Download citation
Download citation
link to html
The two title compounds, [Cu3(C6H11O2)6(C7H9N)2]n, (I), and [Cu2(C5H9O2)4(C7H9N)2], (II), have chain and finite-molecular structures, respectively. In (I), binuclear cage units and mononuclear 2,6-di­methyl­pyridine complexes, both of which have inversion centres, are arranged alternately and are linked by the carboxyl­ate ions to form one-dimensional chains along the a axis. In (II), the binuclear cage unit has an inversion centre and the coordination geometry around the Cu atom is typical square pyramidal, with 2,6-di­methyl­pyridine at the apical position.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100006697/gd1098sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100006697/gd1098Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100006697/gd1098IIsup3.hkl
Contains datablock II

CCDC references: 150306; 150307

Comment top

Copper(II) carboxylates usually have a cage structure with square-pyramidal coordination geometry and a monodentate ligand bonded at the axial position. 2,6-Dimethylpyridine, 2,6-Me2py, is a bulky ligand which may cause a deformation of this cage structure, as observed in the crystals of [Cu2(PhMe2CCOO)2(2,6-Me2py)2], where the geometry about the CuII is deformed from square-pyramidal toward trigonal bipyramidal (TBP). Alternatively, only a mononuclear complex, [Cu(RCOO)2(2,6-Me2py)2], will be produced, as for R = Ph3C or Ph2MeC (Fujita et al., 1993). In this context, the crystal structures of the two title compounds, (I) and (II), respectively, are presented here. \sch

In (I), a novel polymeric structure was observed. The mononuclear moiety [Cu(RCOO)2(2,6-Me2py)2] acts as the axial ligand to the binuclear unit. The carboxylato bridge between the mononuclear and binuclear units has a syn-anti conformation. An analysis of the temperature dependence of the magnetic susceptibility indicated that the spin-exchange interaction between the mononuclear and binuclear units is negligible. The Cu···Cu distance in the binuclear unit is 2.652 (1) Å, which is similar to that of the 3,3-dimethylbutyric acid adduct [2.599 (1) Å; Goto et al., 2000].

In (II), the binuclear cage structure of the copper pivalate does not have a TBP distortion, which is consistent with the high magnetic −2 J value of 379 cm−1 (H = −2JS1·S2; Muto et al., 1986). The acridine adduct of copper(II) pivalate also has a cage structure with square-pyramidal coordination, the Cu···Cu and Cu—N distances being 2.702 (1) and 2.371 (5) Å, respectively (Kirillova et al., 1980). Copper pivalate remains a discrete dimeric structure even after the removal of the axial solvent ligands (Muto et al., 1986; Kato & Muto, 1988). In polymeric copper(II) pivalate, prepared by sublimation, the dinuclear cage is deformed and the coordination geometry around the Cu has a TBP distortion (Il'ina et al., 1992).

Experimental top

For (I), 3,3-dimethylbutyric acid (116 mg, 1.0 mmol) and CuCO3·Cu(OH)2·H2O (60 mg, 0.25 mmol) were suspended in a mixture of water and methanol (3:1, 20 ml). After the solution had been stirred for 1 h at room temperature, the green precipitate was collected and dissolved in acetonitrile and 2,6-dimethylpyridine (54 mg, 0.5 mmol) was added. Blue crystals of (I) were grown from the solution by slow evaporation. For (II), a solution of 2,2-dimethylpropionic acid (613 mg, 6.0 mmol) in 0.25 M sodium hydroxide (50 ml) was neutralized with 0.25 M nitric acid and an aqueous solution of Cu(NO3)2·3H2O (725 mg, 3.0 mmol) was added. After the solution had been stirred for 15 min at room temperature, the green precipitate was collected and dissolved in acetonitrile and 2,6-dimethylpyridine (321 mg, 3.0 mmol) was added. Green crystals of (II) were grown from the solution by slow evaporation.

Refinement top

Initially, both of the structures were refined as usual. The anisotropy in the atom displacement parameters became abnormally large for the methyl C atoms of the tert-butyl groups, suggesting libration and/or rotational disorder. Therefore, a split-site model was investigated for the tert-butyl groups in both compounds; it was found to be applicable for (II), but not for (I). For (II), the six methyl-C atoms were initially refined isotropically. Two sets of half-occupancy methyl groups, offset from one another by ca 30°, could be modelled for both tert-butyl groups based on the difference synthesis. Their anisotropic displacement parameters were then refined with their positional parameters fixed to avoid unreasonable geometry. Compared to the un-split model, R(F) slightly decreased from 0.050 to 0.048 on inceasing the number of parameters from 208 to 226. The magnitude of the displacement ellipsoids of the methyl C atoms apparently decreased, but the abnormal anisotropy of the displacement parameters did not disappear. In this manuscript, the split-site model is reported for (II). The positional parameters of all the H atoms were calculated geometrically and fixed with U(H) = 1.2 Ueq(parent atom).

Computing details top

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: TEXSAN; software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. The linear chain structure of (I) with displacement ellipsoids at the 50% probability level. H atoms and the tert-butyl groups of the dimethylbutyrato ligands are omitted for clarity.
[Figure 2] Fig. 2. The molecular structure of (II). Displacement ellipsoids are plotted at the 50% probability level and H atoms are shown as spheres of arbitrary radii. Only one orientation of the tert-butyl groups is shown.
(I) top
Crystal data top
[Cu3(C6H11O2)6(C7H9N)2]Z = 1
Mr = 1095.86Dx = 1.251 Mg m3
Triclinic, P1Mo Kα radiation, λ = 0.71073 Å
a = 12.525 (2) ÅCell parameters from 25 reflections
b = 12.736 (2) Åθ = 10–15°
c = 10.033 (2) ŵ = 1.14 mm1
α = 94.64 (1)°T = 298 K
β = 102.51 (1)°Prism, blue
γ = 109.32 (1)°0.4 × 0.1 × 0.1 mm
V = 1454.1 (5) Å3
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.021
θ/2θ scansθmax = 27.5°
Absorption correction: integration
(Coppens et al., 1965)
h = 016
Tmin = 0.472, Tmax = 0.753k = 1717
6956 measured reflectionsl = 1313
6651 independent reflections3 standard reflections every 150 reflections
4193 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/{σ2Fo2 + [0.05(Fo2 + 2Fc2)/3]2}
wR(F2) = 0.115(Δ/σ)max = 0.006
S = 1.08Δρmax = 0.41 e Å3
6651 reflectionsΔρmin = 0.61 e Å3
304 parameters
Crystal data top
[Cu3(C6H11O2)6(C7H9N)2]γ = 109.32 (1)°
Mr = 1095.86V = 1454.1 (5) Å3
Triclinic, P1Z = 1
a = 12.525 (2) ÅMo Kα radiation
b = 12.736 (2) ŵ = 1.14 mm1
c = 10.033 (2) ÅT = 298 K
α = 94.64 (1)°0.4 × 0.1 × 0.1 mm
β = 102.51 (1)°
Data collection top
Rigaku AFC-7R
diffractometer
4193 reflections with I > 2σ(I)
Absorption correction: integration
(Coppens et al., 1965)
Rint = 0.021
Tmin = 0.472, Tmax = 0.7533 standard reflections every 150 reflections
6956 measured reflections intensity decay: none
6651 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045304 parameters
wR(F2) = 0.115H-atom parameters constrained
S = 1.08Δρmax = 0.41 e Å3
6651 reflectionsΔρmin = 0.61 e Å3
Special details top

Refinement. Refinement using reflections with F2 > 0.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.39771 (3)0.01312 (3)0.02690 (4)0.0366 (1)
Cu20000.0373 (2)
O10.4572 (2)0.1533 (2)0.0615 (3)0.0577 (8)
O20.6285 (2)0.1745 (2)0.0140 (3)0.0549 (8)
O30.3478 (2)0.0095 (2)0.1720 (2)0.0528 (7)
O40.5191 (2)0.0105 (2)0.2182 (2)0.0494 (7)
O50.2223 (2)0.0375 (2)0.0512 (2)0.0474 (7)
O60.0631 (2)0.0846 (2)0.1269 (2)0.0459 (7)
N10.0861 (2)0.1482 (2)0.1369 (3)0.0476 (8)
C10.5562 (3)0.2117 (3)0.0473 (4)0.0483 (10)
C20.5913 (4)0.3390 (3)0.0746 (5)0.067 (1)
C30.6623 (4)0.3959 (4)0.2214 (5)0.075 (1)
C40.6890 (6)0.5217 (4)0.2334 (7)0.122 (2)
C50.7745 (6)0.3749 (6)0.2594 (8)0.140 (3)
C60.5900 (7)0.3501 (6)0.3214 (7)0.157 (3)
C70.4136 (3)0.0026 (3)0.2518 (3)0.0402 (8)
C80.3630 (3)0.0112 (3)0.4003 (3)0.0453 (9)
C90.3677 (3)0.1309 (3)0.4251 (4)0.049 (1)
C100.3247 (4)0.1264 (4)0.5803 (4)0.068 (1)
C110.2911 (5)0.1686 (4)0.3509 (5)0.087 (2)
C120.4938 (4)0.2136 (4)0.3737 (5)0.085 (2)
C130.1618 (3)0.0919 (3)0.1225 (3)0.0399 (9)
C140.2032 (3)0.1699 (3)0.2079 (4)0.0490 (10)
C150.1138 (3)0.2806 (3)0.2240 (4)0.060 (1)
C160.0335 (5)0.3444 (4)0.0878 (7)0.107 (2)
C170.0414 (5)0.2575 (5)0.3207 (6)0.098 (2)
C180.1813 (5)0.3517 (5)0.2887 (7)0.111 (2)
C190.1754 (3)0.2305 (3)0.1093 (4)0.052 (1)
C200.2279 (4)0.3344 (4)0.1951 (5)0.075 (1)
C210.1902 (5)0.3547 (4)0.3086 (5)0.082 (2)
C220.1013 (5)0.2720 (4)0.3367 (5)0.076 (2)
C230.0488 (3)0.1677 (3)0.2497 (4)0.056 (1)
C240.2145 (3)0.2074 (3)0.0151 (5)0.062 (1)
C250.0476 (4)0.0746 (4)0.2784 (4)0.071 (1)
H10.63730.36980.01230.0800*
H20.52110.35640.05580.0800*
H30.73070.55760.32690.1458*
H40.73620.55160.17200.1458*
H50.61700.53570.20890.1458*
H60.75810.29510.25200.1679*
H70.82160.40490.19780.1679*
H80.81620.41090.35280.1679*
H90.63270.38750.41400.1881*
H100.51750.36330.29760.1881*
H110.57380.27050.31570.1881*
H120.40590.01300.45700.0543*
H130.28250.03840.42810.0543*
H140.32730.20000.59840.0813*
H150.37410.10270.62710.0813*
H160.24570.07380.61310.0813*
H170.31890.17180.25310.1046*
H180.29350.24200.36940.1046*
H190.21200.11590.38290.1046*
H200.52140.21600.27600.1021*
H210.54240.18940.42140.1021*
H220.49700.28740.39120.1021*
H230.25820.18930.16700.0588*
H240.24260.12790.29930.0588*
H250.00960.30010.04670.1289*
H260.07850.35990.02770.1289*
H270.02010.41410.10120.1289*
H280.09300.21700.40870.1180*
H290.00210.21320.28050.1180*
H300.01180.32770.33330.1180*
H310.12730.42140.30150.1329*
H320.22640.36720.22870.1329*
H330.23290.31120.37670.1329*
H340.29100.39230.17440.0897*
H350.22620.42670.36810.0989*
H360.07430.28530.41680.0914*
H370.23970.14420.00880.0750*
H380.15070.19060.09610.0750*
H390.27830.27250.02120.0750*
H400.06550.09940.36100.0851*
H410.11590.05330.20190.0851*
H420.02380.01090.29070.0851*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0316 (2)0.0394 (2)0.0408 (2)0.0139 (2)0.0093 (2)0.0128 (2)
Cu20.0322 (3)0.0418 (3)0.0457 (3)0.0181 (3)0.0151 (3)0.0147 (3)
O10.051 (1)0.044 (1)0.080 (2)0.022 (1)0.014 (1)0.011 (1)
O20.058 (2)0.040 (1)0.067 (2)0.015 (1)0.023 (1)0.007 (1)
O30.038 (1)0.079 (2)0.045 (1)0.021 (1)0.011 (1)0.023 (1)
O40.043 (1)0.066 (2)0.045 (1)0.026 (1)0.011 (1)0.017 (1)
O50.041 (1)0.054 (1)0.059 (1)0.023 (1)0.021 (1)0.027 (1)
O60.038 (1)0.050 (1)0.059 (1)0.020 (1)0.019 (1)0.022 (1)
N10.043 (1)0.051 (2)0.054 (2)0.024 (1)0.010 (1)0.012 (1)
C10.053 (2)0.036 (2)0.048 (2)0.013 (2)0.002 (2)0.010 (2)
C20.084 (3)0.040 (2)0.078 (3)0.021 (2)0.024 (2)0.016 (2)
C30.082 (3)0.046 (2)0.080 (3)0.003 (2)0.020 (3)0.002 (2)
C40.147 (5)0.048 (3)0.137 (5)0.007 (3)0.027 (4)0.015 (3)
C50.104 (5)0.108 (5)0.157 (6)0.027 (4)0.035 (4)0.025 (5)
C60.200 (8)0.128 (6)0.093 (5)0.019 (5)0.074 (5)0.015 (4)
C70.040 (2)0.038 (2)0.041 (2)0.015 (1)0.006 (1)0.008 (1)
C80.047 (2)0.049 (2)0.039 (2)0.020 (2)0.006 (1)0.008 (1)
C90.056 (2)0.051 (2)0.043 (2)0.023 (2)0.011 (2)0.013 (2)
C100.085 (3)0.077 (3)0.048 (2)0.038 (3)0.009 (2)0.023 (2)
C110.136 (5)0.087 (3)0.089 (3)0.078 (4)0.061 (3)0.039 (3)
C120.082 (3)0.066 (3)0.084 (3)0.006 (2)0.000 (3)0.033 (3)
C130.037 (2)0.040 (2)0.044 (2)0.015 (1)0.011 (1)0.010 (1)
C140.039 (2)0.050 (2)0.061 (2)0.017 (2)0.013 (2)0.026 (2)
C150.051 (2)0.047 (2)0.080 (3)0.014 (2)0.011 (2)0.028 (2)
C160.117 (4)0.049 (3)0.127 (5)0.027 (3)0.016 (4)0.004 (3)
C170.086 (4)0.110 (4)0.118 (4)0.033 (3)0.054 (3)0.062 (4)
C180.084 (3)0.083 (4)0.181 (6)0.038 (3)0.029 (4)0.087 (4)
C190.044 (2)0.046 (2)0.068 (2)0.020 (2)0.008 (2)0.019 (2)
C200.068 (3)0.050 (3)0.089 (3)0.012 (2)0.003 (2)0.018 (2)
C210.100 (4)0.055 (3)0.075 (3)0.026 (3)0.003 (3)0.003 (2)
C220.092 (3)0.077 (3)0.063 (3)0.043 (3)0.012 (2)0.000 (2)
C230.052 (2)0.062 (2)0.056 (2)0.027 (2)0.007 (2)0.007 (2)
C240.045 (2)0.053 (2)0.097 (3)0.017 (2)0.027 (2)0.031 (2)
C250.058 (2)0.097 (4)0.061 (3)0.028 (2)0.022 (2)0.006 (2)
Geometric parameters (Å, º) top
Cu1—Cu1i2.652 (1)C9—C121.526 (6)
Cu1—O11.972 (3)C10—H140.960
Cu1—O2i1.965 (2)C10—H150.960
Cu1—O31.967 (2)C10—H160.960
Cu1—O4i1.967 (2)C11—H170.960
Cu1—O52.185 (2)C11—H180.960
Cu2—O52.923 (2)C11—H190.960
Cu2—O61.938 (2)C12—H200.960
Cu2—O6ii1.938 (2)C12—H210.960
Cu2—N12.050 (3)C12—H220.960
Cu2—N1ii2.050 (3)C13—C141.509 (4)
O1—C11.263 (4)C14—C151.529 (5)
O2—C11.243 (4)C14—H230.960
O3—C71.252 (4)C14—H240.960
O4—C71.259 (4)C15—C161.491 (7)
O5—C131.238 (4)C15—C171.537 (6)
O6—C131.280 (3)C15—C181.523 (6)
N1—C191.353 (4)C16—H250.960
N1—C231.350 (4)C16—H260.960
C1—C21.516 (5)C16—H270.960
C2—C31.523 (6)C17—H280.960
C2—H10.960C17—H290.960
C2—H20.960C17—H300.960
C3—C41.513 (7)C18—H310.960
C3—C51.492 (8)C18—H320.960
C3—C61.518 (7)C18—H330.960
C4—H30.960C19—C201.385 (6)
C4—H40.960C19—C241.478 (6)
C4—H50.961C20—C211.361 (7)
C5—H60.961C20—H340.960
C5—H70.960C21—C221.355 (7)
C5—H80.960C21—H350.960
C6—H90.960C22—C231.395 (6)
C6—H100.961C22—H360.960
C6—H110.960C23—C251.485 (6)
C7—C81.515 (4)C24—H370.960
C8—C91.548 (5)C24—H380.960
C8—H120.960C24—H390.960
C8—H130.960C25—H400.960
C9—C101.523 (5)C25—H410.960
C9—C111.503 (5)C25—H420.960
Cu1···Cu1i2.6515 (9)
Cu1i—Cu1—O184.2 (1)C9—C10—H14109.5
Cu1i—Cu1—O2i83.6 (1)C9—C10—H15109.5
Cu1i—Cu1—O383.3 (1)C9—C10—H16109.5
Cu1i—Cu1—O4i84.4 (1)H14—C10—H15109.5
Cu1i—Cu1—O5174.9 (1)H14—C10—H16109.5
O1—Cu1—O2i167.7 (1)H15—C10—H16109.5
O1—Cu1—O388.9 (1)C9—C11—H17109.5
O1—Cu1—O4i89.1 (1)C9—C11—H18109.5
O1—Cu1—O596.7 (1)C9—C11—H19109.5
O2i—Cu1—O390.3 (1)H17—C11—H18109.5
O2i—Cu1—O4i89.1 (1)H17—C11—H19109.4
O2i—Cu1—O595.6 (1)H18—C11—H19109.5
O3—Cu1—O4i167.7 (1)C9—C12—H20109.5
O3—Cu1—O591.7 (1)C9—C12—H21109.5
O4i—Cu1—O5100.7 (1)C9—C12—H22109.5
O6—Cu2—O6ii180.0H20—C12—H21109.4
O6—Cu2—N192.2 (1)H20—C12—H22109.5
O6—Cu2—N1ii87.8 (1)H21—C12—H22109.5
O6ii—Cu2—N187.8 (1)O5—C13—O6121.9 (3)
O6ii—Cu2—N1ii92.2 (1)O5—C13—C14120.4 (3)
N1—Cu2—N1ii180.0O6—C13—C14117.7 (3)
Cu1—O1—C1122.4 (2)C13—C14—C15119.4 (3)
Cu1i—O2—C1124.0 (2)C13—C14—H23106.9
Cu1—O3—C7124.2 (2)C13—C14—H24106.9
Cu1i—O4—C7122.7 (2)C15—C14—H23106.9
Cu1—O5—C13134.1 (2)C15—C14—H24106.9
Cu2—O6—C13117.8 (2)H23—C14—H24109.5
Cu2—N1—C19120.1 (2)C14—C15—C16111.6 (4)
Cu2—N1—C23120.3 (2)C14—C15—C17110.3 (4)
C19—N1—C23119.4 (3)C14—C15—C18107.6 (3)
O1—C1—O2125.9 (3)C16—C15—C17109.4 (4)
O1—C1—C2117.4 (3)C16—C15—C18109.1 (4)
O2—C1—C2116.7 (3)C17—C15—C18108.7 (4)
C1—C2—C3115.2 (3)C15—C16—H25109.5
C1—C2—H1108.0C15—C16—H26109.5
C1—C2—H2108.0C15—C16—H27109.5
C3—C2—H1108.0H25—C16—H26109.5
C3—C2—H2108.0H25—C16—H27109.5
H1—C2—H2109.5H26—C16—H27109.5
C2—C3—C4109.1 (4)C15—C17—H28109.5
C2—C3—C5111.9 (4)C15—C17—H29109.5
C2—C3—C6108.8 (4)C15—C17—H30109.5
C4—C3—C5109.1 (5)H28—C17—H29109.5
C4—C3—C6108.9 (5)H28—C17—H30109.5
C5—C3—C6109.0 (6)H29—C17—H30109.5
C3—C4—H3109.5C15—C18—H31109.5
C3—C4—H4109.5C15—C18—H32109.5
C3—C4—H5109.5C15—C18—H33109.5
H3—C4—H4109.5H31—C18—H32109.4
H3—C4—H5109.4H31—C18—H33109.5
H4—C4—H5109.4H32—C18—H33109.4
C3—C5—H6109.5N1—C19—C20120.6 (4)
C3—C5—H7109.5N1—C19—C24118.5 (3)
C3—C5—H8109.5C20—C19—C24120.9 (4)
H6—C5—H7109.4C19—C20—C21120.2 (4)
H6—C5—H8109.4C19—C20—H34119.9
H7—C5—H8109.5C21—C20—H34119.9
C3—C6—H9109.5C20—C21—C22119.2 (4)
C3—C6—H10109.5C20—C21—H35120.4
C3—C6—H11109.5C22—C21—H35120.4
H9—C6—H10109.4C21—C22—C23120.3 (4)
H9—C6—H11109.5C21—C22—H36119.9
H10—C6—H11109.4C23—C22—H36119.9
O3—C7—O4125.3 (3)N1—C23—C22120.3 (4)
O3—C7—C8117.4 (3)N1—C23—C25117.9 (3)
O4—C7—C8117.3 (3)C22—C23—C25121.8 (4)
C7—C8—C9114.9 (3)C19—C24—H37109.5
C7—C8—H12108.1C19—C24—H38109.5
C7—C8—H13108.1C19—C24—H39109.5
C9—C8—H12108.1H37—C24—H38109.5
C9—C8—H13108.1H37—C24—H39109.5
H12—C8—H13109.5H38—C24—H39109.5
C8—C9—C10107.9 (3)C23—C25—H40109.5
C8—C9—C11110.7 (3)C23—C25—H41109.5
C8—C9—C12109.5 (3)C23—C25—H42109.5
C10—C9—C11109.8 (3)H40—C25—H41109.5
C10—C9—C12109.3 (3)H40—C25—H42109.5
C11—C9—C12109.7 (4)H41—C25—H42109.5
Cu1—O5—C13—O6173.8 (2)Cu2—O6—C13—O57.7 (4)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.
(II) top
Crystal data top
[Cu2(C5H9O2)4(C7H9N)2]Z = 1
Mr = 745.90Dx = 1.254 Mg m3
Triclinic, P1Mo Kα radiation, λ = 0.71073 Å
a = 10.986 (4) ÅCell parameters from 25 reflections
b = 11.195 (5) Åθ = 10–15°
c = 9.564 (4) ŵ = 1.12 mm1
α = 107.66 (4)°T = 298 K
β = 97.15 (4)°Prism, green
γ = 61.82 (3)°0.25 × 0.20 × 0.20 mm
V = 987.7 (8) Å3
Data collection top
Rigaku AFC-7R
diffractometer
3449 reflections with I > 2σ(I)
θ/2θ scansRint = 0.047
Absorption correction: integration
(Coppens et al., 1965)
θmax = 27.5°
Tmin = 0.803, Tmax = 0.844h = 014
4761 measured reflectionsk = 1515
4524 independent reflectionsl = 123
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/{σ2Fo2 + [0.1(Fo2 + 2Fc2)/3]2}
wR(F2) = 0.152(Δ/σ)max = 0.027
S = 1.05Δρmax = 0.74 e Å3
4524 reflectionsΔρmin = 0.36 e Å3
226 parameters
Crystal data top
[Cu2(C5H9O2)4(C7H9N)2]γ = 61.82 (3)°
Mr = 745.90V = 987.7 (8) Å3
Triclinic, P1Z = 1
a = 10.986 (4) ÅMo Kα radiation
b = 11.195 (5) ŵ = 1.12 mm1
c = 9.564 (4) ÅT = 298 K
α = 107.66 (4)°0.25 × 0.20 × 0.20 mm
β = 97.15 (4)°
Data collection top
Rigaku AFC-7R
diffractometer
4524 independent reflections
Absorption correction: integration
(Coppens et al., 1965)
3449 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 0.844Rint = 0.047
4761 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048226 parameters
wR(F2) = 0.152H-atom parameters constrained
S = 1.05Δρmax = 0.74 e Å3
4524 reflectionsΔρmin = 0.36 e Å3
Special details top

Refinement. Refinement using reflections with F2 > 0.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.01511 (4)0.40360 (4)0.04544 (4)0.0439 (1)
O10.1781 (3)0.5732 (3)0.1470 (3)0.0629 (7)
O20.1534 (3)0.7324 (2)0.0759 (3)0.0632 (7)
O30.1197 (3)0.3867 (3)0.1353 (3)0.0679 (8)
O40.0968 (3)0.5465 (3)0.2065 (3)0.0684 (8)
N10.0467 (3)0.2424 (3)0.1297 (3)0.0603 (9)
C10.2134 (3)0.6970 (3)0.1469 (3)0.0523 (8)
C20.3373 (4)0.8138 (4)0.2429 (5)0.076 (1)
C3A0.415 (1)0.937 (1)0.176 (1)0.109 (4)0.50
C3B0.384 (1)0.960 (1)0.236 (1)0.104 (4)0.50
C4A0.269 (2)0.873 (2)0.387 (2)0.149 (6)0.50
C4B0.285 (2)0.813 (2)0.400 (2)0.221 (10)0.50
C5A0.413 (1)0.767 (2)0.312 (2)0.156 (6)0.50
C5B0.448 (1)0.773 (1)0.245 (2)0.170 (6)0.50
C60.1404 (3)0.4580 (4)0.2219 (4)0.0582 (9)
C70.2276 (5)0.4388 (5)0.3566 (4)0.083 (1)
C8A0.360 (2)0.589 (2)0.339 (2)0.131 (5)0.50
C8B0.374 (2)0.535 (2)0.304 (2)0.180 (8)0.50
C9A0.155 (1)0.425 (1)0.491 (1)0.095 (3)0.50
C9B0.218 (2)0.490 (2)0.475 (2)0.164 (8)0.50
C10A0.283 (2)0.337 (2)0.363 (2)0.129 (6)0.50
C10B0.214 (1)0.286 (1)0.407 (2)0.121 (5)0.50
C110.0619 (5)0.1413 (4)0.1795 (4)0.074 (1)
C120.0482 (7)0.0351 (5)0.2150 (6)0.103 (2)
C130.0786 (9)0.0358 (7)0.1989 (7)0.122 (3)
C140.1861 (7)0.1379 (6)0.1553 (6)0.107 (2)
C150.1712 (5)0.2421 (5)0.1203 (4)0.075 (1)
C160.1960 (5)0.1425 (5)0.1934 (6)0.098 (2)
C170.2912 (5)0.3521 (6)0.0704 (6)0.098 (2)
H1A0.35010.96360.15140.1026*0.50
H1B0.30720.98120.25550.0988*0.50
H2A0.45900.90910.08770.1026*0.50
H2B0.41770.96780.13970.0988*0.50
H3A0.48261.01550.24450.1026*0.50
H3B0.45601.02500.30770.0988*0.50
H4A0.21130.79730.43040.1285*0.50
H4B0.25360.72040.41060.1803*0.50
H5A0.21340.90900.36200.1285*0.50
H5B0.21100.83720.41660.1803*0.50
H6A0.34000.94660.45670.1285*0.50
H6B0.35960.88030.46860.1803*0.50
H7A0.47920.84610.38230.1169*0.50
H7B0.51520.84220.31890.1160*0.50
H8A0.46340.72780.23610.1169*0.50
H8B0.49240.76930.14960.1160*0.50
H9A0.35090.69660.35650.1169*0.50
H9B0.40850.68260.26070.1160*0.50
H10A0.33140.66020.32410.1236*0.50
H10B0.38840.63040.27160.1596*0.50
H11A0.41430.58660.42580.1236*0.50
H11B0.43520.52520.38260.1596*0.50
H12A0.41530.61000.25580.1236*0.50
H12B0.39230.51010.22390.1596*0.50
H13A0.07160.33620.51310.0953*0.50
H13B0.12630.43420.51830.1628*0.50
H14A0.21460.42790.57300.0953*0.50
H14B0.28380.48210.54840.1628*0.50
H15A0.13140.50070.47020.0953*0.50
H15B0.23630.58660.43690.1628*0.50
H16A0.33300.36560.27440.1302*0.50
H16B0.23540.26560.32510.1136*0.50
H17A0.34180.33520.44560.1302*0.50
H17B0.27700.28000.48430.1136*0.50
H18A0.20640.24360.37440.1302*0.50
H18B0.12120.21910.44120.1136*0.50
H190.12560.03620.25030.1211*
H200.08780.03810.22070.1419*
H210.27350.13730.14650.1315*
H220.26270.06580.23010.1191*
H230.22700.13300.09920.1191*
H240.18650.23040.26050.1191*
H250.30920.44290.13570.1168*
H260.27310.34850.02710.1168*
H270.37060.33690.06910.1168*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0442 (2)0.0466 (2)0.0401 (2)0.0195 (2)0.0011 (1)0.0124 (1)
O10.056 (1)0.060 (1)0.069 (2)0.021 (1)0.017 (1)0.014 (1)
O20.058 (1)0.053 (1)0.069 (2)0.014 (1)0.016 (1)0.018 (1)
O30.071 (2)0.091 (2)0.055 (1)0.047 (1)0.015 (1)0.025 (1)
O40.079 (2)0.075 (2)0.056 (1)0.039 (1)0.021 (1)0.026 (1)
N10.077 (2)0.054 (2)0.051 (2)0.031 (1)0.008 (1)0.010 (1)
C10.044 (2)0.056 (2)0.049 (2)0.017 (1)0.001 (1)0.014 (1)
C20.061 (2)0.060 (2)0.084 (3)0.007 (2)0.026 (2)0.016 (2)
C3A0.076 (6)0.078 (7)0.14 (1)0.010 (5)0.038 (7)0.053 (7)
C3B0.098 (8)0.080 (7)0.118 (9)0.024 (6)0.041 (7)0.017 (6)
C4A0.13 (1)0.16 (1)0.085 (9)0.06 (1)0.035 (9)0.058 (9)
C4B0.12 (2)0.27 (3)0.13 (2)0.03 (2)0.05 (1)0.05 (2)
C5A0.12 (1)0.10 (1)0.21 (2)0.007 (8)0.13 (1)0.035 (10)
C5B0.057 (6)0.075 (8)0.34 (2)0.023 (6)0.08 (1)0.01 (1)
C60.049 (2)0.069 (2)0.044 (2)0.022 (2)0.005 (1)0.009 (2)
C70.085 (3)0.103 (3)0.059 (2)0.049 (3)0.030 (2)0.024 (2)
C8A0.073 (8)0.16 (1)0.13 (1)0.039 (8)0.050 (8)0.05 (1)
C8B0.081 (10)0.26 (2)0.15 (1)0.06 (1)0.057 (9)0.03 (2)
C9A0.101 (7)0.128 (9)0.033 (4)0.044 (7)0.006 (4)0.009 (4)
C9B0.24 (2)0.26 (2)0.081 (9)0.17 (2)0.07 (1)0.08 (1)
C10A0.16 (1)0.14 (1)0.113 (9)0.10 (1)0.07 (1)0.042 (9)
C10B0.17 (1)0.118 (9)0.080 (7)0.087 (10)0.062 (8)0.019 (7)
C110.102 (3)0.055 (2)0.059 (2)0.027 (2)0.018 (2)0.015 (2)
C120.150 (5)0.063 (3)0.091 (3)0.033 (3)0.026 (3)0.029 (2)
C130.188 (7)0.091 (4)0.125 (5)0.087 (5)0.037 (5)0.026 (3)
C140.157 (6)0.094 (4)0.104 (4)0.086 (4)0.026 (4)0.014 (3)
C150.100 (3)0.080 (3)0.062 (2)0.059 (3)0.016 (2)0.003 (2)
C160.088 (3)0.089 (3)0.115 (4)0.021 (3)0.009 (3)0.064 (3)
C170.073 (3)0.134 (4)0.120 (4)0.067 (3)0.007 (3)0.048 (3)
Geometric parameters (Å, º) top
Cu1—Cu1i2.722 (1)C7—C8B1.494 (5)
Cu1—O11.964 (2)C7—C9A1.526 (5)
Cu1—O2i1.973 (2)C7—C9B1.450 (5)
Cu1—O31.964 (2)C7—C10A1.509 (5)
Cu1—O4i1.962 (3)C7—C10B1.566 (5)
Cu1—N12.360 (3)C8A—H10A0.955
O1—C11.250 (4)C8A—H11A0.959
O2—C11.256 (4)C8A—H12A0.964
O3—C61.248 (4)C8B—H10B0.953
O4—C61.255 (4)C8B—H11B0.961
N1—C111.357 (5)C8B—H12B0.966
N1—C151.360 (5)C9A—H13A0.962
C1—C21.519 (4)C9A—H14A0.959
C2—C3A1.526 (4)C9A—H15A0.958
C2—C3B1.490 (4)C9B—H13B0.963
C2—C4A1.602 (5)C9B—H14B0.960
C2—C4B1.541 (5)C9B—H15B0.957
C2—C5A1.470 (4)C10A—H16A0.955
C2—C5B1.491 (4)C10A—H17A0.960
C3A—H1A0.963C10A—H18A0.963
C3A—H2A0.963C10B—H16B0.961
C3A—H3A0.956C10B—H17B0.958
C3B—H1B0.956C10B—H18B0.962
C3B—H2B0.961C11—C121.407 (6)
C3B—H3B0.959C11—C161.468 (7)
C4A—H4A0.964C12—C131.378 (9)
C4A—H5A0.957C12—H190.961
C4A—H6A0.961C13—C141.329 (9)
C4B—H4B0.959C13—H200.963
C4B—H5B0.952C14—C151.390 (7)
C4B—H6B0.962C14—H210.957
C5A—H7A0.955C15—C171.466 (7)
C5A—H8A0.982C16—H220.960
C5A—H9A0.946C16—H230.961
C5B—H7B0.953C16—H240.963
C5B—H8B0.976C17—H250.958
C5B—H9B0.947C17—H260.962
C6—C71.530 (5)C17—H270.961
C7—C8A1.600 (5)
Cu1···Cu1i2.7223 (7)C11···C14ii3.589 (7)
N1···C13ii3.544 (7)C12···C15ii3.580 (6)
C11···C13ii3.540 (8)
Cu1i—Cu1—O181.8 (1)C6—C7—C8A105.7 (3)
Cu1i—Cu1—O2i83.7 (1)C6—C7—C8B105.0 (3)
Cu1i—Cu1—O384.2 (1)C6—C7—C9A108.5 (3)
Cu1i—Cu1—O4i81.1 (1)C6—C7—C9B116.6 (3)
Cu1i—Cu1—N1178.2 (1)C6—C7—C10A113.7 (3)
O1—Cu1—O2i165.5 (1)C6—C7—C10B111.3 (3)
O1—Cu1—O390.7 (1)C8A—C7—C9A101.6 (3)
O1—Cu1—O4i88.1 (1)C8A—C7—C10A105.8 (3)
O1—Cu1—N196.4 (1)C8B—C7—C9B102.0 (3)
O2i—Cu1—O387.1 (1)C8B—C7—C10B105.8 (3)
O2i—Cu1—O4i90.4 (1)C9A—C7—C10A120.0 (3)
O2i—Cu1—N198.1 (1)C9B—C7—C10B114.5 (3)
O3—Cu1—O4i165.3 (1)C7—C8A—H10A109.5
O3—Cu1—N196.2 (1)C7—C8A—H11A109.5
O4i—Cu1—N198.5 (1)C7—C8A—H12A109.1
Cu1—O1—C1126.0 (2)H10A—C8A—H11A109.9
Cu1i—O2—C1123.2 (2)H10A—C8A—H12A109.6
Cu1—O3—C6123.0 (2)H11A—C8A—H12A109.2
Cu1i—O4—C6126.6 (2)C7—C8B—H10B109.7
Cu1—N1—C11120.4 (3)C7—C8B—H11B109.6
Cu1—N1—C15121.1 (3)C7—C8B—H12B109.2
C11—N1—C15118.4 (4)H10B—C8B—H11B109.9
O1—C1—O2125.2 (3)H10B—C8B—H12B109.5
O1—C1—C2117.2 (3)H11B—C8B—H12B108.9
O2—C1—C2117.5 (3)C7—C9A—H13A109.5
C1—C2—C3A110.7 (3)C7—C9A—H14A109.5
C1—C2—C3B116.9 (3)C7—C9A—H15A109.3
C1—C2—C4A103.3 (3)H13A—C9A—H14A109.4
C1—C2—C4B103.2 (3)H13A—C9A—H15A109.5
C1—C2—C5A115.8 (3)H14A—C9A—H15A109.7
C1—C2—C5B112.8 (3)C7—C9B—H13B109.5
C3A—C2—C4A104.9 (3)C7—C9B—H14B109.6
C3A—C2—C5A120.7 (3)C7—C9B—H15B109.4
C3B—C2—C4B105.4 (3)H13B—C9B—H14B109.2
C3B—C2—C5B116.5 (3)H13B—C9B—H15B109.4
C4A—C2—C5A98.2 (3)H14B—C9B—H15B109.7
C4B—C2—C5B98.9 (2)C7—C10A—H16A109.4
C2—C3A—H1A109.4C7—C10A—H17A109.3
C2—C3A—H2A109.7C7—C10A—H18A109.3
C2—C3A—H3A109.6H16A—C10A—H17A110.0
H1A—C3A—H2A109.0H16A—C10A—H18A109.7
H1A—C3A—H3A109.6H17A—C10A—H18A109.2
H2A—C3A—H3A109.6C7—C10B—H16B109.4
C2—C3B—H1B109.2C7—C10B—H17B109.7
C2—C3B—H2B109.5C7—C10B—H18B109.6
C2—C3B—H3B109.1H16B—C10B—H17B109.6
H1B—C3B—H2B109.7H16B—C10B—H18B109.2
H1B—C3B—H3B109.9H17B—C10B—H18B109.5
H2B—C3B—H3B109.5N1—C11—C12121.1 (5)
C2—C4A—H4A109.2N1—C11—C16118.9 (4)
C2—C4A—H5A110.0C12—C11—C16120.0 (5)
C2—C4A—H6A109.6C11—C12—C13118.6 (5)
H4A—C4A—H5A109.4C11—C12—H19120.6
H4A—C4A—H6A109.1C13—C12—H19120.7
H5A—C4A—H6A109.6C12—C13—C14120.2 (5)
C2—C4B—H4B108.9C12—C13—H20118.9
C2—C4B—H5B109.5C14—C13—H20120.9
C2—C4B—H6B108.9C13—C14—C15120.6 (6)
H4B—C4B—H5B110.2C13—C14—H21118.8
H4B—C4B—H6B109.4C15—C14—H21120.6
H5B—C4B—H6B110.0N1—C15—C14121.0 (5)
C2—C5A—H7A109.9N1—C15—C17119.7 (4)
C2—C5A—H8A108.7C14—C15—C17119.3 (5)
C2—C5A—H9A110.2C11—C16—H22109.9
H7A—C5A—H8A108.1C11—C16—H23109.8
H7A—C5A—H9A111.1C11—C16—H24109.4
H8A—C5A—H9A108.8H22—C16—H23109.4
C2—C5B—H7B109.4H22—C16—H24109.2
C2—C5B—H8B108.6H23—C16—H24109.1
C2—C5B—H9B109.6C15—C17—H25109.6
H7B—C5B—H8B108.7C15—C17—H26109.6
H7B—C5B—H9B111.2C15—C17—H27109.5
H8B—C5B—H9B109.2H25—C17—H26109.4
O3—C6—O4125.1 (3)H25—C17—H27109.5
O3—C6—C7118.1 (4)H26—C17—H27109.2
O4—C6—C7116.8 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu3(C6H11O2)6(C7H9N)2][Cu2(C5H9O2)4(C7H9N)2]
Mr1095.86745.90
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)298298
a, b, c (Å)12.525 (2), 12.736 (2), 10.033 (2)10.986 (4), 11.195 (5), 9.564 (4)
α, β, γ (°)94.64 (1), 102.51 (1), 109.32 (1)107.66 (4), 97.15 (4), 61.82 (3)
V3)1454.1 (5)987.7 (8)
Z11
Radiation typeMo KαMo Kα
µ (mm1)1.141.12
Crystal size (mm)0.4 × 0.1 × 0.10.25 × 0.20 × 0.20
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Rigaku AFC-7R
diffractometer
Absorption correctionIntegration
(Coppens et al., 1965)
Integration
(Coppens et al., 1965)
Tmin, Tmax0.472, 0.7530.803, 0.844
No. of measured, independent and
observed [I > 2σ(I)] reflections
6956, 6651, 4193 4761, 4524, 3449
Rint0.0210.047
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.115, 1.08 0.048, 0.152, 1.05
No. of reflections66514524
No. of parameters304226
No. of restraints??
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.610.74, 0.36

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1999), SIR92 (Altomare et al., 1994), TEXSAN.

Selected geometric parameters (Å, º) for (I) top
Cu1—Cu1i2.652 (1)Cu1—O52.185 (2)
Cu1—O11.972 (3)Cu2—O52.923 (2)
Cu1—O2i1.965 (2)Cu2—O61.938 (2)
Cu1—O31.967 (2)Cu2—N12.050 (3)
Cu1—O4i1.967 (2)
O1—Cu1—O2i167.7 (1)O1—C1—O2125.9 (3)
O3—Cu1—O4i167.7 (1)O3—C7—O4125.3 (3)
O6—Cu2—N192.2 (1)O5—C13—O6121.9 (3)
Cu1—O5—C13134.1 (2)
Cu1—O5—C13—O6173.8 (2)Cu2—O6—C13—O57.7 (4)
Symmetry code: (i) x+1, y, z.
Selected geometric parameters (Å, º) for (II) top
Cu1—Cu1i2.722 (1)Cu1—O31.964 (2)
Cu1—O11.964 (2)Cu1—O4i1.962 (3)
Cu1—O2i1.973 (2)Cu1—N12.360 (3)
O1—Cu1—O2i165.5 (1)O1—C1—O2125.2 (3)
O3—Cu1—O4i165.3 (1)O3—C6—O4125.1 (3)
Symmetry code: (i) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds