Download citation
Download citation
link to html
The title compound, C9H12N2O3, crystallizes with two mol­ecules in the asymmetric unit. There is extensive hydrogen bonding which results in the formation of a two-dimensional corrugated sheet. This supramolecular structure is determined by the formation of hydrogen-bonded chains resulting from the presence of a 6-amino group and an ethoxy­carbonyl group as substituents on a pyridine ring in relative para positions which constitute a π-electron `push–pull' system.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101010228/gd1162sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101010228/gd1162Isup2.hkl
Contains datablock I

CCDC reference: 173387

Comment top

The title compound, (I), was obtained through a hetero-Diels–Alder/retro-Diels–Alder transformation of 4-amino-2-methoxy-3-methylpyrimidin-4(3H)-one (acting as 2-azadiene) and ethyl propiolate (acting as dienophile) (see scheme below) and the presence of a 6-amino group and an ethoxycarbonyl group as substituents on a pyridine ring in relative para positions constitutes a clear π-electron `push–pull' system which explains the main structural features found in the crystal structure.

The two unique molecules in the asymmetric unit were chosen to give a dimer formed by the three-centred R21(6) (Bernstein et al., 1995) hydrogen bond between the amino H atom attached to N21 in molecule 1, and O25 and O26 in molecule 2 (Fig. 1); the sum of the angles at the H atom is 353°. The former of these two hydrogen bonds is the shorter (Table 2) and is hence the stronger. The two molecules have similar bond lengths and angles.

The pyridine rings, while essentially planar, show deviations from regular hexagonal geometry (Table 1). In both molecules, the C—NH2 groups lie in the plane of the pyridine ring. The N atoms have predominantly sp2-character, as is shown by the C–N bond lengths [N12–C12 1.3449 (16) Å and N22–C22 1.3406 (17) Å], which are shorter than the mean value (1.360 Å) recorded for planar amino groups bonded to aromatic systems (Allen et al., 1987). It is also noteworthy that the C151–O15 [1.2115 (15) Å] and C251–O25 bonds [1.2162 (15) Å] are long compared with the mean [1.202 Å; Schweizer & Dunitz, 1982] for other carbonyl groups in aromatic carboxylic esters.

The compensation by the 6-amino lone pair of the π-electron deficiency of the 3-carboxylate group produces an increase in the acidity of the amino H atoms as well as an enhancement of the electron density of the carbonyl O atom. The partial charges thus developed favour the formation of N—H···OC hydrogen bonds, confirmed by an analysis of the hydrogen bonding. This indicates the great contribution of canonical form (1a) (see scheme below) and hence this can be considered as an example of resonance-assisted hydrogen bonding (Gilli et al.l., 1989).

The supramolecular structure of (I) consists of a corrugated two-dimensional sheets formed by linked hydrogen bonded antiparallel chains formed by hydrogen bonding the dimers, described above, together in a head-to-tail fashion. These sheets lie in the (010) plane. Individual sheets are not linked to neighbouring sheets. The dimers are connected by the N22—H22B···O15(-1 + x, y, -1 + z) hydrogen bond producing via the N12–H12B···O25 bond a C22(16) chain which runs parallel to [101]. The C22(14) chain via O26 is shorter but, as mentioned above, the N12–H12B···O25 bond is the stronger of the pair. Crystallographic symmetry produces an alternating pattern of antiparallel chains which are linked to neighbouring chains in two distinct ways, one by the hydrogen bond between N22–H22A···N11(-1 - x, -y, -z) which produces a ribbon with alternating centrosymmetric R44(20) and R44(16) rings (Bernstein et al., 1995), centred on the inversion centres at (-0.5,0,0) and (0,0, 1/2), respectively (Fig. 2). The second linkage is produced by the N12—H12A···O25(-x, -y, -z) hydrogen bond, the ribbon so produced being made up of alternating centrosymmetric R24(8) and R44(32) rings (Bernstein et al., 1995) centred on the centres of inversion at (0,0,0) and (1/2,0, 1/2), respectively (Fig. 3).

The following related compounds were retrieved from the Cambridge Structural Database (CSD; Allen & Kennard, 1993): SAVZEU, ethyl 2-N-(6-amino-5-cyano-3-ethoxycarbonylpyridin-2-yl)aminobenzoate, C18H18N4O4 (Deady et al., 1989); ZIVHAN, 2-amino-6-methoxy-4,5-bis(methoxycarbonyl)pyridine, C10H12N2O5 (Low et al., 1996); ZIVHER, 2-amino-4,5-bis(methoxycarbonyl)-6-(methylthio)pyridine, C10H12N2O4S (Low et al., 1996). These are the only pyridine compounds with a 2-amino group para to a 5-carboxylate group (6-amino and 3-carboxylate in the numbering of the title compound) and they all crystallize in space group P1, like compound (I). These are all push–pull systems simialr to (I) and in all cases formation of N—H···OC hydrogen bonds is observed. These hydrogen bonds form C(8) chains in ZIVHAN and ZIVHER, which have only one molecule in the asymmetric unit. Antiparallel chains link together to form a ribbon consisting of alternating R22(14) and R24(18) rings. In SAVZEU, in which the asymmetric unit, like that of (I), contains two molecules, the chain is of C22(16) type, as in (I), and antiparallel chains are linked to form a ribbon consisting of alternating R44(36) and R24(8) rings. Thus, although ribbons are formed in all these structures, only in (I) do these ribbons combine to form a sheet structure.

Experimental top

Ethyl propiolate (0.95 g, 9.5 mmol) was added to a suspension of 6-amino-2-methoxypyrimidin-4(3H)-one (0.50 g, 3.2 mmol) in dry dioxane (3 ml) and the reaction mixture was stirred at 393 K for 62 h. The resulting dark solution was evaporated in vacuo to dryness and the title compound was isolated and purified by flash column chromatography on silica gel using dichloromethane/acetone mixtures in an acetone gradient as eluent. Recrystallization from acetone produced colourless crystals (yield: 48%, m.p. 396–397 K). Analysis calculated for C9H12N2O3: C 55.1, H 6.2, N 14.3%; found: C 54.8, H 6.0, N 14.1%.

Refinement top

H atoms were treated as riding atoms with C—H distances in the range 0.95–0.99 Å and N—H distances of 0.88 Å. The position of the methyl and amino H-atom positions was confirmed on a difference map.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2000); software used to prepare material for publication: SHELXL97 and WORDPERFECT macro PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The dimer selected as the asymmetric unit is shown with the three-centred hydrogen bond between N12–H12B···O26 and N12–H12B···O25 forming an R21(6) ring motif.
[Figure 2] Fig. 2. The molecular ribbon produced by the linking of antiparallel C22(14) chains via the N22—H22A···N11(-1 - x, -y, -z) hydrogen bond showing the alternating centrosymmetric R44(20) and R44(16) rings. Atoms labelled with primes ('), asterisks (*) and hashes (#) are at (1 + x, y, 1 + z), (-1 + x, -y, -z) and (-x, -y, 1 - z), respectively.
[Figure 3] Fig. 3. The molecular ribbon produced by the linking of antiparallel C22(14) chains via the N12—-H22A···O25(-x, -y, -z) hydrogen bond showing the alternating centrosymmetric R24(8) and R44(32) rings. Atoms labelled with primes ('), asterisks (*) and hashes (#) are at (1 + x, y, 1 + z), (-x, -y, -z) and (1 - x, -y, 1 - z), respectively.
5-(ethylcarboxylate)-6-methoxy-2-pyrimidinamine top
Crystal data top
C9H12N2O3F(000) = 416
Mr = 196.21Dx = 1.367 Mg m3
Triclinic, P1Melting point: 369 K
a = 7.4906 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2409 (2) ÅCell parameters from 4295 reflections
c = 13.1449 (3) Åθ = 3.0–27.5°
α = 104.9607 (9)°µ = 0.10 mm1
β = 90.7398 (9)°T = 150 K
γ = 101.2452 (9)°Block, colourless
V = 953.34 (4) Å30.40 × 0.25 × 0.15 mm
Z = 4
Data collection top
Kappa-CCD
diffractometer
4295 independent reflections
Radiation source: fine-focus sealed X-ray tube3541 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 99
Tmin = 0.960, Tmax = 0.985k = 1312
14744 measured reflectionsl = 1617
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.094P)2 + 0.1054P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4295 reflectionsΔρmax = 0.37 e Å3
258 parametersΔρmin = 0.42 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.155 (12)
Crystal data top
C9H12N2O3γ = 101.2452 (9)°
Mr = 196.21V = 953.34 (4) Å3
Triclinic, P1Z = 4
a = 7.4906 (2) ÅMo Kα radiation
b = 10.2409 (2) ŵ = 0.10 mm1
c = 13.1449 (3) ÅT = 150 K
α = 104.9607 (9)°0.40 × 0.25 × 0.15 mm
β = 90.7398 (9)°
Data collection top
Kappa-CCD
diffractometer
4295 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
3541 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.985Rint = 0.061
14744 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.05Δρmax = 0.37 e Å3
4295 reflectionsΔρmin = 0.42 e Å3
258 parameters
Special details top

Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm (Fox & Holmes, 1966) which effectively corrects for absorption effects. High redundancy data were used in the scaling program hence the 'multi-scan' code word was used. No transmission coefficients are available from the program (only scale factors for each frame). The scale factors in the experimental table are calculated from the 'size' command in the SHELXL97 input file.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.05314 (14)0.09310 (11)0.28959 (8)0.0166 (3)
C120.01032 (17)0.15474 (13)0.21580 (10)0.0168 (3)
N120.06447 (15)0.07121 (11)0.12230 (8)0.0196 (3)
C130.03964 (18)0.29945 (13)0.23573 (10)0.0197 (3)
C140.10809 (18)0.37838 (13)0.33417 (10)0.0191 (3)
C150.15194 (17)0.31737 (13)0.41319 (10)0.0167 (3)
C1510.22947 (18)0.40398 (13)0.51795 (10)0.0177 (3)
O150.24614 (14)0.36651 (10)0.59714 (7)0.0254 (3)
O1510.28251 (13)0.53659 (9)0.51633 (7)0.0215 (2)
C1520.35659 (18)0.63477 (13)0.61533 (10)0.0198 (3)
C1530.3739 (2)0.77541 (14)0.59786 (11)0.0250 (3)
C160.12402 (17)0.17270 (13)0.38375 (9)0.0159 (3)
O160.17416 (13)0.11089 (9)0.45503 (7)0.0191 (2)
C1610.18903 (19)0.03127 (13)0.41787 (10)0.0207 (3)
N210.49454 (15)0.10090 (11)0.19613 (8)0.0172 (3)
C220.54100 (18)0.18089 (13)0.25499 (10)0.0182 (3)
N220.70917 (16)0.14377 (12)0.30291 (9)0.0231 (3)
C230.41777 (19)0.29902 (13)0.26682 (10)0.0205 (3)
C240.25111 (19)0.33296 (13)0.21359 (10)0.0198 (3)
C250.19928 (18)0.25400 (13)0.14977 (10)0.0171 (3)
C2510.01770 (18)0.29222 (12)0.09462 (9)0.0172 (3)
O250.04422 (13)0.23243 (9)0.03808 (7)0.0224 (2)
O2510.08049 (13)0.40748 (9)0.11369 (7)0.0206 (2)
C2520.26592 (18)0.45166 (13)0.06683 (10)0.0200 (3)
C2530.3538 (2)0.57246 (15)0.10683 (12)0.0283 (3)
C260.33032 (18)0.13618 (13)0.14601 (9)0.0164 (3)
O260.28699 (13)0.05473 (9)0.08786 (7)0.0193 (2)
C2610.40254 (19)0.08053 (13)0.10409 (11)0.0220 (3)
H12A0.08330.01900.11150.024*
H12B0.09450.10680.07190.024*
H130.01260.34110.18220.024*
H140.12640.47610.34950.023*
H15A0.47730.62000.63570.024*
H15B0.27400.62430.67220.024*
H15C0.45710.78460.54200.037*
H15D0.42230.84570.66330.037*
H15E0.25370.78800.57680.037*
H16A0.06700.08960.39800.031*
H16B0.24760.05860.47400.031*
H16C0.26260.04250.35630.031*
H22A0.78430.06980.29530.028*
H22B0.74440.19340.34200.028*
H230.45030.35270.31040.025*
H240.16720.41260.21980.024*
H25A0.33310.37570.08780.024*
H25B0.26600.47950.01110.024*
H25C0.35110.54370.18410.042*
H25D0.48060.60510.07780.042*
H25E0.28690.64720.08470.042*
H26A0.52980.07140.09630.033*
H26B0.36590.12490.05180.033*
H26C0.39030.13700.17520.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0213 (6)0.0175 (6)0.0134 (5)0.0053 (4)0.0032 (4)0.0069 (4)
C120.0177 (6)0.0198 (7)0.0148 (6)0.0053 (5)0.0035 (5)0.0067 (5)
N120.0285 (6)0.0174 (6)0.0138 (5)0.0047 (4)0.0009 (4)0.0056 (4)
C130.0256 (7)0.0208 (7)0.0158 (6)0.0062 (5)0.0009 (5)0.0094 (5)
C140.0239 (7)0.0164 (6)0.0188 (6)0.0048 (5)0.0019 (5)0.0074 (5)
C150.0193 (6)0.0171 (6)0.0150 (6)0.0042 (5)0.0019 (5)0.0060 (5)
C1510.0209 (6)0.0181 (6)0.0166 (6)0.0069 (5)0.0028 (5)0.0066 (5)
O150.0402 (6)0.0217 (5)0.0158 (5)0.0066 (4)0.0028 (4)0.0076 (4)
O1510.0326 (6)0.0166 (5)0.0142 (5)0.0027 (4)0.0009 (4)0.0039 (4)
C1520.0241 (7)0.0193 (7)0.0145 (6)0.0047 (5)0.0012 (5)0.0019 (5)
C1530.0317 (8)0.0196 (7)0.0221 (7)0.0042 (6)0.0005 (6)0.0038 (5)
C160.0182 (6)0.0197 (6)0.0133 (6)0.0063 (5)0.0045 (4)0.0083 (5)
O160.0300 (5)0.0170 (5)0.0135 (5)0.0085 (4)0.0017 (4)0.0068 (3)
C1610.0310 (7)0.0171 (7)0.0180 (7)0.0096 (5)0.0033 (5)0.0080 (5)
N210.0238 (6)0.0159 (5)0.0128 (5)0.0050 (4)0.0018 (4)0.0046 (4)
C220.0256 (7)0.0176 (6)0.0119 (6)0.0071 (5)0.0023 (5)0.0029 (5)
N220.0254 (6)0.0217 (6)0.0234 (6)0.0006 (5)0.0038 (5)0.0120 (5)
C230.0288 (7)0.0170 (7)0.0181 (7)0.0053 (5)0.0005 (5)0.0087 (5)
C240.0276 (7)0.0153 (6)0.0168 (6)0.0027 (5)0.0008 (5)0.0062 (5)
C250.0243 (7)0.0157 (6)0.0118 (6)0.0048 (5)0.0011 (5)0.0040 (5)
C2510.0258 (7)0.0147 (6)0.0119 (6)0.0050 (5)0.0029 (5)0.0041 (5)
O250.0300 (6)0.0196 (5)0.0193 (5)0.0036 (4)0.0044 (4)0.0094 (4)
O2510.0229 (5)0.0190 (5)0.0210 (5)0.0013 (4)0.0025 (4)0.0098 (4)
C2520.0224 (7)0.0210 (7)0.0172 (6)0.0039 (5)0.0023 (5)0.0064 (5)
C2530.0254 (8)0.0300 (8)0.0309 (8)0.0001 (6)0.0048 (6)0.0155 (6)
C260.0252 (7)0.0153 (6)0.0108 (6)0.0079 (5)0.0034 (5)0.0045 (5)
O260.0261 (5)0.0168 (5)0.0176 (5)0.0037 (4)0.0002 (4)0.0096 (4)
C2610.0278 (7)0.0163 (7)0.0234 (7)0.0018 (5)0.0017 (5)0.0097 (5)
Geometric parameters (Å, º) top
N11—C161.3311 (16)N21—C261.3268 (17)
N11—C121.3525 (15)N21—C221.3500 (16)
C12—N121.3449 (16)C22—N221.3406 (17)
C12—C131.4086 (18)C22—C231.4159 (19)
N12—H12A0.8800N22—H22A0.8800
N12—H12B0.8800N22—H22B0.8800
C13—C141.3681 (18)C23—C241.3607 (18)
C13—H130.9500C23—H230.9500
C14—C151.4084 (17)C24—C251.4045 (17)
C14—H140.9500C24—H240.9500
C15—C161.4034 (18)C25—C261.4113 (18)
C15—C1511.4725 (17)C25—C2511.4660 (18)
C151—O151.2115 (15)C251—O251.2162 (15)
C151—O1511.3444 (16)C251—O2511.3476 (15)
O151—C1521.4494 (15)O251—C2521.4499 (15)
C152—C1531.4976 (19)C252—C2531.5058 (18)
C152—H15A0.9900C252—H25A0.9900
C152—H15B0.9900C252—H25B0.9900
C153—H15C0.9800C253—H25C0.9800
C153—H15D0.9800C253—H25D0.9800
C153—H15E0.9800C253—H25E0.9800
C16—O161.3451 (14)C26—O261.3468 (14)
O16—C1611.4381 (15)O26—C2611.4452 (15)
C161—H16A0.9800C261—H26A0.9800
C161—H16B0.9800C261—H26B0.9800
C161—H16C0.9800C261—H26C0.9800
C16—N11—C12118.41 (11)C26—N21—C22118.90 (11)
N12—C12—N11116.84 (11)N22—C22—N21117.36 (12)
N12—C12—C13121.18 (11)N22—C22—C23120.83 (11)
N11—C12—C13121.97 (11)N21—C22—C23121.81 (12)
C12—N12—H12A120.0C22—N22—H22A120.0
C12—N12—H12B120.0C22—N22—H22B120.0
H12A—N12—H12B120.0H22A—N22—H22B120.0
C14—C13—C12118.24 (11)C24—C23—C22117.74 (11)
C14—C13—H13120.9C24—C23—H23121.1
C12—C13—H13120.9C22—C23—H23121.1
C13—C14—C15121.18 (12)C23—C24—C25122.07 (12)
C13—C14—H14119.4C23—C24—H24119.0
C15—C14—H14119.4C25—C24—H24119.0
C16—C15—C14115.92 (11)C24—C25—C26115.54 (12)
C16—C15—C151123.56 (11)C24—C25—C251120.75 (11)
C14—C15—C151120.47 (11)C26—C25—C251123.68 (11)
O15—C151—O151122.26 (12)O25—C251—O251121.59 (12)
O15—C151—C15127.08 (12)O25—C251—C25127.24 (12)
O151—C151—C15110.66 (10)O251—C251—C25111.17 (10)
C151—O151—C152116.72 (10)C251—O251—C252116.01 (9)
O151—C152—C153106.47 (10)O251—C252—C253106.66 (10)
O151—C152—H15A110.4O251—C252—H25A110.4
C153—C152—H15A110.4C253—C252—H25A110.4
O151—C152—H15B110.4O251—C252—H25B110.4
C153—C152—H15B110.4C253—C252—H25B110.4
H15A—C152—H15B108.6H25A—C252—H25B108.6
C152—C153—H15C109.5C252—C253—H25C109.5
C152—C153—H15D109.5C252—C253—H25D109.5
H15C—C153—H15D109.5H25C—C253—H25D109.5
C152—C153—H15E109.5C252—C253—H25E109.5
H15C—C153—H15E109.5H25C—C253—H25E109.5
H15D—C153—H15E109.5H25D—C253—H25E109.5
N11—C16—O16118.04 (11)N21—C26—O26117.83 (11)
N11—C16—C15124.21 (11)N21—C26—C25123.89 (11)
O16—C16—C15117.75 (11)O26—C26—C25118.28 (11)
C16—O16—C161117.70 (10)C26—O26—C261117.38 (10)
O16—C161—H16A109.5O26—C261—H26A109.5
O16—C161—H16B109.5O26—C261—H26B109.5
H16A—C161—H16B109.5H26A—C261—H26B109.5
O16—C161—H16C109.5O26—C261—H26C109.5
H16A—C161—H16C109.5H26A—C261—H26C109.5
H16B—C161—H16C109.5H26B—C261—H26C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12A···O25i0.882.233.0543 (15)156
N12—H12B···O260.882.413.1574 (14)143
N12—H12B···O250.882.303.0250 (14)139
N22—H22A···N11ii0.882.373.2167 (17)162
N22—H22B···O15iii0.882.142.9791 (16)160
Symmetry codes: (i) x, y, z; (ii) x1, y, z; (iii) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC9H12N2O3
Mr196.21
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)7.4906 (2), 10.2409 (2), 13.1449 (3)
α, β, γ (°)104.9607 (9), 90.7398 (9), 101.2452 (9)
V3)953.34 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.25 × 0.15
Data collection
DiffractometerKappa-CCD
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.960, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
14744, 4295, 3541
Rint0.061
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.142, 1.05
No. of reflections4295
No. of parameters258
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.42

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976) and PLATON (Spek, 2000), SHELXL97 and WORDPERFECT macro PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
N11—C161.3311 (16)N21—C261.3268 (17)
N11—C121.3525 (15)N21—C221.3500 (16)
C12—N121.3449 (16)C22—N221.3406 (17)
C12—C131.4086 (18)C22—C231.4159 (19)
C13—C141.3681 (18)C23—C241.3607 (18)
C14—C151.4084 (17)C24—C251.4045 (17)
C15—C161.4034 (18)C25—C261.4113 (18)
C15—C1511.4725 (17)C25—C2511.4660 (18)
C151—O151.2115 (15)C251—O251.2162 (15)
C16—N11—C12118.41 (11)C26—N21—C22118.90 (11)
N12—C12—C13121.18 (11)N21—C22—C23121.81 (12)
C14—C13—C12118.24 (11)C24—C23—C22117.74 (11)
C13—C14—C15121.18 (12)C23—C24—C25122.07 (12)
C16—C15—C14115.92 (11)C24—C25—C26115.54 (12)
N11—C16—C15124.21 (11)N21—C26—C25123.89 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12A···O25i0.882.233.0543 (15)156
N12—H12B···O260.882.413.1574 (14)143
N12—H12B···O250.882.303.0250 (14)139
N22—H22A···N11ii0.882.373.2167 (17)162
N22—H22B···O15iii0.882.142.9791 (16)160
Symmetry codes: (i) x, y, z; (ii) x1, y, z; (iii) x1, y, z1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds