Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, poly[[triaqua­{μ4-2-[4,6-bis(carboxymethylsulfanyl)-1,3,5-triazin-2-ylsulfanyl]acetato}{μ2-2-[4,6-bis(carboxymethylsulfanyl)-1,3,5-triazin-2-ylsulfanyl]acetato}­barium(II)] mono­hydrate], {[Ba(C9H8N3O6S3)2(H2O)3]·H2O}n, each BaII atom is nine-coordinated by six O atoms from carboxyl­ate groups of four different 2-[4,6-bis(car­boxymethyl­sulfanyl)-1,3,5-triazin-2-ylsulfanyl]acetate ligands and three O atoms from water mol­ecules. The triazine ligand is partially deprotonated, as verified by inter­molecular hy­dro­gen-bonding parameters, and adopts μ211 and μ4112 coordination modes to connect the BaII centres, forming a novel double-layered structure. Topological analysis indicates that the whole structure is a novel (4,6)-connected net, considering the ligands and BaII centres as four- and six-connected nodes, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110042496/ga3159sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110042496/ga3159Isup2.hkl
Contains datablock I

CCDC reference: 804117

Comment top

In recent years, metal–organic coordination polymers have attracted considerable attention, due to their fascinating molecular topologies and crystal-packing motifs, and their potential application as smart optoelectronic, magnetic and porous materials (Moulton & Zaworotko, 2001; Kitagawa et al., 2004; Ferey et al., 2005; Murray et al., 2009). Metal carboxylates are of particular interest (Rao et al., 2004; Rowsell & Yaghi 2005; Ma et al., 2007; Pan et al., 2006; Rather & Zaworotko 2003). Generally, two kinds of these ligands have been used: rigid ones, such as benzenedicarboxylate and benzenetricarboxylate, and flexible ones, such as succinic and glutaric acids. The former exhibit limited conformations after coordination with the metal centre, and the final coordination supramolecular arrays are somewhat predictable. The latter, however, can adopt variable conformations according to the geometric requirements of different metal ions, and may afford unpredictable and interesting architectures (Gomez-Lor et al., 2005; Zang et al., 2006; Dong et al., 2007). To the best of our knowledge, only limited work has been carried out using polycarboxylate ligands with characteristics of both flexibility and rigidity (Jiang et al., 2009; Harbuzaru et al., 2008; Cen et al., 2009). Likewise, in contrast with the well investigated transition and lanthanide metal systems, only a few alkaline earth coordination polymers have been studied. Until recently, the study of alkaline earth metal carboxylates has been an underdeveloped area (Murugavel et al., 2001; Zhu et al., 2005; Cote & Shimizu, 2003; Yang, et al., 2006).

Our interest is the coordination chemistry of semi-rigid polycarboxylate ligands created by introducing –OCH2–, –NCH2– or –NHCO2– groups between the aromatic ring and the carboxylate groups: examples are benzene-1,3,5-tri(carboxymethyl), N,N',N''-1,3,5-triazine-2,4,6-triyltris-glycine and N,N',N''-1,3,5-benzenetricarboxamide. Systematic investigation of the traditional coordination chemistry of these ligands has been carried out (Wang et al., 2006, 2007; Sun et al., 2007). Compared with the corresponding rigid benzenecarboxylate ligands, the additional –XCH2– (X = O, N) groups make the ligands more flexible, and the X atoms may also function as electron donors or acceptors of interesting hydrogen bonds. As a continuation of our work on alkaline earth coordination chemistry, we report the title compound, {[Ba(C9H8N3O6S3)2(H2O)3].H2O}n, (I), a novel (4,6)-connected double-layered BaII coordination polymer, formed through the reaction of 2,2',2''-[1,3,5-triazine-2,4,6-triyltris(sulfanediyl)]triacetic acid (H3TTTA) with BaCl2 in the absence [Presence?] of pyridine.

Single-crystal X-ray diffraction reveals that (I) is a two-dimensional coordination polymer. As shown in Fig. 1, the asymmetric unit is composed of one crystallographically independent BaII ion, two H2TTTA- anion ligands, three coordinated water molecules and one solvent water molecule. Each BaII centre is nine-coordinated by six O atoms from different carboxylate groups of four discrete H2TTTA- anion ligands and three O atoms from water molecules. The whole geometry around the centre is distorted, forming neither a tricapped antiprism nor a monocapped square antiprism. The Ba—O bond distances range from 2.706 (2) to 2.951 (2) Å (Table 1), within the range of those observed for other barium carboxylate complexes (Zhu et al., 2005). Interestingly, for the charge balance of the total structure, the H atoms on atoms O2 and O5 are half-occupied and take part in bridging hydrogen bonds (Table 2). The incompletely deprotonated ligands adopt two different coordination geometries: µ2-η1:η1 (mode a) and µ4-η1:η1:η2 (mode b) (Fig. 2). The three flexible arms of the ligand show significant deviation in their bending to the different sides of the central triazine ring. In mode a, the dihedral angles between the three carboxylic acid groups and the central triazine ring are 15.0 (4), 70.5 (4) and 8.4 (4)° [Please give atom groups, in order], respectively. In mode b, the carboxylate group coordinated in a bidentate conformation forms a dihedral angle of 18.7 (4)° with the triazine ring, while the two monodentate carboxylic groups make dihedral angles of 74.3 (4) and 5.7 (5)° [Please give atom groups, in order], respectively. Consequently, the tricarboxylate ligands act as both µ2- and µ4-bridges, connecting the alkaline earth metal centres.

The bidentate carboxylate groups in mode b bridge the Ba centres in a synanti conformation to form one-dimensional {Ba(OCO)}n chains along the c axis. These chains are further connected by other monodentate carboxylate groups across the ligands, forming an infinite two-dimensional layer in the ac plane (Fig. 3a). The Ba···Ba distances separated by the carboxylate group and across the ligand are 7.51 (8), 12.27 (1) and 15.79 (5) Å [Please give atom groups, in order], respectively. The H2TTTA- anion ligands in mode a are situated above and below the layer through the µ2-bridging carboxylate ligands. As a result, a novel double-layered structure in the ac plane is formed, with a mean thickness of ca 6.07 (8) Å along the b axis based on the metal centres (Fig. 3b). Due to the presence of the carboxylic acid groups, many hydrogen-bonding interactions are observed within the layer (Fig. 4 and Table 2). We note the less usual dimensions found for the interactions involving the half-occupied atoms H2 and H5 (entries 1 and 3 in Table 2). These double layers are held together further by O—H···O hydrogen bonds between the coordinated aqua atom O3W and carboxylic acid atom O6, resulting in a three-dimensional supramolecular structure (Fig. 5).

In order to identify further the connectivity between the ligands and the metal centres, a representation of one double layer is illustrated in Fig. 6. Topologically, the tricarboxylate ligands in modes a and b can be viewed as a linear linker and a planar 4-connected node, respectively. The alkaline earth metal centre binds to two linear linkers and connects four 4-connected nodes, which can then be considered as an irregular 6-connected node. As a result, the whole topology of (I) is a novel binodal (4,6)-connected net with a Schläfli symbol of (4455657)(4456) (Wells, 1975). The long symbols for the two nodes are 4.4.4.4.5 (2).5(3).5(3).5.5.6 (3).6(2).6(3).6(2) and 4.4.4.4.5 (4).6(2), respectively. To the best of our knowledge, topologies with (4,6)-connectivity are extremely rare (Li et al., 2008; Lou et al., 2009), and the net in this complex may represent the first example in alkaline earth coordination chemistry.

Experimental top

BaCl2.2H2O (0.026 g, 0.1 mmol) and 2,2',2''-[1,3,5-triazine-2,4,6-triyltris(sulfanediyl)]triacetic acid (0.069 g, 0.2 mmol) were dissolved in a solution of water and pyridine (5 ml/0.10 ml) at room temperature and colourless crystals of (I) were formed in 67% yield after several days. Elemental analysis: calculated for C18H24O16N6S6Ba (Mr = 910.13): C 23.75, H 2.66, N 9.23%; found: C 23.61, H 2.63, N 9.28%. FT–IR (KBr pellet, ν, cm-1): 3425 (br), 1626 (m), 1480 (s), 1388 (m), 1268 (m), 1235 (w), 1119 (w), 1051 (w), 905 (w), 848 (w), 787 (w).

Refinement top

All H atoms were placed in positions derived from the difference Fourier maps. For the balance of the total charge of the compound, half-occupancies were assigned to atoms H2 and H5; a high correlation (0.99) is noted for the the x and z cooordinates of H2. The H atoms on atoms O4W, O2 and O9 were restrained with O—H = 0.82 (1) Å. All H atoms bound to O atoms were refined with Uiso(H) = 1.5Ueq(O), and all C-bound H atoms were refined with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The local coordination environment for the BaII centres in (I). Only those H atoms on carboxylic acid groups are shown, for clarity. Displacement ellipsoids are drawn at the 30% probability level. Atoms H3, H8 and H9 are fully occupied, while H2 and H5 are half-occupied (see Table 1 and text). [Symmetry codes: (i) -1 + x, 1/2 - y, -1/2 + z; (ii) -1 + x, y, -1 + z; (iii) -1 + x, y, z; (iv) x, 1 - y, 1/2 + z.]
[Figure 2] Fig. 2. The coordination modes of the 2,2',2''-[1,3,5-triazine-2,4,6-triyltris(sulfanediyl)]triacetic acid in complex (I). (a) Mode a, µ2-η1:η1, and (b) mode b, µ4-η1:η1:η2. [Symmetry codes: (A) 1 + x, y, z; (B) x, 1/2 - y, -1/2 + z; (C) 1 + x, y, 1 + z; (D) 1 + x, 1/2 - y, 1/2 + z.]
[Figure 3] Fig. 3. (a) A view of the two-dimensional layer constructed by the BaII centres and ligands in mode b. (b) A view of the two-dimensional double-layered structure of (I) in the ac plane. The polyhedral representation indicates the coordination environment of BaII centres. The bonds of the ligands in modes a and b are represented in grey and black, respectively.
[Figure 4] Fig. 4. The hydrogen-bonding interactions in (I), shown as dashed lines; see Table 2 for full details. [Symmetry codes: (iii) -1 + x, y, z; (v) -x, -y, 2 + z; (vi) 1 + x, y, z; (vii) 2 - x, -y, 1 - z; (viii) -1 + x, 1/2 - y, -3/2 + z; (ix) -1 + x, y, 1 + z; (x) 1 - x, -y, 2 - z; (xi) x, y, -1 + z.]
[Figure 5] Fig. 5. A perspective view of the three-dimensional supramolecular structure of (I), showing the hydrogen-bonding interactions (dashed lines) between two adjacent layers. [Symmetry code: (x) 1 - x, -y, 2 - z.]
[Figure 6] Fig. 6. A topological representation of the (4,6)-connected structure of (I). Six- (the metal centres) and four-connected nodes (the tricarboxylates) are represented by the large and small balls, respectively.
poly[[triaqua{µ4-2-[4,6-bis(carboxymethylsulfanyl)-1,3,5-triazin-2-ylsulfanyl]acetato}{µ2-2-[4,6-bis(carboxymethylsulfanyl)-1,3,5-triazin-2-ylsulfanyl]acetato}barium(II)] monohydrate] top
Crystal data top
[Ba(C9H8N3O6S3)2(H2O)3]·H2OF(000) = 1816
Mr = 910.13Dx = 1.929 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3762 reflections
a = 12.0121 (15) Åθ = 2.2–26.5°
b = 31.327 (4) ŵ = 1.75 mm1
c = 8.8522 (11) ÅT = 298 K
β = 109.794 (2)°Block, colourless
V = 3134.3 (7) Å30.27 × 0.26 × 0.25 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6052 independent reflections
Radiation source: fine-focus sealed tube4342 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.650, Tmax = 0.669k = 3138
15959 measured reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 0.84 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
6052 reflections(Δ/σ)max = 0.001
499 parametersΔρmax = 0.58 e Å3
4 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Ba(C9H8N3O6S3)2(H2O)3]·H2OV = 3134.3 (7) Å3
Mr = 910.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0121 (15) ŵ = 1.75 mm1
b = 31.327 (4) ÅT = 298 K
c = 8.8522 (11) Å0.27 × 0.26 × 0.25 mm
β = 109.794 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6052 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4342 reflections with I > 2σ(I)
Tmin = 0.650, Tmax = 0.669Rint = 0.062
15959 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0334 restraints
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 0.84Δρmax = 0.58 e Å3
6052 reflectionsΔρmin = 0.56 e Å3
499 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba10.077157 (18)0.153048 (7)1.03108 (3)0.02518 (7)
N10.3993 (2)0.06201 (9)0.7553 (3)0.0235 (7)
N20.5766 (2)0.05182 (8)0.6942 (3)0.0220 (7)
N30.4753 (2)0.00826 (8)0.7520 (4)0.0258 (7)
N40.5510 (2)0.19562 (9)1.1397 (3)0.0213 (7)
N50.6286 (2)0.26254 (8)1.2581 (3)0.0242 (7)
N60.7235 (2)0.19776 (9)1.3776 (3)0.0232 (7)
O10.0682 (2)0.06856 (8)0.9643 (3)0.0441 (8)
O20.0784 (2)0.00142 (8)0.9373 (3)0.0327 (7)
H20.036 (6)0.002 (3)0.993 (9)0.049*0.50
O30.7295 (2)0.11543 (9)0.9399 (3)0.0419 (8)
H30.786 (3)0.1089 (13)1.014 (5)0.063*
O40.8463 (2)0.13556 (8)0.8035 (3)0.0411 (7)
O50.9306 (2)0.01671 (9)0.5579 (4)0.0350 (7)
H50.964 (7)0.004 (3)0.514 (14)0.052*0.50
O60.8644 (2)0.04850 (8)0.5818 (3)0.0397 (7)
O70.3066 (2)0.12910 (8)1.0594 (3)0.0363 (7)
O80.4237 (2)0.12727 (9)1.3163 (3)0.0392 (8)
H80.365 (3)0.1298 (13)1.336 (5)0.059*
O90.2043 (2)0.22045 (8)0.6214 (3)0.0298 (7)
H90.156 (2)0.2331 (10)0.544 (3)0.045*
O100.26460 (19)0.28645 (7)0.7069 (3)0.0323 (7)
O111.01939 (19)0.29700 (8)1.7561 (3)0.0336 (7)
O121.05917 (19)0.23723 (7)1.9009 (3)0.0279 (6)
O1W0.0663 (3)0.09963 (9)1.1659 (4)0.0412 (8)
H1WA0.043 (4)0.0759 (12)1.161 (5)0.062*
H1WB0.066 (4)0.1083 (13)1.253 (5)0.062*
O2W0.1031 (3)0.14914 (10)0.7358 (4)0.0499 (9)
H2WA0.129 (4)0.1655 (15)0.711 (6)0.075*
H2WB0.062 (4)0.1360 (14)0.660 (5)0.075*
O3W0.2090 (3)0.13025 (10)1.3599 (4)0.0423 (8)
H3WA0.192 (3)0.1049 (12)1.388 (5)0.063*
H3WB0.195 (4)0.1451 (13)1.422 (5)0.063*
O4W0.9361 (3)0.10455 (10)0.4901 (5)0.0645 (10)
H4WA0.939 (4)0.0787 (4)0.504 (6)0.097*
H4WB0.885 (3)0.1169 (15)0.515 (6)0.097*
S10.28504 (8)0.00351 (3)0.83175 (12)0.0302 (2)
S20.49911 (7)0.13120 (3)0.70131 (11)0.0247 (2)
S30.66682 (8)0.02503 (3)0.68310 (13)0.0320 (3)
S40.64958 (8)0.12200 (3)1.26428 (11)0.0259 (2)
S50.45008 (7)0.26820 (3)0.99492 (11)0.0256 (2)
S60.80576 (8)0.27281 (3)1.51962 (11)0.0271 (2)
C10.3965 (3)0.01983 (11)0.7725 (4)0.0232 (9)
C20.4920 (3)0.07579 (10)0.7174 (4)0.0207 (8)
C30.5630 (3)0.01004 (11)0.7133 (4)0.0230 (9)
C40.1986 (3)0.04358 (12)0.8377 (5)0.0312 (10)
H4A0.249 (3)0.0624 (10)0.890 (4)0.037*
H4B0.155 (3)0.0484 (10)0.727 (4)0.037*
C50.1098 (3)0.03703 (12)0.9203 (4)0.0268 (9)
C60.6385 (3)0.13659 (12)0.6696 (5)0.0249 (9)
H6A0.640 (3)0.1165 (10)0.580 (4)0.030*
H6B0.641 (3)0.1652 (10)0.630 (4)0.030*
C70.7488 (3)0.12912 (11)0.8118 (4)0.0269 (9)
C80.7681 (3)0.01276 (12)0.6453 (5)0.0314 (10)
H8A0.724 (3)0.0320 (10)0.573 (4)0.038*
H8B0.808 (3)0.0265 (10)0.740 (4)0.038*
C90.8596 (3)0.00955 (13)0.5910 (4)0.0275 (9)
C100.6396 (3)0.17752 (10)1.2589 (4)0.0194 (8)
C110.5529 (3)0.23844 (11)1.1456 (4)0.0207 (8)
C120.7108 (3)0.23999 (11)1.3711 (4)0.0215 (8)
C130.5078 (3)0.10894 (12)1.1190 (4)0.0240 (9)
H13A0.501 (3)0.1199 (10)1.018 (4)0.029*
H13B0.509 (3)0.0783 (10)1.113 (4)0.029*
C140.4027 (3)0.12344 (11)1.1606 (5)0.0258 (9)
C150.3621 (3)0.22688 (11)0.8658 (4)0.0240 (9)
H15A0.413 (3)0.2094 (10)0.832 (4)0.029*
H15B0.323 (3)0.2088 (10)0.917 (4)0.029*
C160.2723 (3)0.24826 (12)0.7236 (4)0.0216 (8)
C170.9051 (3)0.23452 (12)1.6485 (5)0.0258 (9)
H17A0.867 (3)0.2166 (10)1.691 (4)0.031*
H17B0.943 (3)0.2172 (10)1.582 (4)0.031*
C181.0014 (3)0.25896 (11)1.7767 (4)0.0216 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.02178 (12)0.02170 (12)0.02929 (14)0.00161 (10)0.00503 (10)0.00191 (11)
N10.0187 (16)0.0257 (18)0.0276 (18)0.0011 (13)0.0100 (14)0.0012 (14)
N20.0181 (15)0.0197 (17)0.0292 (18)0.0011 (13)0.0091 (14)0.0004 (14)
N30.0217 (16)0.0221 (17)0.039 (2)0.0001 (13)0.0176 (15)0.0001 (15)
N40.0172 (15)0.0233 (18)0.0186 (17)0.0001 (13)0.0005 (13)0.0042 (14)
N50.0170 (15)0.0271 (18)0.0203 (17)0.0010 (13)0.0046 (14)0.0012 (14)
N60.0182 (15)0.0264 (18)0.0189 (17)0.0017 (13)0.0017 (14)0.0012 (14)
O10.0462 (16)0.0222 (15)0.081 (2)0.0023 (13)0.0433 (17)0.0095 (15)
O20.0360 (17)0.0242 (15)0.047 (2)0.0029 (13)0.0262 (14)0.0006 (14)
O30.0289 (17)0.067 (2)0.0244 (18)0.0095 (15)0.0020 (13)0.0076 (15)
O40.0211 (14)0.0577 (19)0.0456 (19)0.0036 (13)0.0130 (14)0.0083 (15)
O50.0292 (16)0.0334 (18)0.049 (2)0.0019 (13)0.0224 (14)0.0023 (15)
O60.0414 (16)0.0243 (16)0.061 (2)0.0025 (13)0.0273 (15)0.0010 (15)
O70.0226 (14)0.0460 (18)0.0305 (16)0.0015 (12)0.0038 (13)0.0071 (13)
O80.0268 (16)0.063 (2)0.0260 (17)0.0014 (15)0.0073 (14)0.0022 (15)
O90.0272 (15)0.0253 (15)0.0236 (16)0.0030 (12)0.0089 (12)0.0024 (12)
O100.0315 (14)0.0187 (14)0.0327 (16)0.0018 (12)0.0073 (12)0.0048 (12)
O110.0314 (15)0.0259 (15)0.0319 (16)0.0080 (12)0.0046 (13)0.0041 (13)
O120.0259 (14)0.0281 (15)0.0176 (14)0.0000 (11)0.0085 (12)0.0053 (12)
O1W0.0361 (16)0.044 (2)0.042 (2)0.0083 (15)0.0121 (16)0.0017 (17)
O2W0.058 (2)0.049 (2)0.040 (2)0.0214 (16)0.0142 (17)0.0044 (17)
O3W0.0403 (17)0.048 (2)0.043 (2)0.0044 (16)0.0190 (15)0.0032 (17)
O4W0.059 (2)0.055 (2)0.063 (2)0.008 (2)0.0011 (19)0.001 (2)
S10.0263 (5)0.0238 (5)0.0475 (7)0.0022 (4)0.0218 (5)0.0003 (5)
S20.0240 (5)0.0214 (5)0.0303 (6)0.0014 (4)0.0115 (4)0.0022 (4)
S30.0269 (5)0.0239 (6)0.0525 (7)0.0036 (4)0.0229 (5)0.0013 (5)
S40.0232 (5)0.0251 (5)0.0244 (6)0.0046 (4)0.0015 (4)0.0022 (4)
S50.0225 (5)0.0230 (5)0.0218 (5)0.0008 (4)0.0049 (4)0.0015 (4)
S60.0229 (5)0.0263 (5)0.0223 (5)0.0022 (4)0.0050 (4)0.0006 (4)
C10.0190 (19)0.025 (2)0.027 (2)0.0012 (16)0.0095 (17)0.0010 (18)
C20.0192 (19)0.023 (2)0.017 (2)0.0000 (16)0.0035 (16)0.0003 (16)
C30.0201 (19)0.023 (2)0.025 (2)0.0024 (16)0.0064 (17)0.0012 (17)
C40.028 (2)0.026 (2)0.043 (3)0.0044 (18)0.017 (2)0.003 (2)
C50.022 (2)0.024 (2)0.035 (2)0.0021 (17)0.0109 (18)0.0001 (19)
C60.025 (2)0.022 (2)0.030 (2)0.0028 (17)0.0130 (18)0.0032 (18)
C70.031 (2)0.020 (2)0.029 (2)0.0008 (17)0.010 (2)0.0049 (18)
C80.028 (2)0.029 (2)0.044 (3)0.0027 (18)0.019 (2)0.003 (2)
C90.0166 (19)0.043 (3)0.022 (2)0.0007 (18)0.0061 (17)0.003 (2)
C100.0212 (19)0.024 (2)0.015 (2)0.0009 (16)0.0083 (16)0.0026 (16)
C110.0152 (18)0.030 (2)0.015 (2)0.0026 (16)0.0034 (16)0.0045 (17)
C120.0160 (19)0.033 (2)0.014 (2)0.0068 (16)0.0030 (16)0.0004 (17)
C130.029 (2)0.020 (2)0.019 (2)0.0009 (17)0.0028 (18)0.0004 (18)
C140.032 (2)0.020 (2)0.024 (2)0.0060 (17)0.0071 (19)0.0033 (17)
C150.025 (2)0.020 (2)0.018 (2)0.0004 (16)0.0030 (17)0.0027 (17)
C160.0150 (19)0.029 (2)0.019 (2)0.0020 (16)0.0040 (16)0.0003 (18)
C170.025 (2)0.024 (2)0.020 (2)0.0014 (17)0.0015 (18)0.0041 (18)
C180.0128 (18)0.028 (2)0.021 (2)0.0006 (16)0.0018 (16)0.0016 (18)
Geometric parameters (Å, º) top
Ba1—O12.706 (2)O12—C181.280 (4)
Ba1—O2W2.738 (4)O12—Ba1viii2.857 (2)
Ba1—O72.784 (2)O1W—H1WA0.80 (4)
Ba1—O11i2.799 (3)O1W—H1WB0.82 (4)
Ba1—O12ii2.857 (2)O2W—H2WA0.67 (4)
Ba1—O4iii2.875 (2)O2W—H2WB0.80 (4)
Ba1—O3W2.893 (3)O3W—H3WA0.88 (4)
Ba1—O1W2.931 (3)O3W—H3WB0.78 (4)
Ba1—O10iv2.951 (2)O4W—H4WA0.818 (10)
N1—C11.332 (4)O4W—H4WB0.813 (10)
N1—C21.339 (4)S1—C11.754 (3)
N2—C21.334 (4)S1—C41.815 (4)
N2—C31.337 (4)S2—C21.746 (3)
N3—C31.342 (4)S2—C61.797 (4)
N3—C11.349 (4)S3—C31.749 (3)
N4—C111.342 (4)S3—C81.808 (4)
N4—C101.344 (4)S4—C101.743 (3)
N5—C111.333 (4)S4—C131.800 (4)
N5—C121.344 (4)S5—C111.748 (3)
N6—C121.331 (4)S5—C151.812 (4)
N6—C101.343 (4)S6—C121.753 (3)
O1—C51.228 (4)S6—C171.801 (4)
O2—C51.286 (4)C4—C51.497 (5)
O2—H20.822 (10)C4—H4A0.86 (3)
O3—C71.305 (4)C4—H4B0.95 (3)
O3—H30.79 (4)C6—C71.505 (5)
O4—C71.215 (4)C6—H6A1.02 (3)
O4—Ba1v2.875 (2)C6—H6B0.97 (3)
O5—C91.288 (4)C8—C91.511 (5)
O5—H50.75 (7)C8—H8A0.91 (3)
O6—C91.226 (4)C8—H8B0.92 (3)
O7—C141.211 (4)C13—C141.499 (5)
O8—C141.320 (4)C13—H13A0.93 (3)
O8—H80.78 (4)C13—H13B0.96 (3)
O9—C161.320 (4)C15—C161.509 (4)
O9—H90.832 (10)C15—H15A0.94 (3)
O10—C161.205 (4)C15—H15B0.95 (3)
O10—Ba1vi2.951 (2)C17—C181.524 (5)
O11—C181.235 (4)C17—H17A0.88 (3)
O11—Ba1vii2.799 (3)C17—H17B1.01 (3)
O1—Ba1—O2W75.92 (9)N3—C1—S1114.2 (3)
O1—Ba1—O773.79 (7)N2—C2—N1126.8 (3)
O2W—Ba1—O769.18 (9)N2—C2—S2119.1 (3)
O1—Ba1—O11i134.52 (8)N1—C2—S2114.1 (3)
O2W—Ba1—O11i147.17 (9)N2—C3—N3126.2 (3)
O7—Ba1—O11i124.26 (7)N2—C3—S3118.2 (3)
O1—Ba1—O12ii145.36 (8)N3—C3—S3115.6 (3)
O2W—Ba1—O12ii70.95 (9)C5—C4—S1114.3 (3)
O7—Ba1—O12ii102.85 (7)C5—C4—H4A109 (2)
O11i—Ba1—O12ii76.58 (7)S1—C4—H4A105 (2)
O1—Ba1—O4iii72.73 (8)C5—C4—H4B107 (2)
O2W—Ba1—O4iii73.58 (9)S1—C4—H4B103 (2)
O7—Ba1—O4iii134.61 (7)H4A—C4—H4B119 (3)
O11i—Ba1—O4iii101.09 (7)O1—C5—O2123.3 (4)
O12ii—Ba1—O4iii88.28 (7)O1—C5—C4118.6 (3)
O1—Ba1—O3W86.90 (8)O2—C5—C4118.1 (3)
O2W—Ba1—O3W138.50 (10)C7—C6—S2117.2 (3)
O7—Ba1—O3W69.81 (8)C7—C6—H6A108.2 (17)
O11i—Ba1—O3W66.74 (7)S2—C6—H6A109.2 (18)
O12ii—Ba1—O3W125.08 (7)C7—C6—H6B108.5 (18)
O4iii—Ba1—O3W136.68 (8)S2—C6—H6B107.0 (19)
O1—Ba1—O1W62.95 (8)H6A—C6—H6B106 (3)
O2W—Ba1—O1W129.50 (8)O4—C7—O3124.4 (3)
O7—Ba1—O1W120.67 (8)O4—C7—C6121.1 (4)
O11i—Ba1—O1W73.00 (8)O3—C7—C6114.4 (3)
O12ii—Ba1—O1W135.80 (7)C9—C8—S3111.3 (3)
O4iii—Ba1—O1W67.40 (8)C9—C8—H8A114 (2)
O3W—Ba1—O1W69.29 (9)S3—C8—H8A107 (2)
O1—Ba1—O10iv135.23 (7)C9—C8—H8B107 (2)
O2W—Ba1—O10iv102.65 (8)S3—C8—H8B108 (2)
O7—Ba1—O10iv64.57 (7)H8A—C8—H8B109 (3)
O11i—Ba1—O10iv66.07 (7)O6—C9—O5124.8 (3)
O12ii—Ba1—O10iv63.89 (6)O6—C9—C8122.5 (3)
O4iii—Ba1—O10iv150.98 (7)O5—C9—C8112.7 (3)
O3W—Ba1—O10iv64.40 (8)N6—C10—N4126.9 (3)
O1W—Ba1—O10iv126.93 (8)N6—C10—S4115.0 (2)
C1—N1—C2113.8 (3)N4—C10—S4118.1 (2)
C2—N2—C3113.6 (3)N5—C11—N4126.4 (3)
C3—N3—C1113.8 (3)N5—C11—S5113.3 (2)
C11—N4—C10113.1 (3)N4—C11—S5120.3 (2)
C11—N5—C12113.7 (3)N6—C12—N5126.8 (3)
C12—N6—C10113.0 (3)N6—C12—S6121.0 (2)
C5—O1—Ba1149.9 (2)N5—C12—S6112.2 (3)
C5—O2—H2111 (7)C14—C13—S4115.3 (3)
C7—O3—H3117 (3)C14—C13—H13A108 (2)
C7—O4—Ba1v135.3 (3)S4—C13—H13A110.9 (19)
C9—O5—H5107 (9)C14—C13—H13B110.5 (19)
C14—O7—Ba1140.6 (3)S4—C13—H13B103.7 (18)
C14—O8—H8112 (3)H13A—C13—H13B108 (3)
C16—O9—H9110 (2)O7—C14—O8123.8 (4)
C16—O10—Ba1vi135.7 (2)O7—C14—C13122.3 (3)
C18—O11—Ba1vii137.9 (2)O8—C14—C13113.9 (3)
C18—O12—Ba1viii141.5 (2)C16—C15—S5108.0 (2)
Ba1—O1W—H1WA104 (3)C16—C15—H15A110 (2)
Ba1—O1W—H1WB112 (3)S5—C15—H15A108.5 (19)
H1WA—O1W—H1WB118 (4)C16—C15—H15B109.6 (19)
Ba1—O2W—H2WA119 (5)S5—C15—H15B114 (2)
Ba1—O2W—H2WB126 (3)H15A—C15—H15B107 (3)
H2WA—O2W—H2WB110 (6)O10—C16—O9124.6 (3)
Ba1—O3W—H3WA114 (3)O10—C16—C15123.1 (3)
Ba1—O3W—H3WB113 (3)O9—C16—C15112.3 (3)
H3WA—O3W—H3WB103 (4)C18—C17—S6108.1 (2)
H4WA—O4W—H4WB115 (6)C18—C17—H17A112 (2)
C1—S1—C499.88 (17)S6—C17—H17A112 (2)
C2—S2—C6100.35 (17)C18—C17—H17B109.1 (18)
C3—S3—C8100.15 (17)S6—C17—H17B108.7 (18)
C10—S4—C1399.65 (16)H17A—C17—H17B108 (3)
C11—S5—C15102.16 (17)O11—C18—O12124.6 (3)
C12—S6—C17101.99 (17)O11—C18—C17120.1 (3)
N1—C1—N3125.8 (3)O12—C18—C17115.2 (3)
N1—C1—S1120.0 (3)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x1, y, z1; (iii) x1, y, z; (iv) x, y+1/2, z+1/2; (v) x+1, y, z; (vi) x, y+1/2, z1/2; (vii) x+1, y+1/2, z+1/2; (viii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O2ix0.82 (1)1.69 (2)2.491 (5)165 (9)
O3—H3···O1Wv0.79 (4)1.85 (4)2.634 (4)168 (5)
O5—H5···O5x0.75 (7)1.73 (7)2.467 (5)166 (12)
O8—H8···O3W0.78 (4)1.96 (4)2.735 (4)172 (4)
O9—H9···O12xi0.83 (1)1.68 (1)2.511 (3)174 (4)
O1W—H1WA···O10.80 (4)2.54 (4)2.949 (4)113 (4)
O1W—H1WB···O4Wxii0.82 (4)2.09 (4)2.864 (5)157 (4)
O2W—H2WA···O90.67 (4)2.22 (4)2.886 (4)177 (6)
O2W—H2WB···O4Wiii0.80 (4)2.00 (4)2.784 (5)169 (5)
O3W—H3WA···O6xiii0.88 (4)1.94 (4)2.813 (4)171 (4)
O4W—H4WA···O50.82 (1)2.01 (1)2.822 (4)172 (6)
Symmetry codes: (iii) x1, y, z; (v) x+1, y, z; (ix) x, y, z+2; (x) x+2, y, z+1; (xi) x1, y+1/2, z3/2; (xii) x1, y, z+1; (xiii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Ba(C9H8N3O6S3)2(H2O)3]·H2O
Mr910.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.0121 (15), 31.327 (4), 8.8522 (11)
β (°) 109.794 (2)
V3)3134.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.75
Crystal size (mm)0.27 × 0.26 × 0.25
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.650, 0.669
No. of measured, independent and
observed [I > 2σ(I)] reflections
15959, 6052, 4342
Rint0.062
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.052, 0.84
No. of reflections6052
No. of parameters499
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.56

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ba1—O12.706 (2)Ba1—O4iii2.875 (2)
Ba1—O2W2.738 (4)Ba1—O3W2.893 (3)
Ba1—O72.784 (2)Ba1—O1W2.931 (3)
Ba1—O11i2.799 (3)Ba1—O10iv2.951 (2)
Ba1—O12ii2.857 (2)
O7—Ba1—O11i124.26 (7)O4iii—Ba1—O3W136.68 (8)
O1—Ba1—O12ii145.36 (8)O2W—Ba1—O1W129.50 (8)
O7—Ba1—O4iii134.61 (7)O4iii—Ba1—O10iv150.98 (7)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x1, y, z1; (iii) x1, y, z; (iv) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O2v0.822 (10)1.69 (2)2.491 (5)165 (9)
O3—H3···O1Wvi0.79 (4)1.85 (4)2.634 (4)168 (5)
O5—H5···O5vii0.75 (7)1.73 (7)2.467 (5)166 (12)
O8—H8···O3W0.78 (4)1.96 (4)2.735 (4)172 (4)
O9—H9···O12viii0.832 (10)1.682 (11)2.511 (3)174 (4)
O1W—H1WA···O10.80 (4)2.54 (4)2.949 (4)113 (4)
O1W—H1WB···O4Wix0.82 (4)2.09 (4)2.864 (5)157 (4)
O2W—H2WA···O90.67 (4)2.22 (4)2.886 (4)177 (6)
O2W—H2WB···O4Wiii0.80 (4)2.00 (4)2.784 (5)169 (5)
O3W—H3WA···O6x0.88 (4)1.94 (4)2.813 (4)171 (4)
O4W—H4WA···O50.818 (10)2.010 (14)2.822 (4)172 (6)
Symmetry codes: (iii) x1, y, z; (v) x, y, z+2; (vi) x+1, y, z; (vii) x+2, y, z+1; (viii) x1, y+1/2, z3/2; (ix) x1, y, z+1; (x) x+1, y, z+2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds