Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Hydro­thermally prepared SrMn(SeO3)2 contains infinite chains of vertex-sharing irregular MnO5+1 polyhedra [mean Mn-O 2.226 (3) Å], which are fused into layers via pyramidal SeO3 groups [mean Se-O 1.698 (3) Å]. Nine-coordinate Sr2+ cations [mean Sr-O 2.715 (4) Å] complete the layered structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102001208/gd1190sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102001208/gd1190Isup2.hkl
Contains datablock I

Comment top

SrMn(SeO3)2 (Fig. 1) is isostructural with the synthetic compound SrZn(SeO3)2 (Johnston & Harrison, 2001), but with subtly different divalent metal coordination. In SrZn(SeO3)2, the Zn atom is coordinated by six O atoms in an unusual 4 + 2 coordination, described as bicapped tetrahedral. In the title compound, the Mn atom has six O atom neighbours, with one Mn—O bond distinctly longer than the other five. The average Mn—O separation for the five near-neighbour O atoms (2.180 Å) is in very good agreement with the ionic-radius sum for high-spin MnII and O2- (2.19 Å; Shannon, 1976). However, the bond-valence sum (BVS; Brown, 1996) of 1.76 for Mn is much lower than the expected value of 2.00. If the more distant O atom [Mn—O 2.452 (3) Å] is considered, the Mn BVS rises to 1.93. This MnO5 + 1 coordination is so grossly distorted from octahedral as to be better regarded as irregular; the nominal trans O—Mn—O bond angles are 144.6, 149.0 and 166.9°. The variance of the cis O—Mn—O angles (mean 91.2°), as quantified by the method of Robinson et al. (1971), has the exceptionally large value of 239.5.

Both of the [SeO3]2- groups in SrMn(SeO3)2 adopt their usual pyramidal coordination (Hawthorne et al., 1987; Harrison, 1999), with BVS(Se1) = 4.08 and BVS(Se2) = 4.06 (expected value 4.00). The Sr2+ cation has irregular ninefold coordination by oxygen [mean Sr—O 2.715 Å], with BVS(Sr) = 1.98 (expected value 2.00). The next-nearest O atom is some 3.99 Å distant. As well as their Mn and Se neighbours, all of the O atoms are bonded to one or more Sr2+ cations. The average Sr—O separation in SrZn(SeO3)2 is 2.700 (5) Å.

The overall structure consists of infinite chains of vertex-linked MnO5 + 1 groups orientated along the [100] direction. The SeO3 units are fused on to these chains via edge sharing. The SeO3 pyramids containing Se1 link adjacent chains in the [001] direction, forming sheets perpendicular to [010], while the SeO3 pyramids containing Se2 are grafted on to the chains. The interlayer Sr2+ cations bind adjacent sheets in the [100] direction and provide charge balancing. In a [100] projection (Fig. 2), there appear to be small channels present at (y = 0, z = 0) and symmetry-equivalent locations. These are probably associated with the SeIV lone pairs and do not represent voids accessible by other chemical species.

Other manganese selenites exhibit distorted MnIIO6 polyhedra. In Mn3(SeO3)3·H2O (Johnston et al., 2002), one of the MnO6 groups is extremely distorted, with four short bonds [Mn—O < 2.24 Å] and two longer bonds (Mn—O > 2.39 Å) in cis configuration. Similarly, in the mixed-valence phase MnIIMnIII2O(SeO3)3 (Wildner, 1994), the divalent species is described as an MnO4 + 2 grouping, with four short and two long Mn—O bonds. These distorted MnII environments can be partly attributed to the inter-polyhedral connectivity of the MnO6 and SeO3 groups.

Experimental top

SrCO3 (0.154 g, 1 mmol), MnCl2·4H2O (0.3956 g, 2 mmol), 0.5M H2SeO3 (6 ml) and 1M LiOH (4.5 ml), at a pre-oven pH of 8.5, were hydrothermally reacted in a 23 ml-capacity sealed Teflon-lined steel bomb in an oven at 453 K. The bomb was removed after 67 h and cooled over 3 h. Upon opening, the bomb contained a clear solution, unidentified white and brown powders, and colourless rod-shaped single crystals of the title compound. The products were recovered by vacuum filtration, and washed with water and then acetone.

Refinement top

The highest difference peak is 0.83 Å from Se2; the deepest difference hole is 0.95 Å from Sr1.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SMART; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A fragment of SrMn(SeO3)2 with 50% probability displacement ellipsoids, showing the edge sharing of the SeO3 and MnO5 + 1 moieties [symmetry codes: (i) 1/2 + x, 3/2 - y, z - 1/2; (ii) 1/2 - x, y - 1/2, 1/2 - z; (iii) 3/2 - x, y - 1/2, 1/2 - z; (iv) x - 1/2, 3/2 - y, z - 1/2; (v) 1 + x, y, z].
[Figure 2] Fig. 2. A packing diagram for SrMn(SeO3)2 viewed down [100], in polyhedral representation. The SeO3 pyramids (light shading) are represented by SeO3E tetrahedra, where the dummy atom E, geometrically placed 1.0 Å from Se and indicated by a small sphere, represents the SeIV lone pair. Sr2+ cations are represented by spheres of arbitrary radius.
Strontium manganese diselenite top
Crystal data top
SrMn(SeO3)2F(000) = 716
Mr = 396.48Dx = 4.184 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.4432 (2) ÅCell parameters from 3396 reflections
b = 14.8002 (7) Åθ = 2.5–32.5°
c = 9.5955 (5) ŵ = 22.01 mm1
β = 94.072 (1)°T = 298 K
V = 629.41 (5) Å3Rod, colourless
Z = 40.34 × 0.05 × 0.02 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2273 independent reflections
Radiation source: fine-focus sealed tube1869 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 32.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 66
Tmin = 0.048, Tmax = 0.640k = 2221
7110 measured reflectionsl = 1314
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: From the isostructural SrZn(SeO3)2 (Mn replacing Zn)
R[F2 > 2σ(F2)] = 0.036Secondary atom site location: none
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0535P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2273 reflectionsΔρmax = 2.37 e Å3
91 parametersΔρmin = 1.83 e Å3
Crystal data top
SrMn(SeO3)2V = 629.41 (5) Å3
Mr = 396.48Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.4432 (2) ŵ = 22.01 mm1
b = 14.8002 (7) ÅT = 298 K
c = 9.5955 (5) Å0.34 × 0.05 × 0.02 mm
β = 94.072 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2273 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
1869 reflections with I > 2σ(I)
Tmin = 0.048, Tmax = 0.640Rint = 0.050
7110 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03691 parameters
wR(F2) = 0.0900 restraints
S = 1.01Δρmax = 2.37 e Å3
2273 reflectionsΔρmin = 1.83 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.74150 (8)0.61630 (3)0.03467 (5)0.01109 (10)
Mn10.72489 (15)0.84759 (5)0.20800 (8)0.01329 (15)
Se10.77964 (9)0.69993 (3)0.42195 (5)0.01248 (11)
Se20.26501 (9)1.00100 (3)0.21735 (5)0.01160 (11)
O11.1306 (7)0.6989 (2)0.5023 (4)0.0177 (7)
O20.7042 (7)0.8130 (2)0.4338 (4)0.0168 (6)
O30.8461 (8)0.7035 (2)0.2511 (4)0.0206 (7)
O40.1939 (7)0.8868 (2)0.2289 (4)0.0157 (7)
O50.2332 (7)1.0328 (2)0.3851 (4)0.0165 (6)
O60.6423 (7)0.9922 (2)0.2158 (5)0.0224 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.01211 (17)0.00868 (18)0.0126 (2)0.00057 (12)0.00192 (13)0.00168 (14)
Mn10.0161 (3)0.0094 (3)0.0142 (3)0.0006 (2)0.0001 (2)0.0014 (3)
Se10.01392 (19)0.0095 (2)0.0139 (2)0.00099 (14)0.00003 (14)0.00044 (16)
Se20.01154 (18)0.00946 (19)0.0139 (2)0.00064 (13)0.00138 (14)0.00088 (16)
O10.0138 (14)0.0217 (17)0.0174 (17)0.0002 (12)0.0010 (11)0.0069 (14)
O20.0201 (14)0.0096 (14)0.0212 (18)0.0025 (11)0.0042 (12)0.0016 (13)
O30.0375 (19)0.0115 (15)0.0121 (17)0.0000 (13)0.0018 (14)0.0008 (13)
O40.0149 (14)0.0083 (14)0.0241 (19)0.0001 (11)0.0027 (12)0.0036 (13)
O50.0232 (16)0.0143 (15)0.0117 (17)0.0006 (12)0.0008 (12)0.0039 (13)
O60.0107 (14)0.0149 (16)0.042 (2)0.0006 (11)0.0047 (13)0.0003 (16)
Geometric parameters (Å, º) top
Sr1—O32.461 (4)Mn1—O62.174 (3)
Sr1—O2i2.558 (3)Mn1—O32.231 (3)
Sr1—O5ii2.607 (3)Mn1—O22.235 (4)
Sr1—O5i2.632 (3)Mn1—O42.452 (3)
Sr1—O5iii2.704 (3)Se1—O31.687 (4)
Sr1—O2iv2.721 (3)Se1—O11.690 (3)
Sr1—O1iv2.792 (4)Se1—O21.711 (3)
Sr1—O4i2.927 (4)Se2—O61.683 (3)
Sr1—O6iii3.033 (4)Se2—O51.693 (3)
Mn1—O1iv2.104 (4)Se2—O41.725 (3)
Mn1—O4v2.159 (3)
O3—Sr1—O2i89.76 (12)O1iv—Mn1—O2144.61 (13)
O3—Sr1—O5ii96.18 (11)O4v—Mn1—O294.43 (13)
O2i—Sr1—O5ii173.98 (12)O6—Mn1—O2100.00 (14)
O3—Sr1—O5i153.44 (11)O3—Mn1—O268.11 (13)
O2i—Sr1—O5i96.74 (11)O1iv—Mn1—O491.48 (12)
O5ii—Sr1—O5i77.50 (12)O4v—Mn1—O4148.98 (15)
O3—Sr1—O5iii83.78 (11)O6—Mn1—O466.32 (11)
O2i—Sr1—O5iii66.05 (10)O3—Mn1—O4115.60 (12)
O5ii—Sr1—O5iii113.55 (12)O2—Mn1—O482.45 (12)
O5i—Sr1—O5iii75.55 (12)O3—Se1—O1102.95 (18)
O3—Sr1—O2iv101.94 (11)O3—Se1—O294.75 (17)
O2i—Sr1—O2iv114.60 (13)O1—Se1—O299.03 (17)
O5ii—Sr1—O2iv65.14 (10)O6—Se2—O5100.39 (18)
O5i—Sr1—O2iv98.67 (10)O6—Se2—O496.42 (15)
O5iii—Sr1—O2iv174.19 (11)O5—Se2—O4100.58 (17)
O3—Sr1—O1iv66.51 (11)Se1—O1—Mn1vi123.14 (17)
O2i—Sr1—O1iv72.37 (10)Se1—O1—Sr1vi101.07 (15)
O5ii—Sr1—O1iv110.90 (10)Mn1vi—O1—Sr1vi101.21 (14)
O5i—Sr1—O1iv139.94 (10)Se1—O2—Mn197.93 (16)
O5iii—Sr1—O1iv128.39 (10)Se1—O2—Sr1vii126.28 (17)
O2iv—Sr1—O1iv55.96 (9)Mn1—O2—Sr1vii111.26 (13)
O3—Sr1—O4i148.20 (10)Se1—O2—Sr1vi103.22 (14)
O2i—Sr1—O4i68.27 (10)Mn1—O2—Sr1vi99.27 (12)
O5ii—Sr1—O4i106.63 (10)Sr1vii—O2—Sr1vi114.60 (13)
O5i—Sr1—O4i56.15 (9)Se1—O3—Mn198.81 (16)
O5iii—Sr1—O4i106.13 (10)Se1—O3—Sr1140.17 (19)
O2iv—Sr1—O4i69.53 (10)Mn1—O3—Sr1108.44 (15)
O1iv—Sr1—O4i84.51 (10)Se2—O4—Mn1viii115.94 (16)
O3—Sr1—O6iii68.91 (11)Se2—O4—Mn192.58 (13)
O2i—Sr1—O6iii116.77 (10)Mn1viii—O4—Mn1148.98 (15)
O5ii—Sr1—O6iii64.90 (10)Se2—O4—Sr1vii94.56 (14)
O5i—Sr1—O6iii85.27 (10)Mn1viii—O4—Sr1vii95.15 (12)
O5iii—Sr1—O6iii53.37 (9)Mn1—O4—Sr1vii94.42 (11)
O2iv—Sr1—O6iii127.57 (9)Se2—O5—Sr1ix122.45 (17)
O1iv—Sr1—O6iii134.41 (11)Se2—O5—Sr1vii106.63 (15)
O4i—Sr1—O6iii141.08 (10)Sr1ix—O5—Sr1vii102.50 (12)
O1iv—Mn1—O4v107.57 (13)Se2—O5—Sr1x105.63 (15)
O1iv—Mn1—O6109.38 (15)Sr1ix—O5—Sr1x113.55 (12)
O4v—Mn1—O684.05 (12)Sr1vii—O5—Sr1x104.45 (11)
O1iv—Mn1—O383.70 (14)Se2—O6—Mn1104.32 (16)
O4v—Mn1—O391.19 (13)Se2—O6—Sr1x93.44 (15)
O6—Mn1—O3166.89 (15)Mn1—O6—Sr1x127.15 (17)
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x1/2, y+3/2, z1/2; (v) x+1, y, z; (vi) x+1/2, y+3/2, z+1/2; (vii) x1/2, y+3/2, z+1/2; (viii) x1, y, z; (ix) x+1/2, y+1/2, z+1/2; (x) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaSrMn(SeO3)2
Mr396.48
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)4.4432 (2), 14.8002 (7), 9.5955 (5)
β (°) 94.072 (1)
V3)629.41 (5)
Z4
Radiation typeMo Kα
µ (mm1)22.01
Crystal size (mm)0.34 × 0.05 × 0.02
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.048, 0.640
No. of measured, independent and
observed [I > 2σ(I)] reflections
7110, 2273, 1869
Rint0.050
(sin θ/λ)max1)0.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.090, 1.01
No. of reflections2273
No. of parameters91
Δρmax, Δρmin (e Å3)2.37, 1.83

Computer programs: SMART (Bruker, 1999), SMART, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and ATOMS (Dowty, 1999), SHELXL97.

Selected geometric parameters (Å, º) top
Sr1—O32.461 (4)Mn1—O62.174 (3)
Sr1—O2i2.558 (3)Mn1—O32.231 (3)
Sr1—O5ii2.607 (3)Mn1—O22.235 (4)
Sr1—O5i2.632 (3)Mn1—O42.452 (3)
Sr1—O5iii2.704 (3)Se1—O31.687 (4)
Sr1—O2iv2.721 (3)Se1—O11.690 (3)
Sr1—O1iv2.792 (4)Se1—O21.711 (3)
Sr1—O4i2.927 (4)Se2—O61.683 (3)
Sr1—O6iii3.033 (4)Se2—O51.693 (3)
Mn1—O1iv2.104 (4)Se2—O41.725 (3)
Mn1—O4v2.159 (3)
O1iv—Mn1—O4v107.57 (13)O2—Mn1—O482.45 (12)
O1iv—Mn1—O6109.38 (15)O3—Se1—O1102.95 (18)
O4v—Mn1—O684.05 (12)O3—Se1—O294.75 (17)
O1iv—Mn1—O383.70 (14)O1—Se1—O299.03 (17)
O4v—Mn1—O391.19 (13)O6—Se2—O5100.39 (18)
O6—Mn1—O3166.89 (15)O6—Se2—O496.42 (15)
O1iv—Mn1—O2144.61 (13)O5—Se2—O4100.58 (17)
O4v—Mn1—O294.43 (13)Se1—O1—Mn1vi123.14 (17)
O6—Mn1—O2100.00 (14)Se1—O2—Mn197.93 (16)
O3—Mn1—O268.11 (13)Se1—O3—Mn198.81 (16)
O1iv—Mn1—O491.48 (12)Se2—O4—Mn1vii115.94 (16)
O4v—Mn1—O4148.98 (15)Se2—O4—Mn192.58 (13)
O6—Mn1—O466.32 (11)Mn1vii—O4—Mn1148.98 (15)
O3—Mn1—O4115.60 (12)Se2—O6—Mn1104.32 (16)
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x1/2, y+3/2, z1/2; (v) x+1, y, z; (vi) x+1/2, y+3/2, z+1/2; (vii) x1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds