Download citation
Download citation
link to html
In the title compound, [Cu(C13H9NO3)(H2O)]n, the CuII ion is in a slightly distorted square-pyramidal environment, with four short bonds in the basal plane formed by three donor atoms of the Schiff base and a water O atom. A symmetry-related neighbouring mol­ecule provides an apical carboxylate O atom at a distance of 2.551 (3) Å; this contact leads to the formation of zigzag polymeric chains. In addition, the chain fragments are connected to each other by hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101006060/gd1148sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101006060/gd1148Isup2.hkl
Contains datablock I

CCDC reference: 170161

Comment top

Metal complexes of amino-acid Schiff bases have attracted attention as models for vitamin B6 and its analogues in catalyzed non-enzymatic transamination reactions in solution (Metzler et al., 1954; Longenecker & Snell, 1957). The general model assumes transfer of charge density from the α-C region of the amino-acid residue toward the more electronegative pyridine N atom. The metal atom can act as a catalyst by promoting the formation of a Schiff base and holding the planarity of the conjugated system by means of the formation of a chelate. Moreover, the metal ion increases the withdrawal of electrons from the α-C region. Several X-ray structural studies of the copper complexes of amino-acid Schiff bases have been published so far (Ueki et al., 1967, 1968, 1969; Bkouche-Waksman et al., 1988; Warda et al., 1996; Warda, 1997). The present paper describes a new example, the title compound, (I), which illustrates a different way of generating the polymeric chain (through the other carboxylic O atom) as compared with [aqua(N-salicylideneglycinato)]copper(II) hemihydrate (Bkouche-Waksman et al., 1988), (II). \sch

The CuII ion in (I) is five-coordinated (Table 1, Fig. 1) in the form of a slightly distorted square pyramid, with basal atoms O1, O2 and N1 of the Schiff base and O3 of the water molecule. The apical O2i [symmetry code: (i) x, -y, 1/2 + z] of a neighbouring molecule completes the coordination. The τ parameter of Addison et al. (1989) indicates a 7.5% trigonal bipyramidal distortion. The basal atoms deviate by up to 0.039 (4) Å from their least-squares plane and the CuII ion is likewise displaced by 0.099 (1) Å towards the apical donor.

The apical Cu—O2i bond [2.551 (3) Å] is long compared with the corresponding bond in (II) [2.308 (1) Å] and links the molecules to form polymeric chains propagated along the c axis, as indicated in Fig. 2. In these chains, Cu···Cu distances of 3.916 (1) and 5.940 (1) Å are found between nearest neighbour (c-glide related) and cell-translated CuII ions, respectively. The Cu—O1 and Cu—O2 bond lengths [1.909 (4) and 1.951 (3) Å, respectively] are consistent with more negative charge on the phenolic atom O1 than on the carboxylic atom O2, as noted by Capasso et al. (1974) and others.

The bond distances at C12, the α-C implicated in the catalytic activity of such complexes (see e.g. Bkouche-Waksman et al., 1988), i.e. Cα—Cβ and Cα—N, are 1.505 (7) and 1.460 (6) Å, respectively, in the present study, compared with 1.526 (1) and 1.455 (1) Å in (II). In the carboxylate group comprising atoms C13, O2 and O4, only O2 coordinates to the Cu, while O4 participates in hydrogen-bond formation (see below and Table 2). The resulting difference in C—O distances of 0.044 (6) Å is considerably larger than in (II), α-glycine (Legros & Kvick, 1980) or χ-glycine (Kvick et al., 1980) [0.022 (1), 0.002 (1) and 0.008 (1) Å, respectively].

As expected, the Cu coordination renders the conjugated system comprising atoms C12, N1, C11, C1 and C2 planar (within 2.5σ). The six-membered chelate ring Cu1/O1/C2/C1/C11/N1 is, however, only approximately planar (within 7σ). The naphthalene rings are planar within the 2.5σ range, with an angle of 1.4 (3)° between them. The chelate ring and the condensed naphthalene ring make an angle of 4.9 (2)°. The bonds and angles within the naphthalene moiety are in the ranges 1.348 (8)–1.452 (7) Å and 117.5 (5)–123.1 (5)°, respectively.

The formation of the chains and the packing of the molecules results in close intermolecular O4···C13ii and C5···C11iii contacts [3.029 (6) and 3.295 (8) Å, respectively; symmetry codes: (ii) x, -y, z - 1/2; (iii) x, y, 1 + z]. Both H atoms of the water molecule participate in hydrogen-bond formation (Table 2). The bond to O1 occurs within the polymeric chains (Fig. 1), but that to O4 occurs between chains, linking them into sheets parallel to [010].

Related literature top

For related literature, see: Addison et al. (1989); Bkouche-Waksman, Barbe & Kvick (1988); Capasso et al. (1974); Kvick et al. (1980); Legros & Kvick (1980); Longenecker & Snell (1957); Metzler et al. (1954); Ueki et al. (1967, 1968, 1969); Warda (1997); Warda et al. (1996).

Experimental top

An ethanol solution (50 ml) of glycine (1 mmol, 0.07 g) and 2-hydroxy-1-naphthaldehyde (1 mmol, 0.17 g) was kept at 343 K in a reflux condenser for 30 min. An ethanol solution (50 ml) of CuCl2·2H2O (1 mmol, 0.17 g) was then added, and the temperature of the solution was readjusted to 343 K and kept constant for the next 30 min. The resulting dark-green solution was filtered and allowed to evaporate slowly. After two weeks, green needle-shaped crystals were obtained. Analysis, calculated for C13H9NO3Cu·H2O: C 46.6, H 3.6, N 4.5%; found: C 46.7, H 3.6, N 4.6%.

Refinement top

All H atoms were included at calculated positions and refined using a riding model, with isotropic displacement parameters equal to 1.5Ueq of the parent C or O atom, and with C—H = 0.93–0.97 Å and O—H = 0.96 Å.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XDISK in SHELXTL/PC (Sheldrick, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The polymeric association of (I).
catena-Poly[aqua copper(II)-µ-(1-oxido-N-naphthylideneglycinato-O,N,O':O')] top
Crystal data top
C13H11CuNO4F(000) = 628
Mr = 308.78Dx = 1.751 Mg m3
Dm = 1.70 (2) Mg m3
Dm measured by measured by flotation in CH3I/CCl4
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 15 reflections
a = 7.043 (1) Åθ = 10–20°
b = 28.741 (6) ŵ = 1.87 mm1
c = 5.940 (1) ÅT = 293 K
β = 103.06 (3)°Needle, dark green
V = 1171.3 (4) Å30.4 × 0.1 × 0.1 mm
Z = 4
Data collection top
Siemens P3
diffractometer
1740 reflections with I > 2σ(I)
Radiation source: FK60-10 Siemens Mo tubeRint = 0.034
Graphite monochromatorθmax = 30.1°, θmin = 2.8°
ω/2θ scansh = 99
Absorption correction: ψ-scan
(North et al., 1968)
k = 4040
Tmin = 0.723, Tmax = 0.856l = 88
3771 measured reflections2 standard reflections every 100 reflections
1885 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.099Calculated w = 1/[σ2(Fo2) + (0.05P)2 + 1.9P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1885 reflectionsΔρmax = 0.45 e Å3
172 parametersΔρmin = 1.13 e Å3
2 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
C13H11CuNO4V = 1171.3 (4) Å3
Mr = 308.78Z = 4
Monoclinic, CcMo Kα radiation
a = 7.043 (1) ŵ = 1.87 mm1
b = 28.741 (6) ÅT = 293 K
c = 5.940 (1) Å0.4 × 0.1 × 0.1 mm
β = 103.06 (3)°
Data collection top
Siemens P3
diffractometer
1740 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.034
Tmin = 0.723, Tmax = 0.8562 standard reflections every 100 reflections
3771 measured reflections intensity decay: none
1885 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.099Δρmax = 0.45 e Å3
S = 1.06Δρmin = 1.13 e Å3
1885 reflectionsAbsolute structure: Flack (1983)
172 parametersAbsolute structure parameter: 0.01 (2)
2 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.78545 (10)0.04439 (2)0.16419 (11)0.0312 (1)
O10.6529 (4)0.07120 (12)0.3798 (7)0.0356 (10)
O20.9124 (4)0.02549 (12)0.0812 (5)0.0318 (8)
O30.5508 (4)0.00809 (12)0.0488 (6)0.0342 (9)
O41.1968 (5)0.03206 (15)0.1836 (7)0.0431 (10)
N11.0062 (5)0.08349 (13)0.2684 (7)0.0306 (10)
C10.8936 (7)0.12650 (15)0.5623 (9)0.0321 (11)
C20.7151 (6)0.10279 (14)0.5372 (8)0.0309 (11)
C30.5913 (7)0.11218 (17)0.6897 (10)0.0387 (12)
C40.6414 (8)0.14404 (19)0.8592 (10)0.0429 (17)
C50.8680 (10)0.20232 (19)1.0722 (11)0.0519 (19)
C61.0379 (12)0.2264 (2)1.1062 (12)0.061 (2)
C71.1644 (11)0.2190 (2)0.9593 (12)0.0589 (19)
C81.1204 (9)0.18765 (19)0.7809 (11)0.0480 (17)
C90.9443 (7)0.16155 (15)0.7420 (9)0.0371 (11)
C100.8171 (8)0.16992 (16)0.8902 (9)0.0391 (14)
C111.0290 (6)0.11513 (15)0.4238 (9)0.0344 (11)
C121.1575 (6)0.07450 (17)0.1417 (9)0.0343 (11)
C131.0858 (6)0.04143 (15)0.0556 (8)0.0315 (11)
H2A0.437840.023500.041700.0513*
H2B0.590540.014800.049700.0513*
H30.474170.096170.672530.0579*
H40.558710.149210.958560.0643*
H50.784010.207271.170250.0782*
H61.069970.247671.226780.0920*
H71.280420.235660.982760.0881*
H81.206420.183410.684670.0718*
H111.143820.132280.448930.0513*
H12A1.271010.061330.245790.0517*
H12B1.196160.103580.082230.0517*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0227 (2)0.0399 (2)0.0315 (2)0.0032 (3)0.0073 (2)0.0058 (3)
O10.0256 (14)0.0389 (16)0.0430 (19)0.0040 (12)0.0095 (13)0.0084 (14)
O20.0240 (13)0.0460 (17)0.0248 (13)0.0009 (12)0.0045 (11)0.0037 (13)
O30.0217 (12)0.0434 (17)0.0352 (16)0.0005 (11)0.0019 (12)0.0094 (14)
O40.0267 (14)0.066 (2)0.0378 (18)0.0039 (15)0.0097 (13)0.0065 (17)
N10.0244 (15)0.0334 (17)0.0332 (18)0.0020 (13)0.0047 (14)0.0007 (15)
C10.033 (2)0.0291 (18)0.034 (2)0.0020 (16)0.0074 (19)0.0023 (18)
C20.0309 (19)0.0306 (19)0.0306 (19)0.0036 (15)0.0056 (16)0.0005 (16)
C30.037 (2)0.040 (2)0.041 (2)0.0041 (19)0.013 (2)0.007 (2)
C40.044 (3)0.047 (3)0.038 (3)0.010 (2)0.010 (2)0.003 (2)
C50.071 (4)0.040 (3)0.043 (3)0.004 (3)0.009 (3)0.008 (2)
C60.090 (5)0.045 (3)0.047 (3)0.010 (3)0.012 (3)0.014 (3)
C70.070 (4)0.047 (3)0.054 (3)0.021 (3)0.002 (3)0.008 (3)
C80.054 (3)0.043 (3)0.046 (3)0.011 (2)0.009 (2)0.005 (2)
C90.042 (2)0.0288 (19)0.038 (2)0.0022 (17)0.0041 (19)0.0026 (18)
C100.051 (3)0.031 (2)0.034 (2)0.0069 (18)0.007 (2)0.0002 (18)
C110.0276 (18)0.0307 (19)0.043 (2)0.0022 (15)0.0040 (17)0.0010 (18)
C120.0244 (17)0.042 (2)0.037 (2)0.0000 (15)0.0080 (16)0.0039 (18)
C130.0229 (17)0.039 (2)0.031 (2)0.0056 (15)0.0026 (15)0.0032 (17)
Geometric parameters (Å, º) top
Cu1—O11.909 (4)C4—C101.420 (8)
Cu1—O21.951 (3)C5—C101.410 (8)
Cu1—O31.944 (3)C5—C61.357 (10)
Cu1—N11.905 (4)C6—C71.397 (11)
Cu1—O2i2.551 (3)C7—C81.372 (9)
O1—C21.306 (6)C8—C91.423 (8)
O2—C131.281 (5)C9—C101.411 (8)
O4—C131.237 (6)C12—C131.505 (7)
O3—H2A0.9617C3—H30.9299
O3—H2B0.9631C4—H40.9300
N1—C121.460 (6)C5—H50.9301
N1—C111.280 (6)C6—H60.9299
C1—C91.452 (7)C7—H70.9300
C1—C111.431 (7)C8—H80.9301
C1—C21.408 (7)C11—H110.9299
C2—C31.418 (7)C12—H12A0.9702
C3—C41.348 (8)C12—H12B0.9700
Cu1···O43.936 (4)C10···C11vi3.552 (7)
Cu1···C2ii4.012 (5)C11···C5ii3.295 (8)
Cu1···C3ii3.445 (6)C11···C10ii3.552 (7)
Cu1···C4ii3.418 (6)C11···O4vi3.360 (6)
Cu1···C10ii3.985 (5)C12···O4i3.225 (7)
Cu1···O3iii3.955 (4)C12···C9ii3.541 (7)
Cu1···O3i3.454 (3)C13···O3v3.333 (5)
Cu1···O1iii3.748 (4)C13···C2ii3.595 (6)
Cu1···O4i3.585 (4)C13···C1ii3.402 (7)
Cu1···H3ii3.5576C13···O4i3.029 (6)
Cu1···H4ii3.4981C2···H2Bi2.6883
Cu1···H2Bi2.5594C5···H6vii2.9556
O1···Cu1i3.748 (4)C7···H5viii2.9668
O1···O3i2.654 (5)C8···H112.5681
O2···C2ii3.253 (5)C8···H12Bvi2.9825
O2···O4i3.192 (5)C9···H12Bvi2.8960
O3···C13iv3.333 (5)C10···H6vii2.9695
O3···O1iii2.654 (5)C11···H82.6341
O3···O4iv2.653 (5)C12···H2Av2.8646
O3···C2iii3.396 (5)C13···H2Av2.5154
O3···Cu1iii3.454 (3)H2A···O4iv1.7339
O3···Cu1i3.955 (4)H2A···C12iv2.8646
O3···O3iii3.006 (5)H2A···C13iv2.5154
O3···O3i3.006 (5)H2A···H12Aiv2.5270
O4···O2iii3.192 (5)H2A···O3iii2.8720
O4···C11ii3.360 (6)H2B···Cu1iii2.5594
O4···O3v2.653 (5)H2B···O1iii1.7547
O4···C12iii3.225 (7)H2B···O3iii2.3456
O4···Cu13.936 (4)H2B···C2iii2.6883
O4···Cu1iii3.585 (4)H3···Cu1vi3.5576
O4···C13iii3.029 (6)H4···Cu1vi3.4981
O1···H2Bi1.7547H4···H52.4458
O1···H12Aiv2.6421H5···H42.4458
O3···H2Bi2.3456H5···C7ix2.9668
O3···H2Ai2.8720H5···H7ix2.4816
O4···H2Av1.7339H6···C5x2.9556
O4···H12Aiii2.7844H6···C10x2.9695
N1···C10ii3.412 (6)H7···H5viii2.4816
C1···C13vi3.402 (7)H8···C112.6341
C2···Cu1vi4.012 (5)H8···H112.0089
C2···O2vi3.253 (5)H11···C82.5681
C2···C13vi3.595 (6)H11···H82.0089
C2···O3i3.396 (5)H11···H12B2.4339
C3···Cu1vi3.445 (6)H12A···O1v2.6421
C4···Cu1vi3.418 (6)H12A···H2Av2.5270
C5···C11vi3.295 (8)H12A···O4i2.7844
C9···C12vi3.541 (7)H12B···C8ii2.9825
C10···N1vi3.412 (6)H12B···C9ii2.8960
C10···Cu1vi3.985 (5)H12B···H112.4339
O1—Cu1—O2171.62 (15)C7—C8—C9120.5 (6)
O1—Cu1—O386.99 (14)C1—C9—C8123.1 (5)
O1—Cu1—N191.77 (16)C1—C9—C10119.4 (4)
O1—Cu1—O2i94.53 (13)C8—C9—C10117.5 (5)
O2—Cu1—O394.80 (14)C4—C10—C5120.6 (5)
O2—Cu1—N185.92 (15)C4—C10—C9119.2 (5)
O2—Cu1—O2i93.74 (12)C5—C10—C9120.2 (5)
O3—Cu1—N1176.23 (16)N1—C11—C1125.8 (4)
O2i—Cu1—O386.71 (13)N1—C12—C13111.0 (4)
O2i—Cu1—N196.94 (14)O2—C13—O4124.6 (4)
Cu1—O1—C2128.7 (3)O2—C13—C12117.5 (4)
Cu1—O2—C13113.4 (3)O4—C13—C12117.9 (4)
Cu1—O2—Cu1iii120.24 (14)C2—C3—H3119.61
Cu1iii—O2—C13123.3 (3)C4—C3—H3119.62
H2A—O3—H2B107.00C3—C4—H4119.14
Cu1—O3—H2A118.69C10—C4—H4119.11
Cu1—O3—H2B103.90C6—C5—H5119.53
Cu1—N1—C11127.9 (3)C10—C5—H5119.57
Cu1—N1—C12111.4 (3)C5—C6—H6120.16
C11—N1—C12120.7 (4)C7—C6—H6120.20
C2—C1—C9118.6 (4)C6—C7—H7119.39
C2—C1—C11121.6 (4)C8—C7—H7119.43
C9—C1—C11119.7 (4)C7—C8—H8119.73
O1—C2—C3115.8 (4)C9—C8—H8119.74
O1—C2—C1124.0 (4)N1—C11—H11117.08
C1—C2—C3120.2 (4)C1—C11—H11117.07
C2—C3—C4120.8 (5)N1—C12—H12A109.44
C3—C4—C10121.8 (5)N1—C12—H12B109.45
C6—C5—C10120.9 (6)C13—C12—H12A109.46
C5—C6—C7119.6 (6)C13—C12—H12B109.45
C6—C7—C8121.2 (7)H12A—C12—H12B108.03
O3—Cu1—O1—C2179.3 (4)Cu1—N1—C12—C137.4 (5)
N1—Cu1—O1—C22.9 (4)C11—N1—C12—C13171.1 (4)
O2i—Cu1—O1—C294.2 (4)C9—C1—C11—N1176.4 (5)
O3—Cu1—O2—C13176.3 (3)C9—C1—C2—C31.9 (7)
O3—Cu1—O2—Cu1iii15.42 (18)C11—C1—C2—O14.4 (7)
N1—Cu1—O2—C137.4 (3)C11—C1—C2—C3174.8 (5)
N1—Cu1—O2—Cu1iii168.29 (19)C9—C1—C2—O1178.9 (4)
O2i—Cu1—O2—C1389.3 (3)C2—C1—C11—N10.3 (8)
O2i—Cu1—O2—Cu1iii71.59 (16)C2—C1—C9—C101.9 (7)
O1—Cu1—N1—C111.6 (4)C11—C1—C9—C83.6 (7)
O1—Cu1—N1—C12180.0 (3)C2—C1—C9—C8179.6 (5)
O2—Cu1—N1—C11170.3 (4)C11—C1—C9—C10174.9 (4)
O2—Cu1—N1—C128.0 (3)C1—C2—C3—C40.5 (8)
O2i—Cu1—N1—C1196.4 (4)O1—C2—C3—C4179.8 (5)
O2i—Cu1—N1—C1285.2 (3)C2—C3—C4—C101.0 (8)
O1—Cu1—O2i—Cu1i20.93 (19)C3—C4—C10—C5178.6 (5)
O1—Cu1—O2i—C13i138.0 (3)C3—C4—C10—C91.0 (8)
O2—Cu1—O2i—Cu1i160.40 (17)C10—C5—C6—C70.1 (9)
O2—Cu1—O2i—C13i40.7 (3)C6—C5—C10—C90.9 (8)
O3—Cu1—O2i—Cu1i65.79 (18)C6—C5—C10—C4178.5 (6)
O3—Cu1—O2i—C13i135.3 (3)C5—C6—C7—C80.2 (10)
N1—Cu1—O2i—Cu1i113.26 (19)C6—C7—C8—C90.4 (9)
N1—Cu1—O2i—C13i45.6 (3)C7—C8—C9—C1177.3 (5)
Cu1—O1—C2—C16.0 (7)C7—C8—C9—C101.2 (8)
Cu1—O1—C2—C3173.2 (3)C1—C9—C10—C40.4 (7)
Cu1—O2—C13—O4176.2 (4)C8—C9—C10—C51.5 (7)
Cu1iii—O2—C13—C12165.1 (3)C8—C9—C10—C4179.0 (5)
Cu1—O2—C13—C124.9 (5)C1—C9—C10—C5177.1 (5)
Cu1iii—O2—C13—O416.0 (6)N1—C12—C13—O4177.3 (4)
Cu1—N1—C11—C13.1 (7)N1—C12—C13—O21.6 (6)
C12—N1—C11—C1178.6 (4)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z1; (iii) x, y, z1/2; (iv) x1, y, z; (v) x+1, y, z; (vi) x, y, z+1; (vii) x1/2, y+1/2, z1/2; (viii) x+1/2, y+1/2, z1/2; (ix) x1/2, y+1/2, z+1/2; (x) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H2A···O4iv0.96171.73392.653 (5)159
O3—H2B···O1iii0.96311.75472.654 (5)154
O3—H2B···O3iii0.96312.34563.006 (5)125
Symmetry codes: (iii) x, y, z1/2; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC13H11CuNO4
Mr308.78
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)7.043 (1), 28.741 (6), 5.940 (1)
β (°) 103.06 (3)
V3)1171.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.87
Crystal size (mm)0.4 × 0.1 × 0.1
Data collection
DiffractometerSiemens P3
diffractometer
Absorption correctionψ-scan
(North et al., 1968)
Tmin, Tmax0.723, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
3771, 1885, 1740
Rint0.034
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.099, 1.06
No. of reflections1885
No. of parameters172
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 1.13
Absolute structureFlack (1983)
Absolute structure parameter0.01 (2)

Computer programs: XSCANS (Siemens, 1996), XSCANS, XDISK in SHELXTL/PC (Sheldrick, 1990), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1990), SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—O11.909 (4)O1—C21.306 (6)
Cu1—O21.951 (3)O2—C131.281 (5)
Cu1—O31.944 (3)O4—C131.237 (6)
Cu1—N11.905 (4)N1—C121.460 (6)
Cu1—O2i2.551 (3)N1—C111.280 (6)
O1—Cu1—O2171.62 (15)Cu1—O2—Cu1ii120.24 (14)
O1—Cu1—O386.99 (14)Cu1ii—O2—C13123.3 (3)
O1—Cu1—N191.77 (16)Cu1—N1—C11127.9 (3)
O1—Cu1—O2i94.53 (13)Cu1—N1—C12111.4 (3)
O2—Cu1—O394.80 (14)C11—N1—C12120.7 (4)
O2—Cu1—N185.92 (15)O1—C2—C3115.8 (4)
O2—Cu1—O2i93.74 (12)O1—C2—C1124.0 (4)
O3—Cu1—N1176.23 (16)N1—C11—C1125.8 (4)
O2i—Cu1—O386.71 (13)N1—C12—C13111.0 (4)
O2i—Cu1—N196.94 (14)O2—C13—O4124.6 (4)
Cu1—O1—C2128.7 (3)O2—C13—C12117.5 (4)
Cu1—O2—C13113.4 (3)O4—C13—C12117.9 (4)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H2A···O4iii0.96171.73392.653 (5)159
O3—H2B···O1ii0.96311.75472.654 (5)154
O3—H2B···O3ii0.96312.34563.006 (5)125
Symmetry codes: (ii) x, y, z1/2; (iii) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds