Download citation
Download citation
link to html
The title compounds, 4,4′-(ethyne-1,2-diyl)­dipyridinium bis(squarate), C12H10N22+·2C4HO4, and 4,4′-(ethene-1,2-diyl)­dipyridinium bis­(squarate), C12H12N22+·2C4HO4, are isomorphous and crystallize in space group P\overline 1. The cocrystals contain linear hydrogen-bonded molecular tape structures along the [120] direction. The squarate monoanions form a ten-membered dimer linked by two intermolecular O—H...O hydrogen bonds. Each component mol­ecule forms a segregated stack along the c axis. The bond lengths of the squarate monoanion indicate delocalization of the enolate anion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101003833/gd1134sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101003833/gd1134Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101003833/gd1134IIsup3.hkl
Contains datablock II

CCDC references: 164672; 164673

Comment top

Squaric acid (3,4-dihydroxy-3-cyclobutene-1,2-dione) is a very strong dibasic acid and has been studied for potential application to xerographic photoreceptors, organic solar cells and optical recording (Seitz & Imming, 1992; Liebeskind et al., 1993). From the viewpoint of crystal engineering, squaric acid is also a useful tool for constructing crystalline architectures, because of its rigid and flat four-membered ring framework, and its proton donating and accepting capabilities for hydrogen bonding (Braga et al., 1999; Reetz et al., 1994). We have recently shown that the simple combination of chloranilic acid and dipyridyl-type ligands can create a variety of supramolecular architectures involving an infinite one-dimensional molecular tape structure (Zaman et al., 1999, 2000). In the course of our crystal-engineering studies on the combination of squaric acid and dipyridyl-type ligands, we have obtained co-crystals of the title compounds, of 4,4'-dipyridylacetylene-squaric acid (1:2), (I) and 1,2-bis(4-pyridyl)ethylene-squaric acid (1:2), (II), where a rare ten-membered hydrogen-bonded dimer of a squarate monoanion is formed. We report here the structures of the resulting hydrogen-bonded molecular tapes. \sch

Co-crystals (I) and (II) are isomorphous and crystallize in space group P1, with one molecule of squaric acid and half a molecule of the dipyridyl-type ligand in the asymmetric unit. The molecular structures of (I) and (II) are shown in Figs. 1 and 2, respectively, and selected geometric parameters are listed in Tables 1 and 2, respectively. The molar ratio of the dipyridinium dication and the monoanion of squaric acid is 1:2 in both (I) and (II). The bond lengths in the squarate monoanion display delocalization of the enolate anion. Thus, average bond lengths in the four-membered squarate frameworks are 1.421 (5) (C1—C4, C3—C4) and 1.494 (5) Å (C1—C2, C2—C3) for (I), and 1.429 (2) (C1—C2, C1—C4) and 1.495 (2) Å (C2—C3, C3—C4) for (II). The bond lengths of O1—C1 [1.255 (4) Å] and O3—C3 [1.240 (4) Å] in (I) and O2—C2 [1.245 (2) Å] and O4—C4 [1.244 (2) Å] in (II) are intermediate between a double and a single bond. Such bond length distribution has been found in cobalt and nickel squarate octahydrates (Brach et al., 1987) and L-argininium hydrogen squarate (Angelova et al., 1996). The dipyridinium dications of (I) and (II) lie in a plane, with maximum deviations of 0.003 (3) Å for (I) and 0.004 (1) Å for (II). The bond lengths in the dipyridinium moieties are similar to the literature values (Allen et al., 1987).

Figs. 3 and 4 show the packing diagrams of (I) and (II), respectively, viewed along the c axis. The squarate monoanions and the dipyridinium dications form an infinite one-dimensional molecular tape structure along the [120] direction and are connected via an intermolecular N—H···O hydrogen bond [N1—H1···O1 2.636 (4) Å for (I) and N1—H1···O2 2.655 (2) Å for (II); see Tables 3 and 4]. The conformation of these molecular tapes is flat and almost linear. The squarate monoanions and the pyridine rings of the dipyridinium dications are almost coplanar [the dihedral angles between the two ring planes are 8.9 (2)° for (I) and 10.2 (1)° for (II)].

The most remarkable feature of the molecular tapes is the existence of a ten-membered hydrogen-bonded dimer of the squarate monoanions within the tapes. The two squarate monoanions are linked by two intermolecular O—H···O hydrogen bonds [O4—H4···O3ii 2.511 (3) Å for (I) and O1—H1A···O4iv 2.503 (2) Å for (II); symmetry codes: (ii) 2 - x, -y, 1 - z; (iv) -x, 1 - y, -z] and are coplanar. The dimensions of the squarate dimer fit those of the dipyridyl-type ligands, as shown in Figs. 3 and 4. The squarate monoanion dimer is rare, and we have found only eight examples in the Cambridge Structural Database (version?) (Angelova et al., 1996; Bernardinelli et al., 1989; Bock et al., 1998; Braga et al., 1999; Braga & Grepioni, 1998; Kanters et al., 1991; Karle et al., 1996; MacLean et al., 1999). In all other squarate structures, the squarate monoanions are linked by a single intermolecular O—H···O hydrogen bond and no ten-membered rings are formed.

Each component molecule forms a segregated stack along the c axis. The interstack distances of the squarate plane and the dipyridinium plane for both (I) and (II) are 3.21 (1) and 3.40 (1) Å, respectively. The flat conformation of the molecular tapes is favourable for close packing of the tapes and of the segregated stack.

In conclusion, the supramolecular synthon (Desiraju, 1995) formed by a combination of squaric acid and dipyridyl-type ligands has been successfully used in the construction of linear hydrogen-bonded molecular tapes. The strong resemblance between the crystal structures of (I) and (II) suggests the robustness and reproducibility of this supramolecular synthon. Studies of the characterization of the physical properties of the co-crystals (I) and (II), and of the construction of new molecular architectures using squaric acid and other dipyridyl-type ligands, are now in progress.

Related literature top

For related literature, see: Allen et al. (1987); Angelova et al. (1996); Bernardinelli et al. (1989); Bock et al. (1998); Brach et al. (1987); Braga & Grepioni (1998); Braga et al. (1999); Desiraju (1995); Kanters et al. (1991); Karle et al. (1996); Liebeskind et al. (1993); MacLean et al. (1999); Reetz et al. (1994); Seitz & Imming (1992); Tanner & Ludi (1980); Zaman et al. (1999, 2000).

Experimental top

4,4'-Dipyridylacetylene was prepared according to the literature method of Tanner & Ludi (1980). Squaric acid and 1,2-bis(4-pyridyl)ethylene were commercially available and were purified by standard methods. Slow evaporation of a solution of squaric acid (0.05 mmol) and the dipyridyl-type ligand (0.05 mmol) in methanol-water (1:1, 20 ml) gave crystals of (I) or (II) suitable for X-ray analysis.

Refinement top

All H atoms in both (I) and (II) were located in the Fourier map and refined isotropically.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988) for (I); CAD-4 EXPRESS (Enraf-Nonius, 1992) for (II). Cell refinement: MSC/AFC Diffractometer Control Software for (I); CAD-4 EXPRESS for (II). For both compounds, data reduction: TEXSAN (Molecular Structure Corporation, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii [symmetry code: (i) 1 - x, 2 - y, 3 - z].
[Figure 2] Fig. 2. The molecular structure of (II) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii [symmetry code: (iii) 1 - x, -1 - y, -2 - z].
[Figure 3] Fig. 3. The packing diagram of (I) viewed along the c axis. Dotted lines show the intermolecular hydrogen bonds.
[Figure 4] Fig. 4. The packing diagram of (II) viewed along the c axis. Dotted lines show the intermolecular hydrogen bonds.
(I) bis(4-pyridinium)acetylene bis(hydrogen squarate) top
Crystal data top
C12H10N22+·2C4HO4Z = 1
Mr = 408.32F(000) = 210
Triclinic, P1Dx = 1.555 Mg m3
a = 10.221 (2) ÅMo Kα radiation, λ = 0.71069 Å
b = 12.325 (3) ÅCell parameters from 25 reflections
c = 3.7951 (9) Åθ = 13.1–14.8°
α = 97.24 (2)°µ = 0.12 mm1
β = 98.49 (2)°T = 296 K
γ = 67.649 (18)°Prismatic, gold
V = 436.06 (18) Å30.22 × 0.15 × 0.05 mm
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.048
Radiation source: Rigaku rotating anodeθmax = 27.5°, θmin = 2.2°
Graphite monochromatorh = 013
ω/2θ scansk = 1415
2101 measured reflectionsl = 44
1992 independent reflections3 standard reflections every 150 reflections
788 reflections with I > 2σ(I) intensity decay: 0.8%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: difference Fourier map
wR(F2) = 0.141All H-atom parameters refined
S = 0.92 w = 1/[σ2(Fo2) + (0.0564P)2]
where P = (Fo2 + 2Fc2)/3
1992 reflections(Δ/σ)max = 0.001
160 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C12H10N22+·2C4HO4γ = 67.649 (18)°
Mr = 408.32V = 436.06 (18) Å3
Triclinic, P1Z = 1
a = 10.221 (2) ÅMo Kα radiation
b = 12.325 (3) ŵ = 0.12 mm1
c = 3.7951 (9) ÅT = 296 K
α = 97.24 (2)°0.22 × 0.15 × 0.05 mm
β = 98.49 (2)°
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.048
2101 measured reflections3 standard reflections every 150 reflections
1992 independent reflections intensity decay: 0.8%
788 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.141All H-atom parameters refined
S = 0.92Δρmax = 0.24 e Å3
1992 reflectionsΔρmin = 0.26 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

6.4156 (0.0071) x + 5.4512 (0.0088) y - 3.2095 (0.0020) z = 4.6544 (0.0078)

* -0.0131 (0.0021) O1 * 0.0128 (0.0022) O2 * -0.0108 (0.0020) O3 * 0.0074 (0.0021) O4 * -0.0004 (0.0029) C1 * -0.0019 (0.0031) C2 * -0.0043 (0.0030) C3 * 0.0104 (0.0030) C4

Rms deviation of fitted atoms = 0.0089

5.1742 (0.0132) x + 5.6885 (0.0161) y - 3.4055 (0.0028) z = 3.1735 (0.0189)

Angle to previous plane (with approximate e.s.d.) = 8.89 (0.15)

* 0.0008 (0.0025) N1 * 0.0000 (0.0025) C5 * 0.0010 (0.0025) C6 * -0.0014 (0.0026) C7 * 0.0003 (0.0025) C8 * -0.0006 (0.0026) C9

Rms deviation of fitted atoms = 0.0008

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9256 (2)0.38326 (19)1.0550 (6)0.0452 (7)
O20.6546 (3)0.3847 (2)0.5077 (7)0.0551 (8)
O30.8044 (3)0.10255 (19)0.3353 (7)0.0478 (7)
O41.0818 (3)0.1085 (2)0.8942 (7)0.0496 (7)
N10.7316 (3)0.5944 (2)1.1723 (8)0.0372 (7)
C10.8936 (3)0.3058 (3)0.8556 (9)0.0329 (8)
C20.7664 (4)0.3084 (3)0.6062 (9)0.0351 (8)
C30.8394 (4)0.1777 (3)0.5309 (9)0.0327 (8)
C40.9582 (3)0.1831 (3)0.7728 (9)0.0336 (8)
C50.5947 (4)0.8266 (3)1.3525 (8)0.0332 (8)
C60.7366 (4)0.7706 (3)1.4741 (9)0.0380 (9)
C70.8026 (4)0.6535 (3)1.3795 (10)0.0394 (9)
C80.5953 (4)0.6450 (3)1.0499 (10)0.0375 (9)
C90.5222 (4)0.7626 (3)1.1356 (9)0.0365 (9)
C100.5250 (4)0.9495 (3)1.4534 (10)0.0426 (9)
H10.793 (4)0.516 (3)1.091 (10)0.060 (12)*
H41.106 (5)0.025 (4)0.763 (12)0.095 (16)*
H60.786 (4)0.813 (3)1.626 (10)0.052 (11)*
H70.895 (4)0.613 (3)1.459 (9)0.046 (10)*
H80.556 (4)0.598 (3)0.903 (10)0.058 (12)*
H90.429 (4)0.796 (3)1.042 (8)0.033 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0378 (14)0.0289 (12)0.0567 (16)0.0074 (11)0.0074 (12)0.0100 (11)
O20.0385 (15)0.0344 (14)0.0732 (19)0.0013 (12)0.0146 (13)0.0014 (13)
O30.0415 (15)0.0302 (13)0.0610 (16)0.0109 (11)0.0091 (13)0.0104 (12)
O40.0408 (15)0.0273 (13)0.0613 (17)0.0032 (11)0.0178 (12)0.0086 (11)
N10.0377 (17)0.0283 (16)0.0403 (17)0.0100 (13)0.0000 (14)0.0041 (13)
C10.0291 (18)0.0252 (17)0.039 (2)0.0063 (14)0.0002 (16)0.0007 (14)
C20.0331 (19)0.0326 (18)0.0366 (19)0.0112 (15)0.0030 (16)0.0048 (15)
C30.0365 (18)0.0274 (17)0.0327 (18)0.0124 (14)0.0003 (15)0.0010 (14)
C40.0328 (19)0.0265 (17)0.0365 (19)0.0096 (14)0.0019 (15)0.0048 (14)
C50.040 (2)0.0249 (17)0.0331 (19)0.0101 (15)0.0097 (16)0.0029 (14)
C60.037 (2)0.039 (2)0.039 (2)0.0183 (18)0.0007 (17)0.0038 (16)
C70.024 (2)0.038 (2)0.045 (2)0.0036 (15)0.0056 (16)0.0010 (16)
C80.036 (2)0.0330 (18)0.041 (2)0.0151 (16)0.0041 (17)0.0052 (16)
C90.032 (2)0.0357 (19)0.038 (2)0.0111 (16)0.0024 (16)0.0014 (16)
C100.052 (2)0.0318 (18)0.041 (2)0.0119 (17)0.0043 (18)0.0035 (16)
Geometric parameters (Å, º) top
O1—C11.255 (4)C3—C41.427 (5)
O2—C21.215 (4)C5—C61.383 (4)
O3—C31.240 (4)C5—C91.397 (4)
O4—C41.306 (4)C5—C101.436 (5)
O4—H41.04 (5)C6—C71.367 (5)
N1—C71.328 (4)C6—H60.95 (4)
N1—C81.329 (4)C7—H70.91 (3)
N1—H10.98 (4)C8—C91.377 (5)
C1—C41.415 (4)C8—H80.92 (4)
C1—C21.483 (5)C9—H90.92 (3)
C2—C31.505 (5)C10—C10i1.181 (6)
C4—O4—H4113 (3)C6—C5—C9119.4 (3)
C7—N1—C8122.3 (3)C6—C5—C10119.2 (3)
C7—N1—H1113 (2)C9—C5—C10121.4 (3)
C8—N1—H1124 (2)C7—C6—C5119.1 (3)
O1—C1—C4136.6 (3)C7—C6—H6121 (2)
O1—C1—C2133.3 (3)C5—C6—H6120 (2)
C4—C1—C290.0 (2)N1—C7—C6120.4 (3)
O2—C2—C1135.0 (3)N1—C7—H7118 (2)
O2—C2—C3137.3 (3)C6—C7—H7122 (2)
C1—C2—C387.7 (3)N1—C8—C9120.3 (3)
O3—C3—C4138.2 (3)N1—C8—H8116 (2)
O3—C3—C2133.1 (3)C9—C8—H8123 (2)
C4—C3—C288.7 (2)C8—C9—C5118.4 (3)
O4—C4—C1130.0 (3)C8—C9—H9118.7 (19)
O4—C4—C3136.5 (3)C5—C9—H9122.9 (19)
C1—C4—C393.5 (3)C10i—C10—C5176.2 (6)
O1—C1—C2—O21.9 (7)C2—C3—C4—O4179.3 (4)
C4—C1—C2—O2178.5 (4)O3—C3—C4—C1179.7 (4)
O1—C1—C2—C3179.1 (4)C2—C3—C4—C10.6 (3)
C4—C1—C2—C30.5 (3)C9—C5—C6—C70.1 (5)
O2—C2—C3—O31.2 (8)C10—C5—C6—C7179.6 (4)
C1—C2—C3—O3179.7 (4)C8—N1—C7—C60.3 (5)
O2—C2—C3—C4178.5 (5)C5—C6—C7—N10.3 (5)
C1—C2—C3—C40.5 (3)C7—N1—C8—C90.1 (5)
O1—C1—C4—O40.2 (7)N1—C8—C9—C50.0 (5)
C2—C1—C4—O4179.4 (3)C6—C5—C9—C80.0 (5)
O1—C1—C4—C3179.0 (4)C10—C5—C9—C8179.8 (4)
C2—C1—C4—C30.6 (3)C6—C5—C10—C10i2 (9)
O3—C3—C4—O41.0 (8)C9—C5—C10—C10i178 (8)
Symmetry code: (i) x+1, y+2, z+3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.98 (4)1.68 (4)2.636 (4)165 (3)
O4—H4···O3ii1.04 (5)1.52 (5)2.511 (3)157 (4)
Symmetry code: (ii) x+2, y, z+1.
(II) 1,2-bis(4-pyridinium)ethylene bis(hydrogen squarate) top
Crystal data top
C12H12N22+·2C4HO4Z = 1
Mr = 410.33F(000) = 212
Triclinic, P1Dx = 1.575 Mg m3
a = 10.2606 (9) ÅCu Kα radiation, λ = 1.54178 Å
b = 12.2942 (17) ÅCell parameters from 22 reflections
c = 3.7749 (13) Åθ = 13.9–42.6°
α = 97.845 (17)°µ = 1.06 mm1
β = 98.444 (13)°T = 296 K
γ = 67.259 (8)°Prismatic, yellow
V = 432.75 (17) Å30.25 × 0.10 × 0.08 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
1468 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.009
Graphite monochromatorθmax = 74.2°, θmin = 3.9°
ω/2θ scansh = 1212
Absorption correction: ψ-scan
(North et al., 1968)
k = 1515
Tmin = 0.778, Tmax = 0.920l = 04
2052 measured reflections3 standard reflections every 120 min
1771 independent reflections intensity decay: 2.9%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.133All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0919P)2 + 0.0683P]
where P = (Fo2 + 2Fc2)/3
1771 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C12H12N22+·2C4HO4γ = 67.259 (8)°
Mr = 410.33V = 432.75 (17) Å3
Triclinic, P1Z = 1
a = 10.2606 (9) ÅCu Kα radiation
b = 12.2942 (17) ŵ = 1.06 mm1
c = 3.7749 (13) ÅT = 296 K
α = 97.845 (17)°0.25 × 0.10 × 0.08 mm
β = 98.444 (13)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
1468 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.009
Tmin = 0.778, Tmax = 0.9203 standard reflections every 120 min
2052 measured reflections intensity decay: 2.9%
1771 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.133All H-atom parameters refined
S = 1.02Δρmax = 0.24 e Å3
1771 reflectionsΔρmin = 0.30 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

6.4165 (0.0041) x + 5.2981 (0.0053) y - 3.2141 (0.0014) z = 2.8406 (0.0017)

* -0.0180 (0.0010) O1 * 0.0227 (0.0009) O2 * -0.0232 (0.0010) O3 * 0.0229 (0.0010) O4 * -0.0117 (0.0014) C1 * 0.0045 (0.0014) C2 * 0.0005 (0.0014) C3 * 0.0023 (0.0014) C4

Rms deviation of fitted atoms = 0.0161

5.0493 (0.0069) x + 5.8147 (0.0074) y - 3.4035 (0.0017) z = 3.0752 (0.0026)

Angle to previous plane (with approximate e.s.d.) = 10.24 (0.08)

* -0.0035 (0.0011) N1 * -0.0036 (0.0011) C5 * 0.0019 (0.0012) C6 * 0.0016 (0.0012) C7 * 0.0016 (0.0012) C8 * 0.0019 (0.0011) C9

Rms deviation of fitted atoms = 0.0025

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08498 (13)0.39152 (10)0.4025 (4)0.0499 (4)
O20.07016 (12)0.11353 (10)0.5637 (4)0.0470 (3)
O30.34122 (13)0.11285 (11)0.0093 (4)0.0544 (4)
O40.19294 (12)0.39772 (10)0.1499 (4)0.0468 (3)
N10.26855 (14)0.10035 (11)0.6755 (4)0.0387 (3)
C10.03897 (16)0.31522 (13)0.2828 (4)0.0351 (4)
C20.10311 (16)0.19053 (13)0.3653 (4)0.0357 (4)
C30.23000 (16)0.18908 (14)0.1131 (4)0.0365 (4)
C40.15808 (16)0.32048 (13)0.0406 (4)0.0352 (4)
C50.43114 (15)0.33416 (13)0.8337 (4)0.0327 (3)
C60.28763 (17)0.28698 (14)0.9677 (4)0.0376 (4)
C70.20931 (16)0.16988 (14)0.8837 (4)0.0395 (4)
C80.40590 (17)0.14148 (14)0.5435 (4)0.0385 (4)
C90.48911 (16)0.25872 (14)0.6205 (4)0.0362 (4)
C100.52189 (16)0.45890 (13)0.9123 (4)0.0368 (4)
H1A0.102 (3)0.472 (2)0.278 (6)0.063 (6)*
H10.201 (3)0.015 (2)0.617 (7)0.075 (8)*
H60.244 (2)0.3352 (17)1.120 (5)0.040 (5)*
H70.109 (2)0.1318 (19)0.975 (6)0.054 (6)*
H80.4400 (19)0.0845 (16)0.385 (5)0.036 (4)*
H90.588 (2)0.2933 (19)0.519 (6)0.055 (6)*
H100.622 (2)0.4786 (19)0.818 (6)0.057 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0370 (6)0.0303 (6)0.0636 (8)0.0034 (5)0.0163 (5)0.0066 (5)
O20.0374 (6)0.0313 (6)0.0606 (8)0.0092 (5)0.0075 (5)0.0108 (5)
O30.0392 (7)0.0363 (6)0.0690 (9)0.0026 (5)0.0135 (6)0.0020 (6)
O40.0371 (6)0.0309 (6)0.0605 (8)0.0093 (5)0.0105 (5)0.0083 (5)
N10.0377 (7)0.0279 (6)0.0429 (7)0.0072 (5)0.0001 (5)0.0024 (5)
C10.0316 (7)0.0290 (7)0.0394 (8)0.0088 (6)0.0021 (6)0.0009 (6)
C20.0327 (7)0.0300 (7)0.0402 (8)0.0103 (6)0.0004 (6)0.0036 (6)
C30.0325 (7)0.0302 (7)0.0413 (8)0.0093 (6)0.0022 (6)0.0015 (6)
C40.0322 (7)0.0286 (7)0.0399 (8)0.0092 (6)0.0000 (6)0.0024 (6)
C50.0321 (7)0.0301 (8)0.0332 (7)0.0105 (6)0.0014 (6)0.0010 (6)
C60.0339 (8)0.0335 (8)0.0414 (8)0.0131 (6)0.0030 (6)0.0042 (6)
C70.0312 (8)0.0356 (8)0.0446 (8)0.0084 (6)0.0029 (6)0.0005 (6)
C80.0391 (8)0.0327 (8)0.0405 (8)0.0149 (7)0.0024 (6)0.0044 (6)
C90.0315 (7)0.0328 (8)0.0402 (8)0.0114 (6)0.0031 (6)0.0017 (6)
C100.0337 (8)0.0310 (8)0.0403 (8)0.0088 (6)0.0008 (6)0.0017 (6)
Geometric parameters (Å, º) top
O1—C11.3138 (19)C5—C91.394 (2)
O1—H1A0.99 (2)C5—C61.400 (2)
O2—C21.2453 (19)C5—C101.470 (2)
O3—C31.215 (2)C6—C71.369 (2)
O4—C41.2440 (19)C6—H60.96 (2)
N1—C71.340 (2)C7—H70.98 (2)
N1—C81.342 (2)C8—C91.378 (2)
N1—H11.02 (3)C8—H80.993 (18)
C1—C21.425 (2)C9—H90.98 (2)
C1—C41.432 (2)C10—C10i1.320 (3)
C2—C31.491 (2)C10—H100.98 (2)
C3—C41.499 (2)
C1—O1—H1A110.9 (14)C9—C5—C10119.34 (14)
C7—N1—C8121.94 (13)C6—C5—C10122.51 (14)
C7—N1—H1115.2 (15)C7—C6—C5119.41 (15)
C8—N1—H1122.9 (15)C7—C6—H6119.8 (12)
O1—C1—C2130.32 (14)C5—C6—H6120.8 (12)
O1—C1—C4136.15 (14)N1—C7—C6120.71 (14)
C2—C1—C493.53 (12)N1—C7—H7116.4 (13)
O2—C2—C1136.23 (14)C6—C7—H7122.9 (13)
O2—C2—C3134.37 (14)N1—C8—C9119.52 (14)
C1—C2—C389.40 (12)N1—C8—H8116.5 (11)
O3—C3—C2135.13 (15)C9—C8—H8123.9 (11)
O3—C3—C4136.64 (15)C8—C9—C5120.27 (14)
C2—C3—C488.22 (11)C8—C9—H9122.2 (13)
O4—C4—C1137.42 (14)C5—C9—H9117.5 (13)
O4—C4—C3133.73 (14)C10i—C10—C5125.34 (19)
C1—C4—C388.84 (12)C10i—C10—H10120.6 (12)
C9—C5—C6118.14 (14)C5—C10—H10114.0 (12)
O1—C1—C2—O20.4 (3)C2—C3—C4—O4178.6 (2)
C4—C1—C2—O2178.9 (2)O3—C3—C4—C1177.9 (2)
O1—C1—C2—C3179.96 (19)C2—C3—C4—C10.71 (12)
C4—C1—C2—C30.75 (13)C9—C5—C6—C70.5 (2)
O2—C2—C3—O32.5 (4)C10—C5—C6—C7179.98 (15)
C1—C2—C3—O3177.9 (2)C8—N1—C7—C60.5 (3)
O2—C2—C3—C4178.9 (2)C5—C6—C7—N10.0 (3)
C1—C2—C3—C40.71 (12)C7—N1—C8—C90.5 (3)
O1—C1—C4—O40.6 (4)N1—C8—C9—C50.0 (3)
C2—C1—C4—O4178.5 (2)C6—C5—C9—C80.5 (2)
O1—C1—C4—C3179.9 (2)C10—C5—C9—C8180.00 (14)
C2—C1—C4—C30.74 (13)C9—C5—C10—C10i174.8 (2)
O3—C3—C4—O42.8 (4)C6—C5—C10—C10i5.8 (3)
Symmetry code: (i) x+1, y1, z2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4ii0.99 (2)1.56 (2)2.5033 (17)156 (2)
N1—H1···O21.02 (3)1.64 (3)2.6546 (17)170 (2)
Symmetry code: (ii) x, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC12H10N22+·2C4HO4C12H12N22+·2C4HO4
Mr408.32410.33
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)296296
a, b, c (Å)10.221 (2), 12.325 (3), 3.7951 (9)10.2606 (9), 12.2942 (17), 3.7749 (13)
α, β, γ (°)97.24 (2), 98.49 (2), 67.649 (18)97.845 (17), 98.444 (13), 67.259 (8)
V3)436.06 (18)432.75 (17)
Z11
Radiation typeMo KαCu Kα
µ (mm1)0.121.06
Crystal size (mm)0.22 × 0.15 × 0.050.25 × 0.10 × 0.08
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correctionψ-scan
(North et al., 1968)
Tmin, Tmax0.778, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
2101, 1992, 788 2052, 1771, 1468
Rint0.0480.009
(sin θ/λ)max1)0.6490.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.141, 0.92 0.044, 0.133, 1.02
No. of reflections19921771
No. of parameters160164
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.24, 0.260.24, 0.30

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988), CAD-4 EXPRESS (Enraf-Nonius, 1992), MSC/AFC Diffractometer Control Software, CAD-4 EXPRESS, TEXSAN (Molecular Structure Corporation, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
O1—C11.255 (4)C2—C31.505 (5)
O2—C21.215 (4)C3—C41.427 (5)
O3—C31.240 (4)C5—C61.383 (4)
O4—C41.306 (4)C5—C91.397 (4)
N1—C71.328 (4)C5—C101.436 (5)
N1—C81.329 (4)C6—C71.367 (5)
C1—C41.415 (4)C8—C91.377 (5)
C1—C21.483 (5)C10—C10i1.181 (6)
C7—N1—C8122.3 (3)O4—C4—C3136.5 (3)
O1—C1—C4136.6 (3)C1—C4—C393.5 (3)
O1—C1—C2133.3 (3)C6—C5—C9119.4 (3)
C4—C1—C290.0 (2)C6—C5—C10119.2 (3)
O2—C2—C1135.0 (3)C9—C5—C10121.4 (3)
O2—C2—C3137.3 (3)C7—C6—C5119.1 (3)
C1—C2—C387.7 (3)N1—C7—C6120.4 (3)
O3—C3—C4138.2 (3)N1—C8—C9120.3 (3)
O3—C3—C2133.1 (3)C8—C9—C5118.4 (3)
C4—C3—C288.7 (2)C10i—C10—C5176.2 (6)
O4—C4—C1130.0 (3)
Symmetry code: (i) x+1, y+2, z+3.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.98 (4)1.68 (4)2.636 (4)165 (3)
O4—H4···O3ii1.04 (5)1.52 (5)2.511 (3)157 (4)
Symmetry code: (ii) x+2, y, z+1.
Selected geometric parameters (Å, º) for (II) top
O1—C11.3138 (19)C2—C31.491 (2)
O2—C21.2453 (19)C3—C41.499 (2)
O3—C31.215 (2)C5—C91.394 (2)
O4—C41.2440 (19)C5—C61.400 (2)
N1—C71.340 (2)C5—C101.470 (2)
N1—C81.342 (2)C6—C71.369 (2)
C1—C21.425 (2)C8—C91.378 (2)
C1—C41.432 (2)C10—C10i1.320 (3)
C7—N1—C8121.94 (13)O4—C4—C3133.73 (14)
O1—C1—C2130.32 (14)C1—C4—C388.84 (12)
O1—C1—C4136.15 (14)C9—C5—C6118.14 (14)
C2—C1—C493.53 (12)C9—C5—C10119.34 (14)
O2—C2—C1136.23 (14)C6—C5—C10122.51 (14)
O2—C2—C3134.37 (14)C7—C6—C5119.41 (15)
C1—C2—C389.40 (12)N1—C7—C6120.71 (14)
O3—C3—C2135.13 (15)N1—C8—C9119.52 (14)
O3—C3—C4136.64 (15)C8—C9—C5120.27 (14)
C2—C3—C488.22 (11)C10i—C10—C5125.34 (19)
O4—C4—C1137.42 (14)
Symmetry code: (i) x+1, y1, z2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4ii0.99 (2)1.56 (2)2.5033 (17)156 (2)
N1—H1···O21.02 (3)1.64 (3)2.6546 (17)170 (2)
Symmetry code: (ii) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds