Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Combined X-ray photon correlation spectroscopy (XPCS) and diffracted X-ray tracking (DXT) measurements of carbon-black nanocrystals embedded in styrene-butadiene rubber were performed. From the intensity fluctuation of speckle patterns in a small-angle scattering region (XPCS), dynamical information relating to the translational motion can be obtained, and the rotational motion is observed through the changes in the positions of DXT diffraction spots. Graphitized carbon-black nanocrystals in unvulcanized styrene-butadiene rubber showed an apparent discrepancy between their translational and rotational motions; this result seems to support a stress-relaxation model for the origin of super-diffusive particle motion that is widely observed in nanocolloidal systems. Combined measurements using these two techniques will give new insights into nanoscopic dynamics, and will be useful as a microrheology technique.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds