Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C22H17NO3, crystallizes in the monoclinic space group P21/c with four molecules per unit cell. The mol­ecules are arranged in centrosymmetric pairs, joined via the C and attached H atoms in the meta position relative to the methoxy group. These pairs are bonded in the crystalline phase as a result of non-specific dispersive interactions, and through a network of C—H...O interactions involving the non-bonded O atom of the carboxy group and, to some extent, the O atom of the methoxy group. The methoxy substituent lies in the plane of the almost planar acridine moiety and is directed towards the phenyl ester group. The phenyl ester group itself is twisted by 35.9 (5)° relative to the mean plane of the acridine moiety.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102000574/gd1177sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102000574/gd1177Isup2.hkl
Contains datablock I

CCDC reference: 183003

Comment top

9-Carboxy-10-methylacridinium phenyl esters constitute the chemiluminogenic fragments of chemiluminescent labels (Rak et al., 1999), which have found numerous applications in immunoassays (Zomer et al., 1991; Dodeigne et al., 2000) and which can potentially be used in environmental, biochemical and medical analyses (Dodeigne et al., 2000). Upon preparation of one such label, we synthesized, as an intermediate product, the title compound, (I), and obtained it in a crystalline form. This prompted us to carry out X-ray measurements in order to determine its structure. Examination of the Cambridge Structural Database (Version?; Allen & Kennard, 1993) shows that this is the first structure containing an acridine-9-carboxylic acid phenyl ester fragment. \sch

The structure (I) is shown in Fig. 1, and selected geometric parameters are given in Table 1. The O and C atoms of the methoxy group lie almost in the plane of the almost planar acridine moiety, while the carboxy group is twisted relative to the acridine skeleton at an angle of 56.8 (5)°. The 2-methylphenyl ester group is twisted from the mean plane of the acridine moiety by 35.9 (5)°. The 2-methylphenyl fragment is almost perpendicular to the plane formed by the atoms of the carboxy group: the angle between the respective mean planes is 87.3 (5)°.

In the crystalline phase, the molecules of (I) are arranged in centrosymmetric pairs, in which they contact through the C4 atoms and the attached H atoms, via a pair of C—H···C contacts, with C···C 3.58 Å, H···C 3.01 Å and C—H···C 119.7° (Fig. 2). These pairs are bonded as a result of nonspecific dispersive interactions, and through a network of C—H···O interactions involving the O18 nonbonded atoms of the carboxy group and the H atoms attached to C6 [H···O 2.475 Å, which is a short C—H···O interaction (Table 2)] and, to some extent, the O15 atoms of the methoxy group and the H atoms attached to C16 from neighbouring molecules [the shortest H···O distance is 3.42 Å, which is a long C—H···O interaction (Table 2)].

The packing in the crystalline phase reveals that the molecules of (I) are arranged regularly and the acridine moieties are situated either parallel or perperdicular to each other; the angles between the respective mean planes are 0.0 (5)° or 84.0 (5)° (Fig. 3).

Experimental top

2-Methoxyacridine-9-carboxylic acid and, subsequently, (I) were synthesized following procedures outlined by Zomer et al. (1991) and Batmanghelich et al. (1991). Light yellow needle crystals of (I) suitable for X-ray investigations were grown from cyclohexane. NB Plate morphology given below - which is correct?

Refinement top

All H atoms were placed in idealized positions and treated as riding, with C—H = 0.96 Å and Uiso(H) = 1.2Ueq(C). Are these the correct restraints?

Computing details top

Data collection: KM-4 Software (Kuma Diffraction, 1989); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and 50% probability displacement ellipsoids. H atoms are drawn as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The arrangement of the molecules of (I) in the unit cell viewed along the [100] axis. Short C—H···O interactions are represented by dashed lines and long C—H···O interactions or C—H···C contacts by dotted lines (Table 2). [Symmetry codes: (i) x, y, z; (ii) 1 - x, 1 - y, 1 - z; (iii) 1 - x, 1/2 + y, 1/2 - z; (iv) x, y - 1/2, z - 1/2.]
[Figure 3] Fig. 3. The packing diagram of (I) viewed along the z axis. Short C—H···O interactions (Table 2) are represented by dashed lines.
2-Methylphenyl 2-methoxyacridine-9-carboxylate top
Crystal data top
C22H17NO3F(000) = 720
Mr = 343.38Dx = 1.303 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.393 (3) ÅCell parameters from 50 reflections
b = 9.233 (2) Åθ = 3–60.1°
c = 14.162 (3) ŵ = 0.09 mm1
β = 91.81 (3)°T = 293 K
V = 1750.4 (7) Å3Plate, yellow
Z = 40.6 × 0.5 × 0.3 mm
Data collection top
Kuma KM-4
diffractometer
Rint = 0.027
Radiation source: fine-focus sealed tubeθmax = 30.1°, θmin = 1.5°
Graphite monochromatorh = 1818
θ/2θ scansk = 130
7169 measured reflectionsl = 019
5108 independent reflections3 standard reflections every 200 reflections
2994 reflections with I > 2σ(I) intensity decay: 1.2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0646P)2 + 0.3081P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5108 reflectionsΔρmax = 0.19 e Å3
236 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (2)
Crystal data top
C22H17NO3V = 1750.4 (7) Å3
Mr = 343.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.393 (3) ŵ = 0.09 mm1
b = 9.233 (2) ÅT = 293 K
c = 14.162 (3) Å0.6 × 0.5 × 0.3 mm
β = 91.81 (3)°
Data collection top
Kuma KM-4
diffractometer
Rint = 0.027
7169 measured reflections3 standard reflections every 200 reflections
5108 independent reflections intensity decay: 1.2%
2994 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
5108 reflectionsΔρmin = 0.17 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.59097 (11)0.41613 (18)0.09582 (12)0.0502 (4)
H1A0.61840.49480.13100.060*
C20.49579 (12)0.3711 (2)0.11668 (12)0.0550 (4)
C30.45186 (13)0.2582 (2)0.06388 (14)0.0603 (5)
H3A0.38440.22990.07970.072*
C40.50355 (13)0.1937 (2)0.00725 (14)0.0592 (5)
H4A0.47050.12060.04300.071*
C50.80072 (15)0.1231 (2)0.19619 (13)0.0632 (5)
H5A0.76650.05120.23190.076*
C60.89839 (16)0.1507 (2)0.21846 (13)0.0643 (5)
H6A0.93230.09530.26710.077*
C70.94992 (14)0.2600 (2)0.17051 (12)0.0584 (4)
H7A1.01910.27980.18510.070*
C80.90309 (12)0.33905 (18)0.10165 (11)0.0497 (4)
H8A0.93730.41610.07060.060*
C90.74731 (11)0.38807 (16)0.00355 (10)0.0429 (3)
N100.65269 (11)0.16397 (16)0.10190 (10)0.0564 (4)
C110.64823 (11)0.35012 (16)0.02127 (11)0.0448 (4)
C120.60456 (12)0.23484 (18)0.03133 (12)0.0505 (4)
C130.80096 (11)0.31190 (16)0.07462 (10)0.0442 (3)
C140.74893 (13)0.19990 (18)0.12308 (11)0.0511 (4)
O150.43478 (9)0.42634 (17)0.18648 (10)0.0712 (4)
C160.47415 (15)0.5392 (3)0.24303 (15)0.0754 (6)
H16A0.42580.57100.29010.091*
H16B0.49170.61870.20200.091*
H16C0.53280.50500.27330.091*
C170.79747 (11)0.51169 (16)0.04380 (10)0.0419 (3)
O180.87542 (9)0.50795 (12)0.08261 (8)0.0563 (3)
O190.74354 (8)0.63370 (12)0.03415 (9)0.0559 (3)
C200.78277 (11)0.76557 (17)0.06727 (12)0.0480 (4)
C210.84416 (12)0.84502 (18)0.00600 (11)0.0514 (4)
C220.87118 (14)0.98224 (19)0.03643 (14)0.0606 (5)
H22A0.91631.03820.00300.073*
C230.84092 (15)1.0339 (2)0.12351 (16)0.0691 (5)
H23A0.85781.13170.13960.083*
C240.78175 (15)0.9510 (2)0.18316 (15)0.0729 (6)
H24A0.76520.98330.24620.087*
C250.75142 (13)0.8152 (2)0.15482 (13)0.0627 (5)
H25A0.70420.75940.19200.075*
C260.88080 (19)0.7860 (2)0.08752 (14)0.0773 (6)
H26A0.92060.85710.12080.093*
H26B0.82540.75890.12510.093*
H26C0.92090.70220.07560.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0444 (8)0.0523 (9)0.0541 (9)0.0101 (7)0.0031 (7)0.0046 (7)
C20.0428 (8)0.0642 (11)0.0579 (10)0.0042 (8)0.0013 (7)0.0135 (8)
C30.0404 (8)0.0680 (12)0.0729 (12)0.0144 (8)0.0070 (8)0.0175 (9)
C40.0483 (9)0.0552 (10)0.0750 (12)0.0149 (8)0.0153 (8)0.0078 (9)
C50.0734 (12)0.0592 (11)0.0574 (10)0.0035 (9)0.0110 (9)0.0107 (8)
C60.0729 (12)0.0686 (12)0.0513 (10)0.0054 (10)0.0005 (9)0.0082 (9)
C70.0576 (10)0.0660 (11)0.0513 (9)0.0020 (8)0.0014 (8)0.0017 (8)
C80.0506 (9)0.0489 (9)0.0495 (9)0.0052 (7)0.0010 (7)0.0025 (7)
C90.0441 (8)0.0399 (7)0.0451 (8)0.0062 (6)0.0061 (6)0.0062 (6)
N100.0550 (8)0.0499 (8)0.0649 (9)0.0092 (7)0.0134 (7)0.0015 (7)
C110.0415 (8)0.0425 (8)0.0509 (8)0.0066 (6)0.0078 (6)0.0087 (7)
C120.0475 (9)0.0466 (9)0.0583 (10)0.0086 (7)0.0132 (7)0.0078 (7)
C130.0473 (8)0.0411 (8)0.0444 (8)0.0030 (6)0.0074 (6)0.0054 (6)
C140.0559 (10)0.0462 (9)0.0515 (9)0.0029 (7)0.0102 (7)0.0020 (7)
O150.0466 (7)0.0947 (10)0.0716 (8)0.0104 (7)0.0092 (6)0.0008 (7)
C160.0600 (12)0.0970 (16)0.0688 (12)0.0013 (11)0.0066 (10)0.0057 (12)
C170.0404 (7)0.0456 (8)0.0396 (7)0.0073 (6)0.0008 (6)0.0046 (6)
O180.0522 (6)0.0568 (7)0.0610 (7)0.0038 (5)0.0186 (5)0.0004 (5)
O190.0470 (6)0.0419 (6)0.0798 (8)0.0040 (5)0.0169 (6)0.0032 (5)
C200.0417 (8)0.0415 (8)0.0611 (10)0.0016 (6)0.0067 (7)0.0046 (7)
C210.0532 (9)0.0458 (9)0.0554 (9)0.0009 (7)0.0043 (7)0.0006 (7)
C220.0606 (11)0.0450 (9)0.0763 (12)0.0060 (8)0.0029 (9)0.0011 (8)
C230.0678 (12)0.0503 (10)0.0899 (14)0.0041 (9)0.0124 (11)0.0191 (10)
C240.0674 (12)0.0805 (14)0.0705 (12)0.0052 (11)0.0003 (10)0.0294 (11)
C250.0518 (10)0.0699 (12)0.0658 (11)0.0031 (9)0.0068 (8)0.0061 (9)
C260.1029 (17)0.0656 (13)0.0626 (12)0.0085 (12)0.0112 (11)0.0029 (10)
Geometric parameters (Å, º) top
C1—C21.364 (2)C11—C121.434 (2)
C1—C111.422 (2)C13—C141.434 (2)
C1—H1A0.9600O15—C161.426 (2)
C2—O151.361 (2)C16—H16A0.9600
C2—C31.421 (3)C16—H16B0.9600
C3—C41.343 (3)C16—H16C0.9600
C3—H3A0.9601C17—O181.1955 (17)
C4—C121.436 (2)C17—O191.3474 (19)
C4—H4A0.9600O19—C201.4121 (18)
C5—C61.360 (3)C20—C251.375 (2)
C5—C141.418 (3)C20—C211.386 (2)
C5—H5A0.9600C21—C221.390 (2)
C6—C71.410 (3)C21—C261.500 (3)
C6—H6A0.9600C22—C231.372 (3)
C7—C81.356 (2)C22—H22A0.9600
C7—H7A0.9600C23—C241.373 (3)
C8—C131.431 (2)C23—H23A0.9600
C8—H8A0.9600C24—C251.381 (3)
C9—C111.406 (2)C24—H24A0.9600
C9—C131.407 (2)C25—H25A0.9600
C9—C171.494 (2)C26—H26A0.9601
N10—C121.342 (2)C26—H26B0.9599
N10—C141.355 (2)C26—H26C0.9600
C2—C1—C11120.55 (16)N10—C14—C13122.93 (15)
C2—C1—H1A119.2C5—C14—C13118.43 (16)
C11—C1—H1A120.2C9—C17—O18126.57 (14)
C1—C2—O15125.33 (17)C9—C17—O19110.07 (12)
C2—O15—C16117.23 (14)C11—C9—C17120.82 (14)
O15—C2—C3114.07 (15)O15—C16—H16A111.1
C1—C2—C3120.60 (17)O15—C16—H16B107.9
C4—C3—C2120.50 (16)O15—C16—H16C109.4
C4—C3—H3A120.8C17—O19—C20118.74 (11)
C2—C3—H3A118.6O18—C17—O19123.33 (14)
C3—C4—C12121.35 (17)C25—C20—C21123.10 (15)
C3—C4—H4A118.2C25—C20—O19118.73 (15)
C12—C4—H4A120.4C20—C21—C22116.32 (16)
C6—C5—C14121.38 (17)O19—C20—C21117.90 (14)
C6—C5—H5A118.6C20—C21—C26122.10 (16)
C14—C5—H5A120.0C22—C21—C26121.58 (17)
C5—C6—C7120.28 (18)C23—C22—C21121.56 (18)
C5—C6—H6A119.8C23—C22—H22A119.9
C7—C6—H6A119.9C21—C22—H22A118.4
C8—C7—C6120.64 (18)C22—C23—C24120.52 (18)
C8—C7—H7A118.3C22—C23—H23A118.4
C6—C7—H7A121.1C24—C23—H23A120.9
C7—C8—C13120.98 (16)C23—C24—C25119.77 (18)
C7—C8—H8A120.8C23—C24—H24A120.7
C13—C8—H8A118.3C25—C24—H24A119.4
C11—C9—C13120.72 (14)C20—C25—C24118.70 (18)
C13—C9—C17118.45 (13)C20—C25—H25A119.5
C12—N10—C14118.46 (14)C24—C25—H25A121.5
C9—C11—C1124.13 (14)C21—C26—H26A110.2
C9—C11—C12116.88 (15)C21—C26—H26B110.3
C1—C11—C12118.97 (14)C21—C26—H26C107.8
N10—C12—C11123.66 (15)H26A—C26—H26B109.5
N10—C12—C4118.34 (15)H26A—C26—H26C109.5
C11—C12—C4118.00 (16)H26B—C26—H26C109.5
C9—C13—C8124.49 (14)H16A—C16—H16C109.5
C9—C13—C14117.27 (14)H16A—C16—H16B109.5
C8—C13—C14118.24 (14)H16B—C16—H16C109.5
N10—C14—C5118.64 (15)
C11—C1—C2—O15179.79 (15)C12—N10—C14—C131.2 (2)
C11—C1—C2—C30.4 (3)C6—C5—C14—N10177.65 (17)
O15—C2—C3—C4179.97 (16)C6—C5—C14—C132.2 (3)
C1—C2—C3—C40.2 (3)C9—C13—C14—N101.3 (2)
C2—C3—C4—C120.9 (3)C8—C13—C14—N10178.89 (15)
C14—C5—C6—C71.8 (3)C9—C13—C14—C5178.90 (14)
C5—C6—C7—C80.1 (3)C8—C13—C14—C50.9 (2)
C6—C7—C8—C131.2 (3)C1—C2—O15—C160.8 (3)
C13—C9—C11—C1176.25 (14)C9—C17—O19—C20174.73 (13)
C17—C9—C11—C14.8 (2)C3—C2—O15—C16179.43 (16)
C13—C9—C11—C122.1 (2)C11—C9—C17—O18125.80 (17)
C17—C9—C11—C12176.86 (13)C13—C9—C17—O1855.2 (2)
C2—C1—C11—C9178.71 (15)C11—C9—C17—O1956.37 (18)
C2—C1—C11—C120.4 (2)C13—C9—C17—O19122.64 (14)
C14—N10—C12—C112.1 (2)O18—C17—O19—C203.2 (2)
C14—N10—C12—C4178.23 (15)C17—O19—C20—C2597.88 (18)
C9—C11—C12—N100.5 (2)C17—O19—C20—C2187.90 (18)
C1—C11—C12—N10178.92 (15)C25—C20—C21—C221.8 (2)
C9—C11—C12—C4179.85 (14)O19—C20—C21—C22172.16 (14)
C1—C11—C12—C41.4 (2)C25—C20—C21—C26177.42 (18)
C3—C4—C12—N10178.61 (16)O19—C20—C21—C268.6 (2)
C3—C4—C12—C111.7 (3)C20—C21—C22—C231.8 (3)
C11—C9—C13—C8177.28 (14)C26—C21—C22—C23177.36 (18)
C17—C9—C13—C83.7 (2)C21—C22—C23—C240.6 (3)
C11—C9—C13—C142.9 (2)C22—C23—C24—C250.8 (3)
C17—C9—C13—C14176.07 (13)C21—C20—C25—C240.5 (3)
C7—C8—C13—C9179.49 (15)O19—C20—C25—C24173.45 (15)
C7—C8—C13—C140.7 (2)C23—C24—C25—C200.9 (3)
C12—N10—C14—C5178.63 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O18i0.962.473.199 (3)132
C4—H4A···C4ii0.963.013.584 (2)120
C16—H16B···O15iii0.963.413.916 (2)115
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC22H17NO3
Mr343.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.393 (3), 9.233 (2), 14.162 (3)
β (°) 91.81 (3)
V3)1750.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.6 × 0.5 × 0.3
Data collection
DiffractometerKuma KM-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7169, 5108, 2994
Rint0.027
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.153, 1.03
No. of reflections5108
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: KM-4 Software (Kuma Diffraction, 1989), KM-4 Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
C2—O151.361 (2)O15—C161.426 (2)
C9—C111.406 (2)C17—O181.1955 (17)
C9—C171.494 (2)C17—O191.3474 (19)
N10—C121.342 (2)O19—C201.4121 (18)
C1—C2—O15125.33 (17)C17—O19—C20118.74 (11)
C2—O15—C16117.23 (14)O18—C17—O19123.33 (14)
C9—C17—O18126.57 (14)O19—C20—C21117.90 (14)
C9—C17—O19110.07 (12)C20—C21—C26122.10 (16)
C11—C9—C17120.82 (14)
C1—C2—O15—C160.8 (3)C11—C9—C17—O1956.37 (18)
C9—C17—O19—C20174.73 (13)C17—O19—C20—C2187.90 (18)
C11—C9—C17—O18125.80 (17)O19—C20—C21—C268.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O18i0.962.473.199 (3)132
C4—H4A···C4ii0.963.013.584 (2)120
C16—H16B···O15iii0.963.413.916 (2)115
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1/2, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds