Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title complex, [Pd(C12H8FN4O2)2(C5H5N)2] or trans-[Pd(FC6H4N=N—NC6H4NO2)(C5H5N)2], the Pd atom lies on a centre of inversion in space group P\overline 1. The coordination geometry about the Pd2+ ion is square planar, with two deprotonated 3-(2-fluoro­phenyl)-1-(4-nitro­phenyl)­triazenide ions, FC6H4N=N—NC6H4NO2, acting as monodentate ligands (two-electron donors), while two neutral pyridine mol­ecules complete the metal coordination sphere. The whole triazenide ligand is not planar, with the largest interplanar angle being 16.8 (5)° between the phenyl ring of the 2-­fluorophenyl group and the plane defined by the N=N—N moiety. The Pd—N(triazenide) and Pd—N(pyridine) distances are 2.021 (3) and 2.039 (3) Å, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102004602/gd1195sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102004602/gd1195Isup2.hkl
Contains datablock I

CCDC reference: 187906

Comment top

Although palladium(II) complexes with nitrogen coordination spheres involving catenated 1,3-diaryl-substituted triazenido ligands, ArNNNAr-, have been investigated over the last few decades, the structures of such compounds continues to attract interest (Moore & Robinson, 1986; Peregudov et al., 1998; Cao et al., 2000). In this work, we report the synthesis and structural characterization of the title complex, (I), a centrosymmetric mononuclear PdII complex with an asymmetric disubstituted 1,3-diaryltriazenido ion and pyridine as ligands. \sch

In the molecule of the monomeric complex, (I), with site symmetry 1, the square-planar coordinated Pd2+ ion is situated on an inversion centre, with two 3-(2-fluorophenyl)-1-(4-nitrophenyl)triazenido ions, FC6H4N N—NC6H4NO2-, and two pyridine molecules coordinated trans to each other (Fig. 1).

The deviation observed in (I) from the normal N—N and Car—N bonds makes evident the delocalization of the π electrons on the N11—N12N13 group towards the terminal aryl substituents. The N12N13 bond [1.283 (5) Å] is longer than the characteristic value for such a double bond (1.24 Å), whereas N11—N12 [1.325 (5) Å] is shorter than the characteristic value for a single bond (1.44 Å) (International Tables for X-Ray Crystallography, 1985), and both N11—C11 [1.403 (5) Å] and N13—C21 [1.413 (5) Å] are shorter than expected for a Car—N single bond. The Pd—N11 bond distance of 2.021 (3) Å is close to the sum of the covalent radii of 2.08 Å (Sheldrick, 1997) and corresponds to a covalent single bond. These values are in good agreement with the distances found in the related compound trans-[Pd(RN1—N2N3R)Cl(PPh3)2] (R is p-toluene?; N2N3 1.286, N1—N2 1.336 and Pd—N1 2.033 Å; Moore & Robinson, 1986; Bombieri et al., 1975, 1976; Brown & Ibers, 1976).

Due to the delocalization of the π electrons over the nitro group and the C11—C16 phenyl ring, towards the N11—N12N13 chain, this part of the triazenido ligand is nearly planar [interplanar angles O1/N1/O2/C11—C16 3.0 (6)° and C11—C16/N11—N12N13 4.2 (4)°]. On the other hand, the C21—C26 ring makes an angle of 16.8 (5)° with the plane defined by the N11—N12N13 group, which accounts for the significant deviation from planarity of the whole 1,3-diaryltriazenido ligand. The C11—C16 phenyl ring and the 2-fluorophenyl substituent are almost planar (r.m.s. deviations 0.0064 and 0.0042 Å, respectively).

The pyridine ring (N31—C36) is planar to within experimental accuracy (r.m.s. deviation 0.0062 Å), making a dihedral angle of 69.5 (2)° with the N11—Pd—N31i moiety [symmetry code: (i) -x, -y, -z]. The Pd—N31 bond distance of 2.039 (3) Å is shorter than the sum of the covalent radii (2.08 Å; Sheldrick, 1997) and may be compared with the value found in the compound [Pd(py)4](I3)2 (Pd—Npy 2.014 Å; Tebbe et al., 1996).

Experimental top

To a solution of PdCl2 (17 mg, 0.1 mmol) in concentrated aqueous ammonium hydroxide (5 ml), a mixture of 3-(2-fluorophenyl)-1-(4-nitrophenyl)triazene (50 g, 0.2 mmol) in tetrahydrofuran (30 ml) and concentrated aqueous ammonium hydroxide (1 ml) was slowly added under continuous stirring. After stirring for 1 h at room temperature, pyridine (1 ml) was added to the deep-red reaction mixture, which was then stirred for a further 24 h. Red prism-shaped crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of the solvent mixture at room temperature (yield: 45 mg, 60%; m.p. 525–529 K).

Refinement top

H atoms were treated as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A perspective view of the molecule of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
trans-Bis[3-(2-fluorophenyl)-1-(4-nitrophenyl)triazenido-κN3]bis(pyridine- κN)palladium(II) top
Crystal data top
[Pd(C5H5N)2(C12H8FN4O2)2]Z = 1
Mr = 783.07F(000) = 396
Triclinic, P1Dx = 1.567 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.941 (2) ÅCell parameters from 25 reflections
b = 9.732 (2) Åθ = 2.6–25.1°
c = 10.9449 (10) ŵ = 0.63 mm1
α = 110.058 (14)°T = 293 K
β = 93.437 (13)°Prism, red
γ = 109.012 (19)°0.20 × 0.13 × 0.07 mm
V = 829.9 (3) Å3
Data collection top
Enraf Nonius TurboCAD-4
diffractometer
Rint = 0.032
non–profiled ω/2θ scansθmax = 25.1°, θmin = 2.7°
Absorption correction: ψ-scan
(North et al., 1968)
h = 010
Tmin = 0.885, Tmax = 0.958k = 1110
3149 measured reflectionsl = 1313
2947 independent reflections3 standard reflections every 120 min
2446 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0476P)2
where P = (Fo2 + 2Fc2)/3
2947 reflections(Δ/σ)max < 0.001
232 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.98 e Å3
Crystal data top
[Pd(C5H5N)2(C12H8FN4O2)2]γ = 109.012 (19)°
Mr = 783.07V = 829.9 (3) Å3
Triclinic, P1Z = 1
a = 8.941 (2) ÅMo Kα radiation
b = 9.732 (2) ŵ = 0.63 mm1
c = 10.9449 (10) ÅT = 293 K
α = 110.058 (14)°0.20 × 0.13 × 0.07 mm
β = 93.437 (13)°
Data collection top
Enraf Nonius TurboCAD-4
diffractometer
2446 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.032
Tmin = 0.885, Tmax = 0.9583 standard reflections every 120 min
3149 measured reflections intensity decay: 1%
2947 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.07Δρmax = 0.48 e Å3
2947 reflectionsΔρmin = 0.98 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Mean-plane data from final SHELXL refinement run:-

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

6.5788 (0.0158) x + 3.8984 (0.0231) y - 3.3162 (0.0235) z = 0.1283 (0.0069)

* -0.0063 (0.0032) N31 * 0.0021 (0.0036) C32 * 0.0063 (0.0041) C33 * -0.0103 (0.0047) C34 * 0.0060 (0.0050) C35 * 0.0022 (0.0042) C36

Rms deviation of fitted atoms = 0.0062

- 2.5738 (0.0306) x + 6.1420 (0.0622) y - 9.9713 (0.0186) z = 0.0511 (0.0630)

Angle to previous plane (with approximate e.s.d.) = 80.07 (0.34)

* 0.0000 (0.0000) O1 * 0.0000 (0.0000) N1 * 0.0000 (0.0000) O2

Rms deviation of fitted atoms = 0.0000

- 2.8753 (0.0153) x + 6.4731 (0.0127) y - 9.7250 (0.0096) z = 0.1027 (0.0074)

Angle to previous plane (with approximate e.s.d.) = 3.02 (0.63)

* 0.0094 (0.0029) C11 * -0.0050 (0.0030) C12 * -0.0041 (0.0031) C13 * 0.0088 (0.0030) C14 * -0.0042 (0.0030) C15 * -0.0049 (0.0030) C16

Rms deviation of fitted atoms = 0.0064

3.4817 (0.0480) x - 6.5938 (0.0167) y + 9.3862 (0.0255) z = 0.0001 (0.0138)

Angle to previous plane (with approximate e.s.d.) = 4.18 (0.42)

* 0.0000 (0.0000) N11 * 0.0000 (0.0000) N12 * 0.0000 (0.0000) N13

Rms deviation of fitted atoms = 0.0000

5.5096 (0.0100) x - 5.6656 (0.0161) y + 8.1117 (0.0112) z = 0.4652 (0.0096)

Angle to previous plane (with approximate e.s.d.) = 16.75 (0.48)

* 0.0023 (0.0035) C21 * -0.0068 (0.0041) C22 * -0.0010 (0.0039) C23 * -0.0008 (0.0038) C24 * 0.0057 (0.0042) C25 * -0.0041 (0.0037) C26 * 0.0047 (0.0028) F

Rms deviation of fitted atoms = 0.0042

- 1.8669 (0.0145) x + 7.5101 (0.0113) y + 3.4136 (0.0185) z = 0.0000 (0.0000)

Angle to previous plane (with approximate e.s.d.) = 89.99 (0.13)

* 0.0000 (0.0000) N11 * 0.0000 (0.0000) N31 * 0.0000 (0.0000) N11_$1 * 0.0000 (0.0000) N31_$1 0.0000 (0.0000) Pd

Rms deviation of fitted atoms = 0.0000

- 1.8669 (0.0145) x + 7.5101 (0.0113) y + 3.4136 (0.0185) z = 0.0000 (0.0000)

Angle to previous plane (with approximate e.s.d.) = 0.00 (0.30)

* 0.0000 (0.0000) N11 * 0.0000 (0.0000) N31 * 0.0000 (0.0000) N11_$1 * 0.0000 (0.0000) N31_$1

Rms deviation of fitted atoms = 0.0000

6.5788 (0.0158) x + 3.8984 (0.0231) y - 3.3162 (0.0235) z = 0.1283 (0.0069)

Angle to previous plane (with approximate e.s.d.) = 69.46 (0.17)

* -0.0063 (0.0032) N31 * 0.0021 (0.0036) C32 * 0.0063 (0.0041) C33 * -0.0103 (0.0047) C34 * 0.0060 (0.0050) C35 * 0.0022 (0.0042) C36

Rms deviation of fitted atoms = 0.0062

1.8669 (0.0145) x - 7.5101 (0.0114) y - 3.4136 (0.0186) z = 0.0000 (0.0000)

Angle to previous plane (with approximate e.s.d.) = 69.46 (0.17)

* 0.0000 (0.0000) N11 * 0.0000 (0.0000) Pd * 0.0000 (0.0000) N31_$1

Rms deviation of fitted atoms = 0.0000

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd0.0000.0000.0000.03118 (18)
F0.0045 (4)0.4695 (3)0.2670 (3)0.0730 (9)
O10.7974 (5)0.7313 (5)0.2395 (4)0.0874 (14)
O20.6004 (6)0.7853 (5)0.3236 (4)0.0850 (14)
N110.2269 (4)0.0717 (4)0.0337 (3)0.0349 (8)
N120.2805 (4)0.0246 (4)0.1213 (3)0.0366 (8)
N130.1707 (4)0.1625 (4)0.1775 (4)0.0389 (9)
N310.0860 (4)0.0475 (4)0.1515 (4)0.0376 (9)
N10.6557 (6)0.6932 (5)0.2526 (5)0.0602 (13)
C110.3410 (5)0.2240 (5)0.0368 (4)0.0324 (9)
C120.5022 (5)0.2731 (5)0.0232 (4)0.0417 (11)
H120.54030.20240.0340.05*
C130.6041 (5)0.4257 (6)0.0946 (5)0.0468 (12)
H130.71130.45850.08560.056*
C140.5481 (5)0.5299 (5)0.1792 (4)0.0424 (12)
C150.3905 (5)0.4829 (5)0.1959 (4)0.0411 (11)
H150.35410.55390.25470.049*
C160.2877 (5)0.3310 (5)0.1252 (4)0.0394 (11)
H160.18130.2990.13640.047*
C210.2191 (5)0.2668 (5)0.2775 (4)0.0392 (10)
C220.1233 (6)0.4242 (5)0.3235 (5)0.0460 (11)
C230.1531 (7)0.5372 (6)0.4220 (5)0.0558 (13)
H230.08640.64250.44970.067*
C240.2826 (7)0.4936 (7)0.4795 (5)0.0639 (15)
H240.3040.56930.54740.077*
C250.3818 (7)0.3368 (7)0.4366 (5)0.0659 (16)
H250.47070.30740.4750.079*
C260.3495 (6)0.2239 (6)0.3369 (5)0.0552 (13)
H260.41560.11840.30950.066*
C320.0961 (6)0.0402 (6)0.2772 (5)0.0537 (13)
H320.05710.12130.29620.064*
C330.1621 (7)0.0153 (7)0.3802 (6)0.0714 (17)
H330.16660.07820.46730.086*
C340.2202 (8)0.1002 (10)0.3545 (8)0.092 (2)
H340.2680.11690.42320.11*
C350.2076 (9)0.1931 (10)0.2253 (8)0.097 (2)
H350.24440.27590.2050.117*
C360.1400 (7)0.1632 (7)0.1252 (6)0.0684 (17)
H360.13250.22610.03740.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.0271 (3)0.0297 (3)0.0361 (3)0.0078 (2)0.0078 (2)0.0142 (2)
F0.073 (2)0.0492 (17)0.083 (2)0.0122 (15)0.0313 (18)0.0169 (16)
O10.053 (3)0.075 (3)0.102 (3)0.023 (2)0.015 (2)0.045 (3)
O20.102 (4)0.048 (2)0.063 (3)0.005 (2)0.003 (2)0.006 (2)
N110.0295 (19)0.0360 (19)0.041 (2)0.0126 (16)0.0117 (16)0.0159 (17)
N120.036 (2)0.043 (2)0.035 (2)0.0169 (18)0.0096 (17)0.0177 (17)
N130.040 (2)0.039 (2)0.038 (2)0.0164 (18)0.0103 (17)0.0133 (17)
N310.0263 (19)0.045 (2)0.049 (2)0.0129 (17)0.0095 (17)0.0266 (19)
N10.062 (3)0.050 (3)0.049 (3)0.009 (2)0.019 (2)0.028 (2)
C110.032 (2)0.036 (2)0.032 (2)0.0091 (19)0.0055 (18)0.0193 (19)
C120.035 (3)0.050 (3)0.042 (3)0.014 (2)0.008 (2)0.022 (2)
C130.027 (2)0.064 (3)0.050 (3)0.005 (2)0.002 (2)0.034 (3)
C140.039 (3)0.038 (2)0.040 (3)0.005 (2)0.005 (2)0.023 (2)
C150.046 (3)0.036 (2)0.039 (3)0.012 (2)0.004 (2)0.016 (2)
C160.032 (2)0.037 (2)0.046 (3)0.005 (2)0.007 (2)0.019 (2)
C210.042 (3)0.048 (3)0.032 (2)0.021 (2)0.006 (2)0.016 (2)
C220.049 (3)0.049 (3)0.044 (3)0.022 (2)0.011 (2)0.020 (2)
C230.069 (4)0.052 (3)0.047 (3)0.033 (3)0.006 (3)0.012 (2)
C240.081 (4)0.070 (4)0.047 (3)0.049 (3)0.013 (3)0.010 (3)
C250.065 (4)0.088 (4)0.050 (3)0.037 (3)0.027 (3)0.022 (3)
C260.056 (3)0.058 (3)0.049 (3)0.020 (3)0.019 (3)0.017 (3)
C320.056 (3)0.048 (3)0.049 (3)0.014 (2)0.006 (3)0.016 (2)
C330.063 (4)0.079 (4)0.062 (4)0.009 (3)0.015 (3)0.036 (3)
C340.071 (4)0.154 (7)0.096 (6)0.046 (5)0.016 (4)0.098 (6)
C350.116 (6)0.143 (7)0.123 (6)0.098 (6)0.058 (5)0.103 (6)
C360.090 (4)0.095 (4)0.074 (4)0.070 (4)0.043 (3)0.059 (4)
Geometric parameters (Å, º) top
Pd—N112.021 (3)C15—C161.369 (6)
Pd—N11i2.021 (3)C15—H150.93
Pd—N312.039 (3)C16—H160.93
Pd—N31i2.039 (3)C21—C221.378 (6)
Pd—N132.903 (4)C21—C261.384 (6)
F—C221.353 (5)C22—C231.362 (7)
O1—N11.231 (6)C23—C241.366 (7)
O2—N11.229 (6)C23—H230.93
N11—N121.325 (5)C24—C251.383 (8)
N11—C111.403 (5)C24—H240.93
N12—N131.283 (5)C25—C261.380 (7)
N13—C211.413 (5)C25—H250.93
N31—C361.317 (6)C26—H260.93
N31—C321.326 (6)C32—C331.370 (7)
N1—C141.460 (6)C32—H320.93
C11—C161.391 (6)C33—C341.339 (9)
C11—C121.397 (6)C33—H330.93
C12—C131.373 (6)C34—C351.366 (10)
C12—H120.93C34—H340.93
C13—C141.371 (7)C35—C361.380 (8)
C13—H130.93C35—H350.93
C14—C151.377 (6)C36—H360.93
N11—Pd—N11i180.0 (2)C14—C15—H15120.2
N11—Pd—N3191.59 (14)C15—C16—C11120.6 (4)
N11i—Pd—N3188.41 (14)C15—C16—H16119.7
N11—Pd—N31i88.41 (14)C11—C16—H16119.7
N11i—Pd—N31i91.59 (14)C22—C21—C26117.5 (4)
N31—Pd—N31i180.00 (16)C22—C21—N13116.7 (4)
N11—Pd—N1347.77 (12)C26—C21—N13125.8 (4)
N11i—Pd—N13132.23 (12)F—C22—C23118.2 (4)
N31—Pd—N1388.44 (12)F—C22—C21118.7 (4)
N31i—Pd—N1391.56 (12)C23—C22—C21123.0 (5)
N12—N11—C11115.1 (3)C22—C23—C24119.0 (5)
N12—N11—Pd122.0 (3)C22—C23—H23120.5
C11—N11—Pd122.9 (3)C24—C23—H23120.5
N13—N12—N11111.0 (3)C23—C24—C25119.9 (5)
N12—N13—C21113.0 (4)C23—C24—H24120
N12—N13—Pd79.2 (2)C25—C24—H24120
C21—N13—Pd167.3 (3)C26—C25—C24120.3 (5)
C36—N31—C32118.6 (4)C26—C25—H25119.9
C36—N31—Pd119.7 (4)C24—C25—H25119.9
C32—N31—Pd121.6 (3)C25—C26—C21120.3 (5)
O2—N1—O1123.4 (5)C25—C26—H26119.8
O2—N1—C14118.5 (5)C21—C26—H26119.8
O1—N1—C14118.1 (5)N31—C32—C33122.3 (5)
C16—C11—C12119.0 (4)N31—C32—H32118.9
C16—C11—N11116.9 (4)C33—C32—H32118.9
C12—C11—N11124.1 (4)C34—C33—C32119.6 (6)
C13—C12—C11119.9 (4)C34—C33—H33120.2
C13—C12—H12120.1C32—C33—H33120.2
C11—C12—H12120.1C33—C34—C35118.6 (6)
C14—C13—C12120.2 (4)C33—C34—H34120.7
C14—C13—H13119.9C35—C34—H34120.7
C12—C13—H13119.9C34—C35—C36119.6 (6)
C13—C14—C15120.8 (4)C34—C35—H35120.2
C13—C14—N1120.0 (5)C36—C35—H35120.2
C15—C14—N1119.2 (5)N31—C36—C35121.3 (6)
C16—C15—C14119.6 (4)N31—C36—H36119.3
C16—C15—H15120.2C35—C36—H36119.3
N31—Pd—N11—N1286.4 (3)O2—N1—C14—C13177.1 (4)
N31i—Pd—N11—N1293.6 (3)O1—N1—C14—C132.6 (6)
N13—Pd—N11—N120.0 (3)O2—N1—C14—C152.6 (7)
N31—Pd—N11—C1196.2 (3)O1—N1—C14—C15177.7 (4)
N31i—Pd—N11—C1183.8 (3)C13—C14—C15—C161.2 (7)
N13—Pd—N11—C11177.3 (4)N1—C14—C15—C16178.5 (4)
C11—N11—N12—N13177.5 (3)C14—C15—C16—C110.1 (7)
Pd—N11—N12—N130.0 (5)C12—C11—C16—C151.4 (6)
N11—N12—N13—C21176.3 (3)N11—C11—C16—C15178.6 (4)
N11—N12—N13—Pd0.0 (3)N12—N13—C21—C22166.9 (4)
N11—Pd—N13—N120.0 (2)Pd—N13—C21—C2229.7 (15)
N11i—Pd—N13—N12180.0 (2)N12—N13—C21—C2616.1 (6)
N31—Pd—N13—N1293.6 (2)Pd—N13—C21—C26147.3 (11)
N31i—Pd—N13—N1286.4 (2)C26—C21—C22—F179.7 (4)
N11—Pd—N13—C21164.5 (13)N13—C21—C22—F3.0 (6)
N11i—Pd—N13—C2115.5 (13)C26—C21—C22—C231.0 (7)
N31—Pd—N13—C2170.9 (13)N13—C21—C22—C23178.3 (4)
N31i—Pd—N13—C21109.1 (13)F—C22—C23—C24179.4 (5)
N11—Pd—N31—C36112.1 (4)C21—C22—C23—C240.7 (8)
N11i—Pd—N31—C3667.9 (4)C22—C23—C24—C250.6 (8)
N13—Pd—N31—C36159.8 (4)C23—C24—C25—C260.8 (8)
N11—Pd—N31—C3271.1 (4)C24—C25—C26—C211.1 (8)
N11i—Pd—N31—C32108.9 (4)C22—C21—C26—C251.2 (7)
N13—Pd—N31—C3223.4 (3)N13—C21—C26—C25178.1 (5)
N12—N11—C11—C16177.1 (3)C36—N31—C32—C330.6 (7)
Pd—N11—C11—C165.4 (5)Pd—N31—C32—C33176.2 (4)
N12—N11—C11—C122.9 (6)N31—C32—C33—C340.6 (9)
Pd—N11—C11—C12174.6 (3)C32—C33—C34—C351.8 (10)
C16—C11—C12—C131.4 (6)C33—C34—C35—C361.8 (11)
N11—C11—C12—C13178.6 (4)C32—N31—C36—C350.7 (8)
C11—C12—C13—C140.1 (7)Pd—N31—C36—C35176.2 (5)
C12—C13—C14—C151.2 (7)C34—C35—C36—N310.5 (10)
C12—C13—C14—N1178.5 (4)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Pd(C5H5N)2(C12H8FN4O2)2]
Mr783.07
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.941 (2), 9.732 (2), 10.9449 (10)
α, β, γ (°)110.058 (14), 93.437 (13), 109.012 (19)
V3)829.9 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.20 × 0.13 × 0.07
Data collection
DiffractometerEnraf Nonius TurboCAD-4
diffractometer
Absorption correctionψ-scan
(North et al., 1968)
Tmin, Tmax0.885, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
3149, 2947, 2446
Rint0.032
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.105, 1.07
No. of reflections2947
No. of parameters232
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.98

Computer programs: CAD-4 EXPRESS (Enraf Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Pd—N112.021 (3)N11—C111.403 (5)
Pd—N312.039 (3)N12—N131.283 (5)
Pd—N132.903 (4)N13—C211.413 (5)
F—C221.353 (5)N31—C361.317 (6)
O1—N11.231 (6)N31—C321.326 (6)
O2—N11.229 (6)N1—C141.460 (6)
N11—N121.325 (5)
N11—Pd—N11i180.0 (2)N31—Pd—N31i180.00 (16)
N11—Pd—N3191.59 (14)N13—N12—N11111.0 (3)
N11—Pd—N31i88.41 (14)
Symmetry code: (i) x, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds