Download citation
Download citation
link to html
In penta­carbonyl(4-phenyl­pyridine)­tungsten(0), [W­(C11H9N)(CO)5], the mol­ecules have mm site symmetry and the pyridine ligand, with m symmetry, is completely planar. In penta­carbonyl(2-phenyl­pyridine)­chromium(0), [Cr(C11­H9N)(CO)5], the mol­ecules are in general positions and the phenyl and pyridine rings of the ligand are twisted by 67.7 (3)° with respect to one another by rotation about the C-C bond joining them. In both compounds, the axial M-Ccarbonyl bond trans to the M-Nligand bond is significantly shorter than the equatorial M-Ccarbonyl bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101000622/gd1123sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101000622/gd1123Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101000622/gd1123IIsup3.hkl
Contains datablock II

CCDC references: 163894; 163895

Computing details top

For both compounds, data collection: P3/R3 software (Nicolet, 1980); cell refinement: P3/R3 software; data reduction: RDNIC (Howie, 1980); program(s) used to solve structure: MULTAN87 (Debaerdemaeker et al., 1987); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

(I) Pentacarbonyl(4-phenylpyridine)tungsten(0) top
Crystal data top
[W(CO)5(C11H9N)]F(000) = 904
Mr = 479.09Dx = 1.987 Mg m3
Orthorhombic, CmcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2c 2Cell parameters from 14 reflections
a = 12.538 (4) Åθ = 12.5–14.0°
b = 16.239 (6) ŵ = 7.24 mm1
c = 7.866 (5) ÅT = 298 K
V = 1601.6 (13) Å3Plate, yellow
Z = 40.56 × 0.24 × 0.10 mm
Data collection top
Nicolet P3
diffractometer
1136 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 30.1°, θmin = 2.1°
θ/2θ scansh = 017
Absorption correction: ψ-scan
(North et al., 1968)
k = 022
Tmin = 0.188, Tmax = 0.485l = 011
1251 measured reflections2 standard reflections every 50 reflections
1251 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0369P)2 + 0.5806P]
where P = (Fo2 + 2Fc2)/3
1251 reflections(Δ/σ)max < 0.001
71 parametersΔρmax = 0.96 e Å3
0 restraintsΔρmin = 1.35 e Å3
Special details top

Experimental. Scan rates, dependent on prescan intensity (Ip), were in the range 58.6 (Ip>2500) to 5.33 (Ip<150) ° 2θ min-1. Scan widths, dependent on 2θ, were in the range 2.4 to 2.8 ° 2θ. Stationary crystal, stationary counter background counts were taken on either side of the peak each for 25% of the total (peak plus background) count time.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

H in calculated positions and refined with a riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W1/20.35738 (2)1/40.04522 (13)
C11/20.4778 (6)1/40.062 (2)
O11/20.5492 (4)1/40.090 (3)
C20.3847 (4)0.3608 (3)0.4323 (7)0.0590 (10)
O20.3193 (3)0.3664 (3)0.5311 (6)0.0934 (13)
N1/20.2174 (5)1/40.0487 (15)
C30.5890 (6)0.1728 (5)1/40.096 (4)
H30.65380.20061/40.115*
C40.5908 (6)0.0893 (4)1/40.096 (3)
H40.65620.06231/40.115*
C51/20.0445 (5)1/40.0472 (18)
C61/20.0474 (5)1/40.0499 (19)
C70.4091 (7)0.0907 (5)1/40.117 (5)
H70.34430.06281/40.140*
C80.4094 (9)0.1774 (6)1/40.134 (5)
H80.34510.20591/40.161*
C91/20.2185 (8)1/40.070 (3)
H91/20.27581/40.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W0.03341 (17)0.05072 (19)0.0515 (2)000
C10.060 (6)0.062 (6)0.063 (6)000
O10.110 (7)0.056 (4)0.105 (6)000
C20.042 (2)0.071 (2)0.064 (3)0.000 (2)0.002 (2)0.003 (2)
O20.055 (2)0.144 (4)0.082 (3)0.006 (2)0.021 (2)0.002 (3)
N0.034 (3)0.049 (3)0.062 (4)000
C30.033 (3)0.055 (3)0.201 (11)0.004 (3)00
C40.034 (3)0.057 (4)0.196 (11)0.006 (3)00
C50.038 (4)0.052 (4)0.052 (5)000
C60.055 (5)0.048 (4)0.046 (4)000
C70.044 (4)0.060 (4)0.247 (15)0.001 (3)00
C80.073 (6)0.054 (4)0.275 (17)0.011 (4)00
C90.068 (7)0.058 (5)0.085 (7)000
Geometric parameters (Å, º) top
W—C11.955 (10)C4—C51.352 (8)
W—C22.037 (5)C4—H40.9300
W—C2i2.037 (5)C5—C4iii1.352 (8)
W—C2ii2.037 (5)C5—C61.492 (10)
W—C2iii2.037 (5)C6—C7iii1.338 (9)
W—N2.273 (8)C6—C71.338 (9)
C1—O11.161 (12)C7—C81.408 (13)
C2—O21.134 (6)C7—H70.9300
N—C31.330 (9)C8—C91.318 (12)
N—C3iii1.330 (9)C8—H80.9300
C3—C41.356 (12)C9—C8iii1.318 (12)
C3—H30.9300C9—H90.9300
C1—W—C288.44 (12)N—C3—H3118.0
C1—W—C2i88.43 (12)C4—C3—H3118.0
C2—W—C2i90.4 (3)C5—C4—C3121.6 (7)
C1—W—C2ii88.43 (12)C5—C4—H4119.2
C2—W—C2ii89.5 (3)C3—C4—H4119.2
C2i—W—C2ii176.9 (2)C4iii—C5—C4114.8 (8)
C1—W—C2iii88.43 (12)C4iii—C5—C6122.6 (4)
C2—W—C2iii176.9 (2)C4—C5—C6122.6 (4)
C2i—W—C2iii89.5 (3)C7iii—C6—C7116.7 (9)
C2ii—W—C2iii90.4 (3)C7iii—C6—C5121.7 (5)
C1—W—N180.0C7—C6—C5121.7 (5)
C2—W—N91.56 (12)C6—C7—C8121.5 (8)
C2i—W—N91.57 (12)C6—C7—H7119.2
C2ii—W—N91.57 (12)C8—C7—H7119.2
C2iii—W—N91.57 (12)C9—C8—C7120.6 (9)
O1—C1—W180.0C9—C8—H8119.7
O2—C2—W176.7 (4)C7—C8—H8119.7
C3—N—C3iii114.0 (9)C8iii—C9—C8119.1 (12)
C3—N—W123.0 (4)C8iii—C9—H9120.5
C3iii—N—W123.0 (4)C8—C9—H9120.5
N—C3—C4124.0 (7)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1/2; (iii) x+1, y, z+1/2.
(II) Pentacarbonyl(2-phenylpyridine)chromium(0) top
Crystal data top
[Cr(CO)5(C11H9N)]F(000) = 704
Mr = 347.24Dx = 1.498 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.223 (4) ÅCell parameters from 14 reflections
b = 13.635 (12) Åθ = 7.5–10.0°
c = 18.170 (9) ŵ = 0.77 mm1
β = 92.60 (5)°T = 298 K
V = 1540.1 (18) Å3Block, yellow_green
Z = 40.56 × 0.50 × 0.20 mm
Data collection top
Nicolet P3
diffractometer
1781 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 30.1°, θmin = 1.9°
θ/2θ scansh = 08
Absorption correction: part of the refinement model (ΔF)
(XABS 2.0; Parkin et al., 1995)
k = 019
Tmin = 0.691, Tmax = 0.858l = 2525
4494 measured reflections2 standard reflections every 50 reflections
4494 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.087Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.031P)2 + 1.0286P]
where P = (Fo2 + 2Fc2)/3
4494 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.42 e Å3
Special details top

Experimental. Scan rates, dependent on prescan intensity (Ip), were in the range 58.6 (Ip>2500) to 5.33 (Ip<150) ° 2θ min-1. Scan widths, dependent on 2θ, were in the range 2.4 to 2.8 ° 2θ. Stationary crystal, stationary counter background counts were taken on either side of the peak each for 25% of the total (peak plus background) count time.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

H in calculated positions and refined with a riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr0.67728 (13)0.21822 (6)0.96565 (4)0.0392 (2)
C10.5272 (9)0.2078 (4)1.0490 (3)0.0488 (13)
O10.4331 (7)0.2049 (3)1.1016 (2)0.0712 (12)
C20.4348 (9)0.2972 (4)0.9328 (3)0.0435 (13)
O20.2820 (6)0.3408 (3)0.9239 (2)0.0680 (12)
C30.8235 (9)0.3279 (4)1.0083 (3)0.0458 (13)
O30.9039 (7)0.3901 (3)1.0406 (2)0.0767 (13)
C40.8868 (10)0.1397 (4)1.0162 (3)0.0539 (15)
O40.9978 (7)0.0937 (3)1.0533 (2)0.0823 (14)
C50.5366 (9)0.1024 (4)0.9290 (3)0.0466 (13)
O50.4529 (7)0.0328 (3)0.9104 (2)0.0744 (13)
N0.8517 (6)0.2258 (3)0.86214 (18)0.0366 (9)
C60.9806 (8)0.1488 (4)0.8489 (3)0.0474 (13)
H60.99520.10090.88520.057*
C71.0911 (9)0.1358 (4)0.7866 (3)0.0554 (15)
H71.17950.08150.78120.066*
C81.0679 (10)0.2052 (4)0.7320 (3)0.0638 (16)
H81.13820.19820.68820.077*
C90.9393 (9)0.2851 (4)0.7432 (3)0.0529 (14)
H90.92370.33350.70720.063*
C100.8331 (7)0.2935 (3)0.8081 (2)0.0369 (11)
C110.6975 (8)0.3824 (3)0.8168 (2)0.0388 (11)
C120.5166 (9)0.3941 (4)0.7709 (3)0.0548 (15)
H120.47990.34620.73610.066*
C130.3905 (10)0.4761 (5)0.7762 (3)0.0693 (18)
H130.26820.48300.74530.083*
C140.4426 (10)0.5478 (4)0.8265 (3)0.0611 (16)
H140.35580.60290.83030.073*
C150.6250 (10)0.5374 (4)0.8716 (3)0.0560 (15)
H150.66170.58580.90590.067*
C160.7531 (8)0.4561 (3)0.8661 (2)0.0425 (12)
H160.87810.45060.89590.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr0.0399 (5)0.0402 (4)0.0374 (4)0.0021 (4)0.0022 (3)0.0002 (4)
C10.057 (4)0.047 (3)0.043 (3)0.002 (3)0.007 (3)0.002 (3)
O10.087 (3)0.073 (3)0.056 (2)0.001 (3)0.028 (2)0.003 (2)
C20.036 (3)0.050 (3)0.044 (3)0.016 (3)0.001 (2)0.004 (2)
O20.038 (2)0.078 (3)0.088 (3)0.012 (2)0.009 (2)0.013 (2)
C30.045 (3)0.055 (3)0.038 (3)0.001 (3)0.004 (3)0.001 (2)
O30.079 (3)0.081 (3)0.070 (3)0.030 (3)0.003 (2)0.023 (2)
C40.057 (4)0.049 (3)0.055 (3)0.004 (3)0.004 (3)0.003 (3)
O40.070 (3)0.085 (3)0.089 (3)0.018 (3)0.025 (3)0.012 (3)
C50.051 (4)0.045 (3)0.044 (3)0.001 (3)0.005 (3)0.002 (2)
O50.084 (3)0.050 (2)0.087 (3)0.018 (2)0.014 (3)0.007 (2)
N0.035 (2)0.039 (2)0.0358 (19)0.003 (2)0.0029 (17)0.0062 (19)
C60.044 (4)0.040 (3)0.059 (3)0.002 (3)0.007 (3)0.001 (3)
C70.045 (4)0.058 (4)0.064 (3)0.011 (3)0.013 (3)0.013 (3)
C80.062 (4)0.073 (4)0.058 (3)0.002 (4)0.024 (3)0.020 (3)
C90.062 (4)0.056 (3)0.043 (3)0.005 (3)0.018 (3)0.004 (3)
C100.028 (3)0.046 (3)0.037 (2)0.011 (2)0.001 (2)0.006 (2)
C110.044 (3)0.037 (3)0.035 (2)0.001 (3)0.003 (2)0.003 (2)
C120.052 (4)0.062 (4)0.050 (3)0.001 (3)0.000 (3)0.003 (3)
C130.061 (5)0.084 (5)0.061 (4)0.014 (4)0.015 (3)0.010 (3)
C140.056 (4)0.058 (4)0.071 (4)0.016 (3)0.014 (3)0.019 (3)
C150.066 (4)0.043 (3)0.060 (3)0.000 (3)0.017 (3)0.001 (3)
C160.046 (3)0.040 (3)0.041 (3)0.007 (3)0.001 (2)0.004 (2)
Geometric parameters (Å, º) top
Cr—C11.821 (5)C8—C91.372 (7)
Cr—C41.892 (6)C8—H80.9300
Cr—C31.897 (6)C9—C101.383 (6)
Cr—C51.910 (6)C9—H90.9300
Cr—C21.926 (6)C10—C111.489 (6)
Cr—N2.216 (4)C11—C121.380 (7)
C1—O11.143 (5)C11—C161.380 (6)
C2—O21.127 (6)C12—C131.372 (7)
C3—O31.135 (5)C12—H120.9300
C4—O41.133 (6)C13—C141.366 (7)
C5—O51.128 (5)C13—H130.9300
N—C101.349 (5)C14—C151.376 (7)
N—C61.349 (6)C14—H140.9300
C6—C71.362 (6)C15—C161.371 (6)
C6—H60.9300C15—H150.9300
C7—C81.374 (7)C16—H160.9300
C7—H70.9300
C1—Cr—C485.4 (2)C8—C7—H7121.0
C1—Cr—C388.7 (2)C9—C8—C7118.9 (5)
C4—Cr—C386.6 (2)C9—C8—H8120.6
C1—Cr—C588.9 (2)C7—C8—H8120.6
C4—Cr—C589.8 (2)C8—C9—C10119.8 (5)
C3—Cr—C5175.8 (2)C8—C9—H9120.1
C1—Cr—C283.0 (2)C10—C9—H9120.1
C4—Cr—C2168.3 (2)N—C10—C9122.4 (5)
C3—Cr—C292.3 (2)N—C10—C11120.7 (4)
C5—Cr—C290.8 (2)C9—C10—C11116.9 (4)
C1—Cr—N177.6 (2)C12—C11—C16118.8 (5)
C4—Cr—N94.9 (2)C12—C11—C10118.7 (4)
C3—Cr—N93.74 (18)C16—C11—C10122.3 (5)
C5—Cr—N88.69 (18)C13—C12—C11120.3 (5)
C2—Cr—N96.75 (18)C13—C12—H12119.9
O1—C1—Cr177.5 (5)C11—C12—H12119.9
O2—C2—Cr169.5 (4)C14—C13—C12120.7 (6)
O3—C3—Cr172.9 (5)C14—C13—H13119.6
O4—C4—Cr172.1 (5)C12—C13—H13119.6
O5—C5—Cr177.0 (5)C13—C14—C15119.2 (6)
C10—N—C6115.8 (4)C13—C14—H14120.4
C10—N—Cr128.3 (3)C15—C14—H14120.4
C6—N—Cr115.7 (3)C16—C15—C14120.5 (5)
N—C6—C7125.2 (5)C16—C15—H15119.8
N—C6—H6117.4C14—C15—H15119.8
C7—C6—H6117.4C15—C16—C11120.4 (5)
C6—C7—C8118.0 (5)C15—C16—H16119.8
C6—C7—H7121.0C11—C16—H16119.8
C1—Cr—C2—O22 (3)C6—N—C10—C90.1 (6)
C4—Cr—C2—O22 (3)Cr—N—C10—C9174.5 (3)
C3—Cr—C2—O286 (3)C6—N—C10—C11179.2 (4)
C5—Cr—C2—O291 (3)Cr—N—C10—C116.4 (6)
N—Cr—C2—O2179 (3)C8—C9—C10—N0.5 (7)
C4—Cr—N—C10157.6 (4)C8—C9—C10—C11179.6 (4)
C3—Cr—N—C1070.7 (4)N—C10—C11—C12114.7 (5)
C5—Cr—N—C10112.8 (4)C9—C10—C11—C1266.2 (6)
C2—Cr—N—C1022.1 (4)N—C10—C11—C1669.1 (6)
C4—Cr—N—C628.1 (4)C9—C10—C11—C16109.9 (5)
C3—Cr—N—C6114.9 (4)C16—C11—C12—C132.3 (8)
C5—Cr—N—C661.6 (4)C10—C11—C12—C13178.6 (5)
C2—Cr—N—C6152.3 (3)C11—C12—C13—C140.6 (9)
C10—N—C6—C70.5 (7)C12—C13—C14—C150.6 (9)
Cr—N—C6—C7175.6 (4)C13—C14—C15—C160.0 (8)
N—C6—C7—C81.1 (9)C14—C15—C16—C111.7 (7)
C6—C7—C8—C91.4 (8)C12—C11—C16—C152.9 (7)
C7—C8—C9—C101.1 (8)C10—C11—C16—C15179.0 (4)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds