Download citation
Download citation
link to html
The title compound [systematic name: 4-amino-2'-(di-2-pyridyl­methyl­ene)­benzohydrazide hydrate], C18H15N5O·H2O, crystallizes in the triclinic space group P\overline 1. Structural analysis shows one pyridine ring and the p-amino­benzoylhydrazone moiety to be coplanar and orthogonal to the second pyridine ring. The packing reveals infinite molecular units interlocked via a network of hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102004511/gd1194sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102004511/gd1194Isup2.hkl
Contains datablock I

CCDC reference: 187926

Comment top

Hydrazones and their metal compounds have been studied for their physical properties, reactivity patterns and applications in a variety of processes, including nonlinear optics and molecular sensing (Bakir et al., 2000, Bakir, 2002a,b,c; Pan et al., 1997). We have been interested in the chemistry of di-2-pyridyl ketone and its oxime and hydrazone derivatives, and have reported on the structures of Re compounds of the type fac-Re(CO)3(L—L)Cl, where L—L is di-2-pyridyl ketone p-nitrophenylhydrazone (dpknph), di-2-pyridyl ketone 2,4-dinitrophenylhydrazone (dpkdnph), di-2-pyridyl ketone phenylhydrazone (dpkphh) or di-2-pyridyl oxime (dpkoxime) (Bakir & McKenzie, 1997a,b; Bakir & Abdur-Rashid, 1999; Bakir, 1999, 2001a,b, 2002a,b,c). Structural studies on the optical sensor di-2-pyridyl ketone benzoylhydrazone (dpkbz) revealed a network of non-covalent interactions that may account for its optosensing behaviour (Bakir & Brown, 2002). Here, we report on the structure of di-2-pyridyl ketone p-aminobenzoylhydrazone hydrate, dpkabz·H2O, (I). \sch

The molecular structure of (I) is shown in Fig. 1, and selected bond distances and angles are given in Table 1. The p-aminobenzoylhydrazone moiety and the N1 pyridine ring are coplanar, and orthogonal to the N2 pyridine ring. The orthogonality of the pyridine rings is similar to what is observed in dpkhydrazones such as dpkbz and di-2-pyridyl ketone 2-pyridylhydrazone (dpkph) (Bakir & Brown, 2002; Ishak et al., 1984). The bond distances and angles are normal, and similar to those reported for dpkbz and other related compounds. For example, in dpkbz, CN, N—N and CO bond distances of 1.30 (2), 1.36 (2) and 1.22 (2) Å, respectively, and N—NC, OC—N and OC—C bond angles of 120.6 (2), 123.6 (2) and 122.2 (2)°, respectively, were reported by Bakir & Brown (2002).

The packing of the molecules of (I) (Fig. 2) shows a web of dpkabz·H2O units interlocked via a network of classical and non-classical hydrogen bonds (Fig. 3, Table 2). The coordination about the O atom of the solvated water molecule is tetrahedral (Fig. 3a), with two H atoms from the p-amino groups and the two water H atoms occupying the coordination around O. Each solvated water molecule interlocks four dpkabz molecules through a web of classical hydrogen bonds of the type O—H···X, where X is O or N (Table 2, Fig. 3a), and each dpkabz molecule is hydrogen-bonded to adjacent dpkabz molecules through a network of non-classical hydrogen bonds of the type O···H—C (Fig. 3 b). The bond distances and angles of these hydrogen bonds are of the same order as those reported for dpkbzh and fac-Re(CO)3(dpknph)Cl.dmso (dmso is dimethyl sulfoxide) and other compounds containing such bonds (Bakir, 2001b; Bakir & Brown, 2002; Braga et al., 1998; Glusker et al., 1994). For example, hydrogen-bond parameters of 0.82, 1.88 and 2.68 Å, and 164° were reported for O···H—O in fac-Re(CO)3(dpkO,OH)Cl [dpkO,OH is hydroxybis(2-pyridyl)methanolato; Bakir, 2002c], and parameters of 1.00, 2.50 and 3.24 Å, and 130.6° were observed for the soft non-classical C—H···O hydrogen bond in dpkbz (Bakir & Brown, 2002).

Due to their convenient synthesis, rich physico-chemical properties and application in a variety of processes, work is in progress to prepare a series of di-2-pyridyl ketone hydrazones and their metal compounds to explore their solid-state structures and electro-optical properties.

Experimental top

dpkabz was synthesized from the reaction between p-aminobenzhydrazide and di-2-pyridyl ketone in refluxing ethanol/HCl solution, using a procedure similar to that reported for the synthesis of dpknph by Bakir & Abdur-Rashid (1999). When dpkabz was allowed to stand in ethanol/hexanes solution for several days at room temperature, yellow-brown crystals of dpkabz·H2O, (I), were obtained. A single-crystal was selected and mounted on a glass fibre using epoxy cement, and used for data collection.

Refinement top

With the exception of atoms H1 and H2, which were assigned from a difference Fourier map and refined freely, all H atoms were assigned by assuming idealized geometry, with C—H = 0.93 Å and N—H = 0.86 Å.

Computing details top

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown by dashed lines.
[Figure 3] Fig. 3. Views of the hydrogen bonds in (I). Table 2 gives details of the symmetry codes used to generate equivalent atoms. All aromatic H atoms have been omitted for clarity.
4-Amino-2'-(di-2-pyridylmethylene)benzohydrazide hydrate top
Crystal data top
C18H15N5O·H2OF(000) = 352
Mr = 335.37Dx = 1.308 Mg m3
Triclinic, P1Melting point: 400 K
a = 8.6648 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9630 (16) ÅCell parameters from 46 reflections
c = 11.1996 (11) Åθ = 3.9–12.4°
α = 91.083 (9)°µ = 0.09 mm1
β = 109.199 (5)°T = 298 K
γ = 109.571 (10)°Octahedral, yellow-brown
V = 851.21 (19) Å30.40 × 0.25 × 0.10 mm
Z = 2
Data collection top
Bruker P4
diffractometer
1820 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 32.5°, θmin = 2.0°
2θ/ω scansh = 113
Absorption correction: empirical (using intensity measurements)
via ψ-scans (XSCANS; Bruker, 1996)
k = 1414
Tmin = 0.957, Tmax = 0.991l = 1616
7103 measured reflections3 standard reflections every 97 reflections
6067 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.02P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
6067 reflectionsΔρmax = 0.19 e Å3
235 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0156 (15)
Crystal data top
C18H15N5O·H2Oγ = 109.571 (10)°
Mr = 335.37V = 851.21 (19) Å3
Triclinic, P1Z = 2
a = 8.6648 (10) ÅMo Kα radiation
b = 9.9630 (16) ŵ = 0.09 mm1
c = 11.1996 (11) ÅT = 298 K
α = 91.083 (9)°0.40 × 0.25 × 0.10 mm
β = 109.199 (5)°
Data collection top
Bruker P4
diffractometer
1820 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ-scans (XSCANS; Bruker, 1996)
Rint = 0.029
Tmin = 0.957, Tmax = 0.9913 standard reflections every 97 reflections
7103 measured reflections intensity decay: none
6067 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.19 e Å3
6067 reflectionsΔρmin = 0.18 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The deepest hole, with an electron density of -0.18 e Å-3, appeared 0.77 Å from atom H5A.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5842 (2)0.30151 (16)0.32922 (14)0.0743 (5)
C110.4877 (3)0.1993 (2)0.3790 (2)0.0963 (9)
H11A0.49350.22200.46170.116*
C120.3817 (3)0.0645 (2)0.3159 (2)0.0887 (8)
H12A0.31550.00200.35390.106*
C130.3755 (3)0.0300 (2)0.19650 (19)0.0810 (7)
H13A0.30520.06130.15110.097*
C140.4738 (3)0.13115 (19)0.14301 (17)0.0666 (6)
H14A0.47110.10830.06120.080*
C150.5769 (2)0.26686 (17)0.21077 (16)0.0531 (5)
C10.6862 (2)0.37739 (17)0.15655 (15)0.0489 (4)
N20.4948 (2)0.32413 (15)0.06348 (13)0.0577 (4)
C210.4712 (3)0.31476 (19)0.18867 (17)0.0658 (5)
H21A0.35840.29440.24700.079*
C220.6033 (3)0.3335 (2)0.23497 (18)0.0698 (6)
H22A0.58060.32780.32240.084*
C230.7696 (3)0.3607 (2)0.15089 (18)0.0682 (6)
H23A0.86160.37220.17990.082*
C240.7971 (3)0.37061 (18)0.02213 (17)0.0576 (5)
H24A0.90850.38800.03720.069*
C250.6590 (2)0.35461 (16)0.01796 (15)0.0484 (4)
N30.80950 (19)0.49946 (14)0.21342 (12)0.0500 (4)
N40.84465 (19)0.54217 (13)0.33902 (12)0.0511 (4)
H4A0.79310.48620.38280.061*
C20.9646 (2)0.67696 (18)0.39298 (15)0.0501 (4)
O21.05071 (18)0.75088 (13)0.33431 (11)0.0727 (4)
C310.9784 (2)0.72869 (17)0.52141 (14)0.0462 (4)
C321.0880 (3)0.86984 (18)0.57435 (16)0.0611 (5)
H32A1.15120.92630.52880.073*
C331.1049 (3)0.92749 (19)0.69182 (16)0.0650 (6)
H33A1.17901.02230.72440.078*
C341.0138 (3)0.84741 (18)0.76295 (15)0.0556 (5)
C350.9039 (3)0.70589 (18)0.71144 (15)0.0597 (5)
H35A0.84140.64940.75740.072*
C360.8871 (2)0.64892 (18)0.59283 (16)0.0571 (5)
H36A0.81240.55430.55980.068*
N51.0333 (2)0.90457 (17)0.88126 (13)0.0776 (6)
H5A1.10320.99170.91260.093*
H5B0.97580.85340.92440.093*
O10.8545 (3)0.76604 (18)1.05729 (18)0.0799 (5)
H10.738 (4)0.728 (3)1.038 (2)0.126 (11)*
H20.899 (4)0.738 (3)1.124 (3)0.144 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0835 (13)0.0663 (10)0.0572 (9)0.0013 (9)0.0348 (9)0.0001 (8)
C110.112 (2)0.0878 (16)0.0662 (13)0.0082 (15)0.0481 (14)0.0050 (12)
C120.0872 (18)0.0733 (14)0.0783 (15)0.0070 (13)0.0317 (14)0.0157 (12)
C130.0945 (18)0.0521 (11)0.0692 (14)0.0049 (12)0.0171 (13)0.0112 (10)
C140.0813 (15)0.0472 (10)0.0579 (11)0.0094 (10)0.0224 (11)0.0045 (9)
C150.0573 (12)0.0476 (9)0.0484 (10)0.0125 (9)0.0181 (9)0.0036 (8)
C10.0532 (11)0.0435 (9)0.0465 (9)0.0135 (9)0.0177 (9)0.0018 (7)
N20.0586 (11)0.0576 (9)0.0501 (8)0.0157 (8)0.0167 (8)0.0029 (7)
C210.0698 (15)0.0672 (12)0.0505 (11)0.0211 (11)0.0131 (10)0.0047 (9)
C220.0914 (18)0.0659 (12)0.0477 (11)0.0193 (12)0.0289 (12)0.0002 (9)
C230.0759 (16)0.0656 (12)0.0645 (12)0.0142 (11)0.0388 (12)0.0022 (10)
C240.0553 (12)0.0557 (10)0.0550 (11)0.0112 (9)0.0207 (9)0.0032 (8)
C250.0508 (11)0.0408 (9)0.0475 (9)0.0087 (8)0.0184 (9)0.0021 (7)
N30.0542 (10)0.0496 (8)0.0424 (7)0.0146 (7)0.0170 (7)0.0015 (6)
N40.0598 (10)0.0441 (8)0.0414 (7)0.0083 (7)0.0191 (7)0.0011 (6)
C20.0512 (11)0.0477 (9)0.0469 (9)0.0109 (9)0.0194 (9)0.0002 (8)
O20.0834 (11)0.0608 (8)0.0597 (8)0.0048 (7)0.0402 (8)0.0085 (6)
C310.0474 (11)0.0442 (9)0.0423 (9)0.0112 (8)0.0159 (8)0.0022 (7)
C320.0694 (14)0.0497 (10)0.0551 (10)0.0028 (10)0.0302 (10)0.0008 (8)
C330.0778 (15)0.0487 (10)0.0546 (11)0.0010 (10)0.0290 (10)0.0065 (8)
C340.0659 (13)0.0524 (10)0.0434 (9)0.0145 (10)0.0205 (9)0.0016 (8)
C350.0716 (14)0.0547 (10)0.0495 (10)0.0106 (10)0.0297 (10)0.0081 (8)
C360.0643 (13)0.0430 (9)0.0532 (10)0.0057 (9)0.0217 (10)0.0021 (8)
N50.1009 (15)0.0698 (10)0.0504 (9)0.0089 (10)0.0354 (9)0.0076 (7)
O10.0798 (13)0.0870 (11)0.0781 (11)0.0231 (10)0.0409 (10)0.0291 (9)
Geometric parameters (Å, º) top
N1—C151.340 (2)C24—H24A0.9300
N1—C111.344 (2)N3—N41.3643 (16)
C11—C121.363 (3)N4—C21.3675 (19)
C11—H11A0.9300N4—H4A0.8600
C12—C131.354 (3)C2—O21.2260 (18)
C12—H12A0.9300C2—C311.472 (2)
C13—C141.372 (2)C31—C361.384 (2)
C13—H13A0.9300C31—C321.391 (2)
C14—C151.381 (2)C32—C331.368 (2)
C14—H14A0.9300C32—H32A0.9300
C15—C11.478 (2)C33—C341.382 (2)
C1—N31.2957 (19)C33—H33A0.9300
C1—C251.492 (2)C34—N51.3668 (19)
N2—C251.340 (2)C34—C351.391 (2)
N2—C211.345 (2)C35—C361.377 (2)
C21—C221.366 (3)C35—H35A0.9300
C21—H21A0.9300C36—H36A0.9300
C22—C231.368 (3)N5—H5A0.8600
C22—H22A0.9300N5—H5B0.8600
C23—C241.378 (2)O1—H10.90 (3)
C23—H23A0.9300O1—H20.83 (3)
C24—C251.374 (2)
C15—N1—C11117.43 (16)N2—C25—C24122.71 (16)
N1—C11—C12124.1 (2)N2—C25—C1116.05 (16)
N1—C11—H11A118.0C24—C25—C1121.17 (17)
C12—C11—H11A118.0C1—N3—N4119.37 (14)
C13—C12—C11118.2 (2)N3—N4—C2117.83 (13)
C13—C12—H12A120.9N3—N4—H4A121.1
C11—C12—H12A120.9C2—N4—H4A121.1
C12—C13—C14119.37 (19)O2—C2—N4120.86 (15)
C12—C13—H13A120.3O2—C2—C31122.73 (15)
C14—C13—H13A120.3N4—C2—C31116.37 (15)
C13—C14—C15119.91 (18)C36—C31—C32117.11 (15)
C13—C14—H14A120.0C36—C31—C2125.10 (14)
C15—C14—H14A120.0C32—C31—C2117.77 (15)
N1—C15—C14121.02 (16)C33—C32—C31121.50 (16)
N1—C15—C1117.77 (15)C33—C32—H32A119.2
C14—C15—C1121.20 (15)C31—C32—H32A119.2
N3—C1—C15128.82 (14)C32—C33—C34121.22 (16)
N3—C1—C25111.42 (14)C32—C33—H33A119.4
C15—C1—C25119.76 (14)C34—C33—H33A119.4
C25—N2—C21116.57 (17)N5—C34—C33121.06 (16)
N2—C21—C22123.7 (2)N5—C34—C35120.96 (17)
N2—C21—H21A118.1C33—C34—C35117.98 (15)
C22—C21—H21A118.1C36—C35—C34120.42 (17)
C21—C22—C23119.08 (18)C36—C35—H35A119.8
C21—C22—H22A120.5C34—C35—H35A119.8
C23—C22—H22A120.5C35—C36—C31121.78 (15)
C22—C23—C24118.3 (2)C35—C36—H36A119.1
C22—C23—H23A120.9C31—C36—H36A119.1
C24—C23—H23A120.9C34—N5—H5A120.0
C25—C24—C23119.58 (19)C34—N5—H5B120.0
C25—C24—H24A120.2H5A—N5—H5B120.0
C23—C24—H24A120.2H1—O1—H2106 (3)
C15—N1—C11—C121.0 (4)N3—C1—C25—C2450.9 (2)
N1—C11—C12—C131.3 (4)C15—C1—C25—C24129.45 (19)
C11—C12—C13—C140.5 (4)C15—C1—N3—N43.7 (3)
C12—C13—C14—C150.4 (3)C25—C1—N3—N4175.92 (14)
C11—N1—C15—C140.0 (3)C1—N3—N4—C2174.31 (16)
C11—N1—C15—C1178.45 (19)N3—N4—C2—O27.4 (3)
C13—C14—C15—N10.7 (3)N3—N4—C2—C31170.29 (15)
C13—C14—C15—C1179.12 (19)O2—C2—C31—C36178.64 (18)
N1—C15—C1—N310.7 (3)N4—C2—C31—C363.7 (3)
C14—C15—C1—N3167.73 (19)O2—C2—C31—C323.1 (3)
N1—C15—C1—C25168.84 (18)N4—C2—C31—C32174.54 (16)
C14—C15—C1—C2512.7 (3)C36—C31—C32—C330.0 (3)
C25—N2—C21—C220.4 (3)C2—C31—C32—C33178.35 (18)
N2—C21—C22—C231.3 (3)C31—C32—C33—C340.2 (3)
C21—C22—C23—C241.1 (3)C32—C33—C34—N5178.85 (19)
C22—C23—C24—C250.7 (3)C32—C33—C34—C350.0 (3)
C21—N2—C25—C242.4 (2)N5—C34—C35—C36179.14 (18)
C21—N2—C25—C1174.85 (14)C33—C34—C35—C360.3 (3)
C23—C24—C25—N22.5 (3)C34—C35—C36—C310.4 (3)
C23—C24—C25—C1174.55 (15)C32—C31—C36—C350.3 (3)
N3—C1—C25—N2126.34 (17)C2—C31—C36—C35178.52 (18)
C15—C1—C25—N253.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N10.862.012.656 (2)131
N5—H5B···O10.862.132.979 (2)168
C14—H14A···N20.932.573.048 (2)112
N5—H5A···O1i0.862.323.086 (2)149
O1—H1···N2ii0.90 (3)2.03 (3)2.880 (3)158 (2)
O1—H2···O2iii0.83 (3)2.26 (3)3.043 (2)158 (3)
O1—H2···N3iii0.83 (3)2.57 (3)3.193 (2)133 (3)
C23—H23A···O2iv0.932.553.325 (2)142
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y+1, z+1; (iii) x, y, z+1; (iv) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H15N5O·H2O
Mr335.37
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.6648 (10), 9.9630 (16), 11.1996 (11)
α, β, γ (°)91.083 (9), 109.199 (5), 109.571 (10)
V3)851.21 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.25 × 0.10
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
via ψ-scans (XSCANS; Bruker, 1996)
Tmin, Tmax0.957, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
7103, 6067, 1820
Rint0.029
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.124, 0.95
No. of reflections6067
No. of parameters235
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: XSCANS (Bruker, 1996), XSCANS, SHELXTL (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
C15—C11.478 (2)C2—O21.2260 (18)
C1—N31.2957 (19)C2—C311.472 (2)
C1—C251.492 (2)C34—N51.3668 (19)
N3—N41.3643 (16)O1—H10.90 (3)
N4—C21.3675 (19)O1—H20.83 (3)
C15—N1—C11117.43 (16)C1—N3—N4119.37 (14)
N1—C11—C12124.1 (2)N3—N4—C2117.83 (13)
N3—C1—C15128.82 (14)O2—C2—N4120.86 (15)
N3—C1—C25111.42 (14)O2—C2—C31122.73 (15)
C15—C1—C25119.76 (14)N4—C2—C31116.37 (15)
C25—N2—C21116.57 (17)H1—O1—H2106 (3)
N2—C21—C22123.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N10.862.012.656 (2)131
N5—H5B···O10.862.132.979 (2)168
C14—H14A···N20.932.573.048 (2)112
N5—H5A···O1i0.862.323.086 (2)149
O1—H1···N2ii0.90 (3)2.03 (3)2.880 (3)158 (2)
O1—H2···O2iii0.83 (3)2.26 (3)3.043 (2)158 (3)
O1—H2···N3iii0.83 (3)2.57 (3)3.193 (2)133 (3)
C23—H23A···O2iv0.932.553.325 (2)142
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y+1, z+1; (iii) x, y, z+1; (iv) x+2, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds