328 (2)O4W—H14W0.80 (3)
N32—C321.352 (2)O4W—H24W0.803 (18)
N33—C331.326 (2)
O13—P11—O14113.09 (8)C32—N34—H34B120.0
O13—P11—O12112.97 (7)H34A—N34—H34B120.0
O14—P11—O12108.41 (7)C33—N35—H35A120.0
O13—P11—O11106.01 (7)C33—N35—H35B120.0
O14—P11—O11108.10 (7)H35A—N35—H35B120.0
O12—P11—O11108.01 (8)C31—N36—H36A120.0
P11—O11—H111109.5C31—N36—H36B120.0
O23—P21—O24114.09 (8)H36A—N36—H36B120.0
O23—P21—O21109.71 (9)N36—C31—N32120.38 (16)
O24—P21—O21107.71 (8)N36—C31—N31118.08 (15)
O23—P21—O22108.84 (9)N32—C31—N31121.53 (15)
O24—P21—O22110.41 (8)N34—C32—N32117.77 (15)
O21—P21—O22105.75 (9)N34—C32—N33116.53 (15)
P21—O21—H121109.5N32—C32—N33125.70 (15)
P21—O22—H122109.5N35—C33—N33119.92 (16)
O33—P31—O34112.99 (7)N35—C33—N31118.48 (15)
O33—P31—O32111.26 (8)N33—C33—N31121.60 (16)
O34—P31—O32110.36 (8)C41—N41—C43119.66 (15)
O33—P31—O31108.85 (8)C41—N41—H41120.2
O34—P31—O31111.16 (8)C43—N41—H41120.2
O32—P31—O31101.65 (7)C41—N42—C42115.52 (14)
P31—O31—H131109.5C43—N43—C42116.60 (14)
P31—O32—H132109.5C42—N44—H44A120.0
O43—P41—O44112.55 (9)C42—N44—H44B120.0
O43—P41—O42112.72 (9)H44A—N44—H44B120.0
O44—P41—O42107.62 (9)C43—N45—H45A120.0
O43—P41—O41110.71 (8)C43—N45—H45B120.0
O44—P41—O41108.10 (9)H45A—N45—H45B120.0
O42—P41—O41104.75 (9)C41—N46—H46A120.0
P41—O41—H141109.5C41—N46—H46B120.0
P41—O42—H142109.5H46A—N46—H46B120.0
O54—P51—O53115.14 (10)N46—C41—N42120.05 (15)
O54—P51—O52113.39 (9)N46—C41—N41118.23 (16)
O53—P51—O52103.77 (8)N42—C41—N41121.71 (15)
O54—P51—O51104.65 (8)N44—C42—N43117.58 (15)
O53—P51—O51111.76 (9)N44—C42—N42116.76 (15)
O52—P51—O51108.11 (9)N43—C42—N42125.66 (15)
P51—O51—H151109.5N45—C43—N43121.23 (15)
P51—O52—H152109.5N45—C43—N41117.95 (16)
C11—N11—C13119.42 (15)N43—C43—N41120.80 (15)
C11—N11—H11120.3C53—N51—C51119.43 (14)
C13—N11—H11120.3C53—N51—H51120.3
C11—N12—C12115.55 (15)C51—N51—H51120.3
C13—N13—C12116.52 (15)C51—N52—C52115.47 (14)
C11—N14—H14A120.0C53—N53—C52115.99 (15)
C11—N14—H14B120.0C53—N54—H54A120.0
H14A—N14—H14B120.0C53—N54—H54B120.0
C12—N15—H15A120.0H54A—N54—H54B120.0
C12—N15—H15B120.0C52—N55—H55A120.0
H15A—N15—H15B120.0C52—N55—H55B120.0
C13—N16—H16A120.0H55A—N55—H55B120.0
C13—N16—H16B120.0C51—N56—H56A120.0
H16A—N16—H16B120.0C51—N56—H56B120.0
N12—C11—N14120.03 (16)H56A—N56—H56B120.0
N12—C11—N11121.99 (16)N56—C51—N52120.31 (15)
N14—C11—N11117.98 (15)N56—C51—N51117.95 (15)
N15—C12—N13117.91 (16)N52—C51—N51121.74 (15)
N15—C12—N12116.55 (16)N55—C52—N53116.75 (16)
N13—C12—N12125.55 (15)N55—C52—N52117.38 (15)
N16—C13—N13121.25 (16)N53—C52—N52125.85 (15)
N16—C13—N11117.78 (16)N54—C53—N53120.80 (16)
N13—C13—N11120.97 (16)N54—C53—N51117.72 (15)
C23—N21—C21119.45 (15)N53—C53—N51121.46 (15)
C23—N21—H21120.3C61—N61—C63118.91 (14)
C21—N21—H21120.3C61—N61—H61120.5
C21—N22—C22116.83 (16)C63—N61—H61120.5
C23—N23—C22115.90 (15)C61—N62—C62116.33 (15)
C22—N24—H24A120.0C63—N63—C62116.17 (14)
C22—N24—H24B120.0C61—N64—H64A120.0
H24A—N24—H24B120.0C61—N64—H64B120.0
C23—N25—H25A120.0H64A—N64—H64B120.0
C23—N25—H25B120.0C62—N65—H65A120.0
H25A—N25—H25B120.0C62—N65—H65B120.0
C21—N26—H26A120.0H65A—N65—H65B120.0
C21—N26—H26B120.0C63—N66—H66A120.0
H26A—N26—H26B120.0C63—N66—H66B120.0
N26—C21—N22120.02 (17)H66A—N66—H66B120.0
N26—C21—N21119.13 (16)N64—C61—N62120.13 (16)
N22—C21—N21120.84 (16)N64—C61—N61118.20 (16)
N24—C22—N22117.33 (16)N62—C61—N61121.66 (15)
N24—C22—N23117.53 (16)N65—C62—N62117.68 (16)
N22—C22—N23125.13 (16)N65—C62—N63116.96 (16)
N25—C23—N23120.26 (16)N62—C62—N63125.37 (15)
N25—C23—N21117.93 (16)N63—C63—N66120.35 (15)
N23—C23—N21121.81 (16)N63—C63—N61121.51 (15)
C31—N31—C33119.34 (14)N66—C63—N61118.13 (15)
C31—N31—H31120.3H11W—O1W—H21W106 (2)
C33—N31—H31120.3H12W—O2W—H22W97 (2)
C31—N32—C32115.96 (15)H13W—O3W—H23W93.6 (19)
C33—N33—C32115.84 (15)H14W—O4W—H24W102 (3)
C32—N34—H34A120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H111···O340.821.902.648 (2)152
O21—H121···O44i0.821.782.490 (2)144
O22—H122···O140.821.832.580 (2)152
O31—H131···O530.821.922.599 (2)139
O32—H132···O240.821.772.502 (2)148
O41—H141···O33ii0.821.742.529 (2)160
O42—H142···O120.821.842.533 (2)141
O51—H151···O44iii0.821.962.683 (2)146
O52—H152···O14iv0.822.162.594 (2)113
N11—H11···O24v0.861.822.661 (2)164
N14—H14A···N220.862.122.974 (2)177
N14—H14B···O11v0.862.292.987 (2)138
N15—H15A···O330.862.052.888 (2)166
N15—H15B···O2W0.862.082.886 (2)156
N16—H16A···N23vi0.862.193.043 (2)174
N16—H16B···O21v0.862.193.024 (2)163
N21—H21···O53i0.862.032.869 (2)164
N24—H24A···O11v0.862.433.261 (2)162
N24—H24B···O3Wvii0.862.172.909 (2)145
N25—H25A···N13i0.862.132.991 (2)175
N25—H25B···O33i0.862.202.840 (2)131
N26—H26A···N120.862.142.997 (2)178
N26—H26B···O2W0.862.252.857 (2)127
N31—H31···O340.861.852.699 (2)169
N34—H34A···O54viii0.862.032.879 (2)167
N34—H34B···O1Wix0.862.092.861 (2)150
N35—H35A···N630.862.112.968 (2)178
N35—H35B···O230.862.072.750 (2)135
N36—H36A···N62vi0.862.163.022 (2)178
N36—H36B···O4W0.862.152.779 (2)130
N41—H41···O120.861.852.693 (2)168
N44—H44A···O13ix0.862.072.920 (2)169
N44—H44B···O51viii0.862.373.148 (2)151
N45—H45A···N520.862.193.047 (2)177
N45—H45B···O140.862.002.859 (2)178
N46—H46A···N53vi0.862.082.936 (2)172
N46—H46B···O410.862.402.986 (2)126
N51—H51···O43ix0.861.792.623 (2)163
N54—H54A···N42i0.862.173.031 (2)176
N54—H54B···O44ix0.862.313.128 (2)158
N55—H55A···O41i0.862.303.100 (2)154
N55—H55B···O220.862.292.996 (2)139
N56—H56A···N430.862.102.953 (2)174
N56—H56B···O13ix0.862.112.768 (2)134
N61—H61···O31v0.862.062.914 (2)169
N64—H64A···N32i0.862.112.968 (2)177
N64—H64B···O54v0.862.292.925 (2)130
N65—H65A···O4Wi0.862.112.958 (2)171
N65—H65B···O230.862.142.983 (3)166
N66—H66A···N330.862.153.006 (2)178
N66—H66B···O32v0.862.062.880 (2)160
O1W—H11W···O430.82 (2)2.18 (2)2.941 (2)154 (2)
O1W—H21W···O130.78 (2)1.97 (2)2.728 (2)166 (2)
O2W—H12W···O230.82 (2)1.96 (2)2.763 (2)166 (2)
O2W—H22W···O1Wiii0.85 (2)1.98 (2)2.825 (2)173 (2)
O3W—H13W···O210.86 (2)2.09 (2)2.835 (2)145 (2)
O3W—H23W···O54i0.85 (2)1.96 (2)2.741 (2)153 (2)
O4W—H24W···O3Wvi0.80 (2)2.17 (2)2.863 (2)145 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x1, y, z; (iv) x1, y, z1; (v) x+1, y+1/2, z+1; (vi) x, y, z1; (vii) x+1, y+1/2, z+2; (viii) x+1, y+1/2, z; (ix) x+2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula6C3H7N6+·4H2O4P·HO4P2·4H2O
Mr1318.86
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)11.341 (2), 20.965 (4), 12.334 (2)
β (°) 117.80 (3)
V3)2594.1 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.32 × 0.28 × 0.25
Data collection
DiffractometerKuma KM-4 with two dimensional CCD area-detector
diffractometer
Absorption correctionAnalytical
face-indexed (SHELXTL; Sheldrick, 1990)
Tmin, Tmax0.913, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
25398, 12689, 10664
Rint0.014
(sin θ/λ)max1)0.683
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.067, 1.00
No. of reflections12689
No. of parameters773
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.28
Absolute structureFlack (1983)
Absolute structure parameter0.11 (4)

Computer programs: KM-4 CCD Software (Kuma Diffraction, 2000), KM-4 CCD Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1990), SHELXL97.

Selected geometric parameters (Å, º) top
P11—O131.4969 (13)P31—O321.5588 (12)
P11—O141.5261 (12)P31—O311.5688 (12)
P11—O121.5357 (12)P41—O431.4929 (14)
P11—O111.5832 (14)P41—O441.5239 (15)
P21—O231.4985 (15)P41—O421.5454 (14)
P21—O241.5101 (13)P41—O411.5571 (14)
P21—O211.5569 (14)P51—O541.4854 (15)
P21—O221.5672 (15)P51—O531.5093 (15)
P31—O331.5030 (13)P51—O521.5605 (15)
P31—O341.5098 (14)P51—O511.5787 (14)
O13—P11—O14113.09 (8)O33—P31—O31108.85 (8)
O13—P11—O12112.97 (7)O34—P31—O31111.16 (8)
O14—P11—O12108.41 (7)O32—P31—O31101.65 (7)
O13—P11—O11106.01 (7)O43—P41—O44112.55 (9)
O14—P11—O11108.10 (7)O43—P41—O42112.72 (9)
O12—P11—O11108.01 (8)O44—P41—O42107.62 (9)
O23—P21—O24114.09 (8)O43—P41—O41110.71 (8)
O23—P21—O21109.71 (9)O44—P41—O41108.10 (9)
O24—P21—O21107.71 (8)O42—P41—O41104.75 (9)
O23—P21—O22108.84 (9)O54—P51—O53115.14 (10)
O24—P21—O22110.41 (8)O54—P51—O52113.39 (9)
O21—P21—O22105.75 (9)O53—P51—O52103.77 (8)
O33—P31—O34112.99 (7)O54—P51—O51104.65 (8)
O33—P31—O32111.26 (8)O53—P51—O51111.76 (9)
O34—P31—O32110.36 (8)O52—P51—O51108.11 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H111···O340.821.8962.648 (2)152
O21—H121···O44i0.821.7792.490 (2)144
O22—H122···O140.821.8292.580 (2)152
O31—H131···O530.821.9212.599 (2)139
O32—H132···O240.821.7662.502 (2)148
O41—H141···O33ii0.821.7422.529 (2)160
O42—H142···O120.821.8432.533 (2)141
O51—H151···O44iii0.821.9632.683 (2)146
O52—H152···O14iv0.822.1612.594 (2)113
N11—H11···O24v0.861.8242.661 (2)164
N14—H14A···N220.862.1152.974 (2)177
N14—H14B···O11v0.862.2902.987 (2)138
N15—H15A···O330.862.0462.888 (2)166
N15—H15B···O2W0.862.0782.886 (2)156
N16—H16A···N23vi0.862.1863.043 (2)174
N16—H16B···O21v0.862.1923.024 (2)163
N21—H21···O53i0.862.0342.869 (2)164
N24—H24A···O11v0.862.4323.261 (2)162
N24—H24B···O3Wvii0.862.1652.909 (2)145
N25—H25A···N13i0.862.1332.991 (2)175
N25—H25B···O33i0.862.2032.840 (2)131
N26—H26A···N120.862.1372.997 (2)178
N26—H26B···O2W0.862.2512.857 (2)127
N31—H31···O340.861.8492.699 (2)169
N34—H34A···O54viii0.862.0342.879 (2)167
N34—H34B···O1Wix0.862.0852.861 (2)150
N35—H35A···N630.862.1092.968 (2)178
N35—H35B···O230.862.0722.750 (2)135
N36—H36A···N62vi0.862.1633.022 (2)178
N36—H36B···O4W0.862.1452.779 (2)130
N41—H41···O120.861.8452.693 (2)168
N44—H44A···O13ix0.862.0712.920 (2)169
N44—H44B···O51viii0.862.3663.148 (2)151
N45—H45A···N520.862.1883.047 (2)177
N45—H45B···O140.862.0002.859 (2)178
N46—H46A···N53vi0.862.0822.936 (2)172
N46—H46B···O410.862.4022.986 (2)126
N51—H51···O43ix0.861.7882.623 (2)163
N54—H54A···N42i0.862.1733.031 (2)176
N54—H54B···O44ix0.862.3133.128 (2)158
N55—H55A···O41i0.862.3043.100 (2)154
N55—H55B···O220.862.2922.996 (2)139
N56—H56A···N430.862.0962.953 (2)174
N56—H56B···O13ix0.862.1052.768 (2)134
N61—H61···O31v0.862.0642.914 (2)169
N64—H64A···N32i0.862.1092.968 (2)177
N64—H64B···O54v0.862.2932.925 (2)130
N65—H65A···O4Wi0.862.1062.958 (2)171
N65—H65B···O230.862.1422.983 (3)166
N66—H66A···N330.862.1463.006 (2)178
N66—H66B···O32v0.862.0582.880 (2)160
O1W—H11W···O430.82 (2)2.18 (2)2.941 (2)154 (2)
O1W—H21W···O130.78 (2)1.97 (2)2.728 (2)166 (2)
O2W—H12W···O230.82 (2)1.96 (2)2.763 (2)166 (2)
O2W—H22W···O1Wiii0.85 (2)1.98 (2)2.825 (2)173 (2)
O3W—H13W···O210.86 (2)2.09 (2)2.835 (2)145 (2)
O3W—H23W···O54i0.85 (2)1.96 (2)2.741 (2)153 (2)
O4W—H24W···O3Wvi0.80 (2)2.17 (2)2.863 (2)145 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x1, y, z; (iv) x1, y, z1; (v) x+1, y+1/2, z+1; (vi) x, y, z1; (vii) x+1, y+1/2, z+2; (viii) x+1, y+1/2, z; (ix) x+2, y+1/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds