Download citation
Download citation
link to html
In 5-benzyl-1,7-di­methyl-4,5,6,7-tetra­hydro-1H-pyrazolo­[3,4-d]­pyrimidine-4,6-dione, C14H14N4O2, which crystallizes in space group P\overline 1, weak intermolecular C—H...O hydrogen bonds generate dimers. The isomeric compound 1-benzyl-5,7-di­methyl-4,5,6,7-tetra­hydro-1H-pyrazolo­[3,4-d]­pyrimidine-4,6-dione, C14H14N4O2, crystallizes in space group P21/n, and shows no such dimerization. Instead, it exhibits C—H...π interactions with the phenyl ring. In both structures, the mol­ecules are linked by aromatic π–π-stacking interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102006315/gd1201sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102006315/gd1201Isup2.hkl
Contains datablock I

CCDC references: 188609; 188610

Comment top

Xanthine (3,7-dihydro-1H-purine-2,6-thione) compounds are well known for their intermolecular stacking (Falk et al., 1998) and C—H···O interactions (Desiraju & Steiner, 1999). Last year, we reported the X-ray structure of 1,3-bis(8-chlorotheophyllin-7-yl)propane, containing the xanthine skeleton, which also shows intermolecular stacking (Maulik et al., 2001). In this communication, we report the X-ray structures of two isomeric compounds, namely 5-benzyl-1,7-dimethyl-4,5,6,7-tetrahydropyrazolo[3,4-d]pyrimidine-4,6-dione, (I), and 1-benzyl-5,7-dimethyl-4,5,6,7-tetrahydropyrazolo[3,4-d]pyrimidine-4,6-dione, (II). The syntheses of these two compounds have been reported previously (Avasthi et al., 1998) and they are derived from the pyrazolo[3,4-d]pyrimidine ring system; however, structurally they are closer to the xanthine system which is well known for its C—H···O interactions (Desiraju & Steiner, 1999). In xanthine compounds, however, two N atoms flank the CH group, while in compounds (I) and (II), there is only one adjacent N atom.

The conformations of (I) and (II), together with the atom-numbering schemes, are shown in Figs. 1 and 4, respectively. The molecules are isomeric and differ from one another by the interchange of methyl and benzyl groups at positions N1 and C5. The pendent benzyl substituents are out of the planes of the pyrazolo[3,4-d]pyrimidine ring systems [twist angle: 83.2° in (I) and 80.4° in (II)]. The crystal packing of (I) reveals the presence of weak intermolecular C—H···O bonding (Table 1). Interestingly, this hydrogen bonding (C3—H3···O15) leads to the dimerization of the molecules (Fig. 2). The crystal packing (Fig. 3) shows further independent intermolecular stacking between the phenyl rings and the pyrazolo[3,4-d]pyrimidine systems due to ππ interactions. Pairs of phenyl rings (symmetry code: 1 - x, 1 - y, 2 - z) overlap with an interplanar separation of 3.511 (2) Å and a centroid–centroid separation of 3.374 (2) Å in a `parallel displaced' orientation. The face-to-face overlapping of the pyrazolo[3,4-d]pyrimidine ring systems (symmetry code: -x, 2 - y, 1 - z) displays an interplanar separation of 3.276 (2) Å and a centroid–centroid separation of 3.374 (2) Å. Both modes of stacking interactions are common in xanthine compounds (Falk et al., 1998). The crystal packing of (II), on the other hand, shows no such dimerization. Intermolecular stacking, however, is still present (Fig. 5) among pairs of pyrazolo[3,4-d]pyrimidine ring systems [symmetry code: -x, 2 - y, -z; interplanar spacing: 3.303 (3) Å; centroid separation: 3.365 (2) Å], in similar orientations to those found in (I). Thus, the crystal structures of (I) and (II) are stabilized mainly by C—H···O and ππ interactions, and van der Waals forces.

Experimental top

Compounds (I) and (II) were synthesized as described in the literature (Avasthii et al.,1998). Diffraction quality crystals of both compounds were obtained by slow evaporation of ethyl acetate/hexane solutions at room temperature.

Computing details top

For both compounds, data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-NT (Bruker, 1997); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: SHELXTL-NT.

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (30% probability) showing the molecular structure of (I) with the atom-labelling scheme.
[Figure 2] Fig. 2. Crystal-packing diagram showing the dimerization of the molecules of (I) through C—H···O hydrohen bonding (dashed lines).
[Figure 3] Fig. 3. Crystal packing diagram of (I) showing the intermolecular ππ stacking among the phenyl rings and pyrazolo[3,4-d]pirimidine rings in pairs.
[Figure 4] Fig. 4. Displacement ellipsoid plot (30% probability) showing the molecular structure of (II) with the atom-labelling scheme.
[Figure 5] Fig. 5. Crystal-packing diagram of (II) showing the intermolecular ππ stacking between pyrazolo[3,4-d]pirimidine rings.
(I) 5-benzyl-1,7-dimethyl-4,6-dioxo-4,5,6,7-tetrahydropyrazolo[3,4-d]pyrimidine top
Crystal data top
C14H14N4O2F(000) = 284
Mr = 270.29Dx = 1.380 Mg m3
Triclinic, P1Melting point: 165 K
a = 7.476 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.923 (1) ÅCell parameters from 59 reflections
c = 10.155 (1) Åθ = 5.0–14.9°
α = 76.68 (1)°µ = 0.10 mm1
β = 89.08 (1)°T = 293 K
γ = 80.66 (1)°Block, colourless
V = 650.3 (1) Å30.45 × 0.30 × 0.20 mm
Z = 2
Data collection top
Bruker P4
diffractometer
Rint = 0.015
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 2.1°
Graphite monochromatorh = 19
θ–2θ scansk = 1010
3155 measured reflectionsl = 1212
2539 independent reflections3 standard reflections every 97 reflections
2128 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0745P)2 + 0.1361P]
where P = (Fo2 + 2Fc2)/3
2539 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C14H14N4O2γ = 80.66 (1)°
Mr = 270.29V = 650.3 (1) Å3
Triclinic, P1Z = 2
a = 7.476 (1) ÅMo Kα radiation
b = 8.923 (1) ŵ = 0.10 mm1
c = 10.155 (1) ÅT = 293 K
α = 76.68 (1)°0.45 × 0.30 × 0.20 mm
β = 89.08 (1)°
Data collection top
Bruker P4
diffractometer
Rint = 0.015
3155 measured reflections3 standard reflections every 97 reflections
2539 independent reflections intensity decay: none
2128 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.05Δρmax = 0.16 e Å3
2539 reflectionsΔρmin = 0.30 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.02330 (18)0.88518 (15)0.27577 (13)0.0451 (3)
N20.14767 (19)0.98266 (16)0.22909 (15)0.0500 (4)
C30.2439 (2)0.98326 (18)0.33610 (17)0.0458 (4)
H30.33781.04040.33440.055*
C3A0.18683 (19)0.88677 (17)0.45331 (16)0.0394 (3)
C40.2426 (2)0.84822 (18)0.59221 (17)0.0420 (4)
N50.14501 (17)0.74149 (15)0.67411 (13)0.0412 (3)
C60.0018 (2)0.68083 (18)0.63141 (16)0.0424 (4)
N70.05104 (17)0.72858 (14)0.49623 (13)0.0425 (3)
C7A0.04519 (19)0.82716 (16)0.40989 (15)0.0381 (3)
C80.1934 (2)0.6894 (2)0.81865 (16)0.0472 (4)
H8A0.08330.68830.87040.057*
H8B0.25970.76360.84420.057*
C90.3071 (2)0.52937 (18)0.85475 (15)0.0414 (4)
C100.2802 (2)0.4252 (2)0.97390 (17)0.0529 (4)
H100.18970.45291.03180.063*
C110.3881 (3)0.2788 (2)1.0076 (2)0.0665 (6)
H110.36890.20921.08800.080*
C120.5219 (3)0.2363 (2)0.9239 (2)0.0631 (5)
H120.59240.13770.94640.076*
C130.5515 (3)0.3398 (2)0.8065 (2)0.0616 (5)
H130.64360.31230.74980.074*
C140.4449 (2)0.4849 (2)0.77241 (18)0.0532 (4)
H140.46600.55430.69240.064*
O150.36170 (17)0.89873 (15)0.64121 (13)0.0601 (4)
C160.0948 (3)0.8539 (3)0.1761 (2)0.0701 (6)
H16A0.08090.74340.18350.105*
H16B0.06290.90460.08690.105*
H16C0.21860.89310.19220.105*
C170.2185 (3)0.6832 (2)0.4563 (2)0.0634 (5)
H17A0.30880.77460.42850.095*
H17B0.26150.61280.53180.095*
H17C0.19470.63260.38260.095*
O180.07452 (17)0.58907 (15)0.71081 (13)0.0605 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0449 (7)0.0438 (7)0.0448 (7)0.0085 (6)0.0043 (6)0.0051 (6)
N20.0491 (8)0.0458 (7)0.0509 (8)0.0100 (6)0.0032 (6)0.0011 (6)
C30.0401 (8)0.0409 (8)0.0549 (9)0.0105 (6)0.0044 (7)0.0056 (7)
C3A0.0327 (7)0.0367 (7)0.0485 (8)0.0073 (6)0.0009 (6)0.0084 (6)
C40.0332 (7)0.0412 (8)0.0523 (9)0.0081 (6)0.0018 (6)0.0107 (7)
N50.0374 (6)0.0430 (7)0.0426 (7)0.0088 (5)0.0020 (5)0.0073 (5)
C60.0378 (8)0.0422 (8)0.0476 (9)0.0108 (6)0.0027 (6)0.0079 (7)
N70.0377 (7)0.0422 (7)0.0492 (7)0.0152 (5)0.0030 (6)0.0074 (6)
C7A0.0351 (7)0.0331 (7)0.0453 (8)0.0042 (6)0.0000 (6)0.0082 (6)
C80.0467 (9)0.0544 (9)0.0409 (8)0.0086 (7)0.0003 (7)0.0119 (7)
C90.0396 (8)0.0477 (8)0.0391 (8)0.0140 (6)0.0034 (6)0.0092 (6)
C100.0493 (9)0.0656 (11)0.0435 (9)0.0210 (8)0.0018 (7)0.0036 (8)
C110.0752 (13)0.0626 (11)0.0540 (11)0.0254 (10)0.0164 (10)0.0129 (9)
C120.0678 (12)0.0474 (10)0.0698 (12)0.0043 (9)0.0219 (10)0.0065 (9)
C130.0598 (11)0.0586 (11)0.0635 (11)0.0016 (9)0.0015 (9)0.0159 (9)
C140.0568 (10)0.0504 (9)0.0482 (9)0.0062 (8)0.0055 (8)0.0050 (7)
O150.0507 (7)0.0701 (8)0.0639 (8)0.0280 (6)0.0115 (6)0.0110 (6)
C160.0857 (14)0.0780 (13)0.0489 (10)0.0279 (11)0.0174 (10)0.0077 (9)
C170.0544 (10)0.0703 (12)0.0692 (12)0.0340 (9)0.0109 (9)0.0062 (9)
O180.0584 (8)0.0665 (8)0.0564 (7)0.0303 (6)0.0048 (6)0.0002 (6)
Geometric parameters (Å, º) top
N1—C7A1.343 (2)C8—H8B0.9700
N1—N21.380 (2)C9—C101.380 (2)
N1—C161.457 (2)C9—C141.382 (2)
N2—C31.314 (2)C10—C111.390 (3)
C3—C3A1.404 (2)C10—H100.9300
C3—H30.9300C11—C121.366 (3)
C3A—C7A1.380 (2)C11—H110.9300
C3A—C41.425 (2)C12—C131.369 (3)
C4—O151.2211 (19)C12—H120.9300
C4—N51.404 (2)C13—C141.378 (3)
N5—C61.392 (2)C13—H130.9300
N5—C81.466 (2)C14—H140.9300
C6—O181.2161 (19)C16—H16A0.9600
C6—N71.384 (2)C16—H16B0.9600
N7—C7A1.3747 (19)C16—H16C0.9600
N7—C171.467 (2)C17—H17A0.9600
C8—C91.506 (2)C17—H17B0.9600
C8—H8A0.9700C17—H17C0.9600
C7A—N1—N2110.53 (13)C10—C9—C14118.21 (16)
C7A—N1—C16131.66 (15)C10—C9—C8120.58 (15)
N2—N1—C16117.62 (14)C14—C9—C8121.18 (14)
C3—N2—N1105.63 (13)C9—C10—C11120.16 (17)
N2—C3—C3A111.42 (14)C9—C10—H10119.9
N2—C3—H3124.3C11—C10—H10119.9
C3A—C3—H3124.3C12—C11—C10120.72 (17)
C7A—C3A—C3104.76 (14)C12—C11—H11119.6
C7A—C3A—C4121.32 (14)C10—C11—H11119.6
C3—C3A—C4133.90 (14)C11—C12—C13119.51 (18)
O15—C4—N5120.59 (15)C11—C12—H12120.2
O15—C4—C3A126.27 (15)C13—C12—H12120.2
N5—C4—C3A113.14 (13)C12—C13—C14120.06 (19)
C6—N5—C4125.95 (13)C12—C13—H13120.0
C6—N5—C8115.78 (13)C14—C13—H13120.0
C4—N5—C8118.27 (13)C13—C14—C9121.32 (17)
O18—C6—N7121.19 (14)C13—C14—H14119.3
O18—C6—N5120.85 (15)C9—C14—H14119.3
N7—C6—N5117.96 (13)N1—C16—H16A109.5
C7A—N7—C6118.68 (13)N1—C16—H16B109.5
C7A—N7—C17123.55 (14)H16A—C16—H16B109.5
C6—N7—C17117.47 (14)N1—C16—H16C109.5
N1—C7A—N7129.51 (14)H16A—C16—H16C109.5
N1—C7A—C3A107.65 (14)H16B—C16—H16C109.5
N7—C7A—C3A122.83 (14)N7—C17—H17A109.5
N5—C8—C9112.97 (13)N7—C17—H17B109.5
N5—C8—H8A109.0H17A—C17—H17B109.5
C9—C8—H8A109.0N7—C17—H17C109.5
N5—C8—H8B109.0H17A—C17—H17C109.5
C9—C8—H8B109.0H17B—C17—H17C109.5
H8A—C8—H8B107.8
C7A—N1—N2—C30.24 (17)N2—N1—C7A—C3A0.12 (17)
C16—N1—N2—C3175.89 (15)C16—N1—C7A—C3A174.72 (18)
N1—N2—C3—C3A0.50 (18)C6—N7—C7A—N1177.97 (14)
N2—C3—C3A—C7A0.57 (18)C17—N7—C7A—N18.5 (3)
N2—C3—C3A—C4179.27 (16)C6—N7—C7A—C3A3.3 (2)
C7A—C3A—C4—O15177.37 (15)C17—N7—C7A—C3A170.28 (15)
C3—C3A—C4—O151.2 (3)C3—C3A—C7A—N10.40 (16)
C7A—C3A—C4—N52.6 (2)C4—C3A—C7A—N1179.30 (13)
C3—C3A—C4—N5178.90 (16)C3—C3A—C7A—N7178.60 (13)
O15—C4—N5—C6177.15 (14)C4—C3A—C7A—N70.3 (2)
C3A—C4—N5—C62.8 (2)C6—N5—C8—C979.46 (17)
O15—C4—N5—C81.7 (2)C4—N5—C8—C9101.57 (16)
C3A—C4—N5—C8178.34 (12)N5—C8—C9—C10141.39 (15)
C4—N5—C6—O18179.73 (14)N5—C8—C9—C1441.0 (2)
C8—N5—C6—O180.9 (2)C14—C9—C10—C111.1 (2)
C4—N5—C6—N70.1 (2)C8—C9—C10—C11178.77 (15)
C8—N5—C6—N7178.93 (13)C9—C10—C11—C120.2 (3)
O18—C6—N7—C7A177.18 (14)C10—C11—C12—C130.9 (3)
N5—C6—N7—C7A3.0 (2)C11—C12—C13—C141.0 (3)
O18—C6—N7—C178.9 (2)C12—C13—C14—C90.1 (3)
N5—C6—N7—C17170.91 (14)C10—C9—C14—C130.9 (3)
N2—N1—C7A—N7178.80 (14)C8—C9—C14—C13178.64 (16)
C16—N1—C7A—N76.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O15i0.932.423.317 (2)161
Symmetry code: (i) x+1, y+2, z+1.
(II) 1-benzyl-5,7-dimethyl-4-dioxo-4,5,6,7-tetrahydropyrazolo[3,4-d]pyrimidine top
Crystal data top
C14H14N4O2Dx = 1.356 Mg m3
Mr = 270.29Melting point: 142 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.468 (1) ÅCell parameters from 43 reflections
b = 7.449 (1) Åθ = 5.1–12.5°
c = 15.076 (2) ŵ = 0.10 mm1
β = 108.94 (1)°T = 293 K
V = 1324.4 (3) Å3Block, colourless
Z = 40.38 × 0.28 × 0.20 mm
F(000) = 568
Data collection top
Bruker P4
diffractometer
Rint = 0.089
Radiation source: fine-focus sealed tubeθmax = 27.0°, θmin = 1.9°
Graphite monochromatorh = 115
θ–2θ scansk = 19
3782 measured reflectionsl = 1918
2885 independent reflections3 standard reflections every 97 reflections
1504 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0653P)2 + 0.0892P]
where P = (Fo2 + 2Fc2)/3
2885 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C14H14N4O2V = 1324.4 (3) Å3
Mr = 270.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.468 (1) ŵ = 0.10 mm1
b = 7.449 (1) ÅT = 293 K
c = 15.076 (2) Å0.38 × 0.28 × 0.20 mm
β = 108.94 (1)°
Data collection top
Bruker P4
diffractometer
Rint = 0.089
3782 measured reflections3 standard reflections every 97 reflections
2885 independent reflections intensity decay: none
1504 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.01Δρmax = 0.17 e Å3
2885 reflectionsΔρmin = 0.22 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.20916 (16)0.9282 (3)0.00658 (13)0.0581 (6)
N20.1691 (2)0.9101 (3)0.08991 (14)0.0661 (6)
C30.0697 (2)0.8320 (4)0.10896 (17)0.0633 (7)
H30.02230.80590.16930.076*
C3A0.0439 (2)0.7932 (3)0.02766 (15)0.0511 (6)
C40.0514 (2)0.7118 (3)0.00995 (17)0.0560 (6)
N50.03889 (15)0.7023 (3)0.08547 (13)0.0539 (5)
C60.0535 (2)0.7604 (3)0.15857 (16)0.0525 (6)
N70.14192 (15)0.8447 (3)0.13688 (12)0.0513 (5)
C7A0.13447 (19)0.8556 (3)0.04462 (15)0.0493 (6)
C80.3228 (2)0.9998 (4)0.04671 (19)0.0663 (7)
H8A0.32361.08180.09690.080*
H8B0.34111.06860.00110.080*
C90.4136 (2)0.8603 (4)0.08494 (17)0.0580 (6)
C100.3924 (2)0.6790 (4)0.0765 (2)0.0835 (9)
H100.31900.63830.04630.100*
C110.4787 (3)0.5570 (5)0.1123 (3)0.1017 (11)
H110.46340.43450.10690.122*
C120.5870 (3)0.6161 (7)0.1558 (2)0.0965 (12)
H120.64580.53410.17870.116*
C130.6081 (3)0.7957 (7)0.1656 (2)0.0937 (11)
H130.68130.83640.19630.112*
C140.5226 (2)0.9156 (5)0.13061 (19)0.0771 (9)
H140.53831.03780.13780.093*
O150.13713 (16)0.6565 (3)0.06912 (12)0.0795 (6)
C160.1335 (2)0.6290 (4)0.1117 (2)0.0709 (8)
H16A0.10720.52970.15370.106*
H16B0.19200.58890.05640.106*
H16C0.16310.72050.14210.106*
O170.05736 (15)0.7429 (3)0.23962 (12)0.0705 (6)
C180.2302 (2)0.9323 (4)0.21321 (17)0.0726 (8)
H18A0.30260.88110.21830.109*
H18B0.21480.91500.27100.109*
H18C0.23101.05850.20040.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0600 (12)0.0600 (13)0.0538 (12)0.0080 (11)0.0178 (10)0.0070 (11)
N20.0790 (15)0.0691 (15)0.0534 (12)0.0141 (13)0.0260 (11)0.0080 (11)
C30.0744 (18)0.0637 (18)0.0489 (14)0.0156 (15)0.0160 (13)0.0008 (13)
C3A0.0534 (14)0.0521 (13)0.0428 (12)0.0139 (12)0.0088 (11)0.0003 (11)
C40.0579 (15)0.0520 (15)0.0519 (14)0.0117 (12)0.0091 (12)0.0065 (12)
N50.0511 (11)0.0527 (13)0.0563 (12)0.0056 (10)0.0152 (9)0.0015 (10)
C60.0595 (15)0.0509 (15)0.0462 (13)0.0128 (12)0.0160 (12)0.0006 (11)
N70.0520 (11)0.0557 (12)0.0419 (10)0.0032 (10)0.0092 (9)0.0012 (9)
C7A0.0543 (13)0.0466 (13)0.0468 (12)0.0145 (12)0.0162 (11)0.0064 (11)
C80.0630 (16)0.0637 (17)0.0756 (17)0.0007 (14)0.0275 (13)0.0081 (14)
C90.0565 (15)0.0669 (17)0.0568 (14)0.0002 (13)0.0268 (12)0.0021 (13)
C100.0636 (17)0.072 (2)0.110 (2)0.0072 (16)0.0207 (16)0.0067 (18)
C110.096 (3)0.084 (2)0.130 (3)0.027 (2)0.044 (2)0.021 (2)
C120.079 (2)0.137 (4)0.082 (2)0.047 (2)0.0378 (18)0.021 (2)
C130.0597 (19)0.143 (4)0.078 (2)0.012 (2)0.0226 (15)0.015 (2)
C140.0610 (17)0.094 (2)0.0831 (19)0.0039 (17)0.0327 (15)0.0126 (17)
O150.0662 (12)0.0913 (15)0.0668 (12)0.0064 (11)0.0020 (10)0.0121 (11)
C160.0677 (17)0.0635 (17)0.0863 (19)0.0038 (14)0.0316 (15)0.0029 (15)
O170.0825 (12)0.0779 (14)0.0543 (11)0.0013 (10)0.0265 (9)0.0033 (9)
C180.0718 (17)0.085 (2)0.0521 (14)0.0112 (15)0.0081 (13)0.0018 (14)
Geometric parameters (Å, º) top
N1—C7A1.355 (3)C8—H8B0.9700
N1—N21.383 (3)C9—C141.373 (3)
N1—C81.449 (3)C9—C101.374 (4)
N2—C31.314 (3)C10—C111.378 (4)
C3—C3A1.395 (3)C10—H100.9300
C3—H30.9300C11—C121.368 (5)
C3A—C7A1.371 (3)C11—H110.9300
C3A—C41.434 (4)C12—C131.362 (5)
C4—O151.220 (3)C12—H120.9300
C4—N51.398 (3)C13—C141.359 (5)
N5—C61.380 (3)C13—H130.9300
N5—C161.465 (3)C14—H140.9300
C6—O171.214 (3)C16—H16A0.9600
C6—N71.396 (3)C16—H16B0.9600
N7—C7A1.366 (3)C16—H16C0.9600
N7—C181.463 (3)C18—H18A0.9600
C8—C91.507 (4)C18—H18B0.9600
C8—H8A0.9700C18—H18C0.9600
C7A—N1—N2110.08 (19)C14—C9—C10118.1 (3)
C7A—N1—C8133.1 (2)C14—C9—C8118.9 (3)
N2—N1—C8116.4 (2)C10—C9—C8122.9 (2)
C3—N2—N1105.41 (19)C9—C10—C11120.6 (3)
N2—C3—C3A111.7 (2)C9—C10—H10119.7
N2—C3—H3124.1C11—C10—H10119.7
C3A—C3—H3124.1C12—C11—C10120.0 (4)
C7A—C3A—C3105.2 (2)C12—C11—H11120.0
C7A—C3A—C4120.9 (2)C10—C11—H11120.0
C3—C3A—C4133.8 (2)C13—C12—C11119.6 (3)
O15—C4—N5120.9 (2)C13—C12—H12120.2
O15—C4—C3A126.1 (2)C11—C12—H12120.2
N5—C4—C3A113.0 (2)C14—C13—C12120.2 (3)
C6—N5—C4126.2 (2)C14—C13—H13119.9
C6—N5—C16116.0 (2)C12—C13—H13119.9
C4—N5—C16117.8 (2)C13—C14—C9121.4 (3)
O17—C6—N5121.3 (2)C13—C14—H14119.3
O17—C6—N7120.5 (2)C9—C14—H14119.3
N5—C6—N7118.2 (2)N5—C16—H16A109.5
C7A—N7—C6117.86 (19)N5—C16—H16B109.5
C7A—N7—C18124.0 (2)H16A—C16—H16B109.5
C6—N7—C18117.76 (19)N5—C16—H16C109.5
N1—C7A—N7128.7 (2)H16A—C16—H16C109.5
N1—C7A—C3A107.5 (2)H16B—C16—H16C109.5
N7—C7A—C3A123.7 (2)N7—C18—H18A109.5
N1—C8—C9114.7 (2)N7—C18—H18B109.5
N1—C8—H8A108.6H18A—C18—H18B109.5
C9—C8—H8A108.6N7—C18—H18C109.5
N1—C8—H8B108.6H18A—C18—H18C109.5
C9—C8—H8B108.6H18B—C18—H18C109.5
H8A—C8—H8B107.6
C7A—N1—N2—C31.9 (3)N2—N1—C7A—C3A1.3 (3)
C8—N1—N2—C3175.6 (2)C8—N1—C7A—C3A173.7 (2)
N1—N2—C3—C3A1.7 (3)C6—N7—C7A—N1179.2 (2)
N2—C3—C3A—C7A0.9 (3)C18—N7—C7A—N17.8 (4)
N2—C3—C3A—C4179.6 (3)C6—N7—C7A—C3A1.9 (3)
C7A—C3A—C4—O15177.9 (2)C18—N7—C7A—C3A171.2 (2)
C3—C3A—C4—O150.6 (5)C3—C3A—C7A—N10.3 (3)
C7A—C3A—C4—N51.1 (3)C4—C3A—C7A—N1178.6 (2)
C3—C3A—C4—N5179.6 (2)C3—C3A—C7A—N7179.4 (2)
O15—C4—N5—C6179.8 (2)C4—C3A—C7A—N70.5 (4)
C3A—C4—N5—C60.8 (3)C7A—N1—C8—C973.6 (3)
O15—C4—N5—C161.8 (3)N2—N1—C8—C998.4 (2)
C3A—C4—N5—C16177.2 (2)N1—C8—C9—C14175.2 (2)
C4—N5—C6—O17178.5 (2)N1—C8—C9—C104.6 (4)
C16—N5—C6—O173.5 (3)C14—C9—C10—C110.6 (4)
C4—N5—C6—N73.2 (3)C8—C9—C10—C11179.6 (3)
C16—N5—C6—N7174.9 (2)C9—C10—C11—C120.7 (5)
O17—C6—N7—C7A178.1 (2)C10—C11—C12—C131.7 (5)
N5—C6—N7—C7A3.6 (3)C11—C12—C13—C141.3 (5)
O17—C6—N7—C188.4 (4)C12—C13—C14—C90.0 (5)
N5—C6—N7—C18170.0 (2)C10—C9—C14—C130.9 (4)
N2—N1—C7A—N7179.6 (2)C8—C9—C14—C13179.3 (3)
C8—N1—C7A—N77.3 (4)

Experimental details

(I)(II)
Crystal data
Chemical formulaC14H14N4O2C14H14N4O2
Mr270.29270.29
Crystal system, space groupTriclinic, P1Monoclinic, P21/n
Temperature (K)293293
a, b, c (Å)7.476 (1), 8.923 (1), 10.155 (1)12.468 (1), 7.449 (1), 15.076 (2)
α, β, γ (°)76.68 (1), 89.08 (1), 80.66 (1)90, 108.94 (1), 90
V3)650.3 (1)1324.4 (3)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.100.10
Crystal size (mm)0.45 × 0.30 × 0.200.38 × 0.28 × 0.20
Data collection
DiffractometerBruker P4
diffractometer
Bruker P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3155, 2539, 2128 3782, 2885, 1504
Rint0.0150.089
(sin θ/λ)max1)0.6170.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.134, 1.05 0.059, 0.159, 1.01
No. of reflections25392885
No. of parameters183183
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.300.17, 0.22

Computer programs: XSCANS (Siemens, 1996), XSCANS, SHELXTL-NT (Bruker, 1997), SHELXTL-NT.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O15i0.932.423.317 (2)161
Symmetry code: (i) x+1, y+2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds