Download citation
Download citation
link to html
The title compounds, trans-bis­(trans-cyclo­hexane-1,2-di­am­ine)­bis­(6-methyl-2,2,4-trioxo-3,4-dihydro-1,2,3-oxathia­zin-3-ido)copper(II), [Cu(C4H4NO4S)2(C6H14N2)2], (I), and trans-diaqua­bis­(cyclo­hexane-1,2-diamine)­zinc(II) 6-methyl-2,2,4-trioxo-3,4-dihydro-1,2,3-oxathia­zin-3-ide dihydrate, [Zn(C6H14N2)2(H2O)2](C4H4NO4S)2·2H2O, (II), are two-dimensional hydro­gen-bonded supra­molecular complexes. In (I), the CuII ion resides on a centre of symmetry in a neutral complex, in a tetra­gonally distorted octa­hedral coordination environment comprising four amine N atoms from cyclo­hexane-1,2-diamine ligands and two N atoms of two acesulfamate ligands. Inter­molecular N—H...O and C—H...O hydrogen bonds produce R22(12) motif rings which lead to two-dimensional polymeric networks. In contrast, the ZnII ion in (II) resides on a centre of symmetry in a complex dication with a less distorted octa­hedral coordination environment comprising four amine N atoms from cyclo­hexane-1,2-diamine ligands and two O atoms from aqua ligands. In (II), an extensive two-dimensional network of N—H...O, O—H...O and C—H...O hydrogen bonds includes R21(6) and R44(16) motif rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110037066/ga3156sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110037066/ga3156Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110037066/ga3156IIsup3.hkl
Contains datablock II

CCDC references: 798591; 798592

Comment top

Acesulfame (acs, C4H5SO4N) is an oxathinazione dioxide, systematically named 6-methyl-1,2,3-oxathiazin-4(3H)-one 2,2-dioxide. It was discovered by Clauss (Clauss & Jensen, 1973) in 1967 and, since 1988, after FDA (Food and Drug Administration) approval (Mukherjee & Chakrabarti, 1997), has been widely used as an artificial sweetener (Duffy & Anderson, 1998). Cyclohexane-1,2-diamine exist in two isomeric forms: cis- and trans-forms. The trans-isomer is more stable than the cis- and probably because of this it has been well studied (Morooka et al., 1991; Xu & Khokhar, 1992; Khokhar et al.,1993). Recently, investigations of the chromotropic properties of the transition metal complexes have attracted much attention owing to the potentially versatile applications of these complexes such as temperature sensors, thermochromic pigments, temperature indicators, security and novelty printing, coating, as well as in thermography and for recording optical information (Bamfield, 2002). The thermochromic phenomena observed in the transition metal complexes are generally associated with changes in the coordination geometry, ligand field strength and deaquation by heating. Previous studies have reported that similar cyclic diamine complexes exhibit colour changes and phase transitions as a result of hydrogen-bond breaking and reforming (El-Ayaan et al., 2001; Kapustyanyk & Korchak, 2000), liberation of neutral ligands (cyclohexane-1,2-diamine or aqua) from the structure of the complex (Pariya, Liao et al., 1998; İçbudak, Uyanık et al., 2007; İçbudak, Heren et al., 2005) and geometry changing from trans- to cis-isomers (Takahashi et al., 2002; Koner et al., 2002).

The hydrogen bonds existing in the structures also play an important role in the thermochromic phenomena, with changes in the absorption spectra (Das et al., 1998; Koner et al., 2002; Linert et al., 2001; Pariya, Liao et al., 1998). The chromotropic properties of acesulfame–amine–metal complexes have been studied extensively in this laboratory (İçbudak, Heren et al., 2005; İçbudak et al., 2006; İçbudak, Adıyaman et al., 2007; İçbudak, Uyanık et al., 2007). We report here the structures of the title compounds, (I) and (II), in which hydrogen bonding leads to different two-dimensional supramolecular networks.

The molecular structure of (I) and the atom-labelling scheme are shown in Fig. 1. The local structure around the CuII ion, which resides on a centre of symmetry, is that of a tetragonally distorted octahedron, of which the equatorial plane is formed by four amino N atoms of two trans-oriented cyclohexane-1,2-diamine ligands (Table 1). The axial positions in the octahedron are occupied by two N atoms of two acesulfamato ligands with the Cu—N distance longer than the corresponding distances in related structures (Tables 1 and 6). This elongation can be attributed to the static Jahn–Teller effect (Jahn & Teller, 1937), discussed below. Ring puckering parameters (Cremer & Pople, 1975) for (I) and (II) are given in Table 5. Atoms N1 and N2 are bonded to Cu1 to form a five-membered chelate ring (C1/N1/Cu1/N2/C6) while the acesulfame ring adopts a half-chair conformation and the cyclohexane C1–C6 ring adopts a chair conformation. The Cu—N bond lengths (Tables 1 and 6) are closely [very] similar to those reported by Pariya, Liao et al. (1998).

Compound (II) consists a 2+ cation of ZnII ions bonded by two cyclohexane-1,2-diamine ligands in the trans-form and two aqua ligands, two acesulfamate as anions and two water molecules (Fig. 2). The ZnII ion is located on a symmetry centre and has the overall geometry of a slightly tetragonally distorted octahedron, with the equatorial plane formed by four N atoms of two cyclohexane-1,2-diamine groups (Table 3). The axial positions in the octahedron are occupied by two aqua O atoms. Atoms N1 and N2 are bonded to Zn1 to form a five-membered chelate ring (C1/N1/Zn1/N2/C6) with the acesulfame anion ring adopting a similar half-chair conformation to the bound ligand in (I) (Table 5). The cyclohexane C1–C6 ring also adopts a similar chair conformation. The Zn—N bond lengths are closely [very] similar to those reported by Lalehzari et al. (2008). In each compound, the S O and CO distances are in good agreement with those found for structures containing the acesulfame ring (see, for example, İçbudak, Bulut et al., 2005; Dege et al., 2007). The slight difference between the carbonyl bond distances of both complexes can be explained in terms of different hydrogen-bond involvement of this group. That is, in the Cu complex (I) the carbonyl group only interacts with the amino group of cyclohexane-1,2-diamine while this group further interacts with an aqua ligand and water molecule in the Zn complex.

Both octahedral complexes in (I) and (II) exhibit tetragonal distortion by elongation along the axial (z) axis (Table 6). The tetragonal distortion in (I) is attributed to the non-spherically symmetric electronic configuration (Jahn–Teller effect) of Cu2+ (d9) (Pariya, Panneerselvan et al., 1998), and the difference between ligands in equatorial (trans-cyclohexane-1,2-diamine) and axial positions (acesulfamato). In (II) the smaller tetragonal distortion corresponds to the difference between the ligands in the equatorial (trans-cyclohexane-1,2-diamine) and axial position (aqua) given the symmetrical state of the Zn2+ (d10) ion and the different formal charge (2+) of the zinc atom. Comparisons of M—N distances (M = CuII, ZnII) in related tetragonally distorted octahedral compounds are given in Table 6. These show that the tetragonal distortion for (I) is at the extreme range of that found in similar compounds.

Molecules are linked by intermolecular hydrogen bonding, and we employ graph-set notation (Bernstein et al., 1995) to describe the resulting patterns (symmetry codes are as in Tables 2 and 4). Molecules of (I) are linked into sheets by a combination of N—H···O and C—H···O hydrogen bonds (Table 2). Figs. 3 and 4 show the way in which the amino group, carbonyl O atom, sulfonyl O atom and methyl atom C10 enter into intermolecular hydrogen-bonding interactions. Atom N1 acts as a hydrogen-bond donor, via atom H3, to atom O3i, so forming an S(6) motif. Atom N2 acts as a hydrogen-bond donor, via atom H4, to atom O3ii, so forming a centrosymmetric R22(12) ring centred at (0, 1/2, 1/2). Atom C10 acts as a hydrogen-bond donor, via atom H10B, to atom O1iv, so forming a C(6) chain running parallel to the [-100] direction. The combination of the N—H···O and C—H···O hydrogen bonds produces an R22(12) ring (Fig. 3). The intramolecular N1—H2···O1 hydrogen bond forms an S(6) motif. Atom N2 acts as a hydrogen-bond donor, via atom H5, to atom O2iii, so forming C(6) chains running parallel to the [001] direction . The combination of the C(6) chains along [001] generates a chain of edge-fused R22(12) rings centred at (1/2, 1/2, n + 1) (n = zero or integer) (Fig. 4).

In (II), the two-dimensional assemblies are formed by a combination of N—H···O, O—H···O and C—H···O hydrogen bonds (Table 4). The free water atom O2 acts as hydrogen-bond donor, via atoms H3 and H4, respectively, to atom O5iv and atom O3ii, so forming a centrosymmetric R44(16) ring centred at (1/2, 1, 1/2). The combination of the N2—H9···O2, C6i—H6i···O4iv, O2—H3···O5iv and O2—H4···O3ii hydrogen bonds along [1–10] generates a chain of edge-fused R33(13) and R44(16) rings. In addition to these, the C6—H6···O4iii and C2—H2A···O4iii hydrogen bonds produce an R21(6) ring (Fig. 5). Similarly, the combination of the N2—H8···O5, N1—H11···O2iii and O1—H2···O5i hydrogen bonds produce R21(6) and R32(8) rings (Fig. 6).

Whether (I) and (II) exhibit (thermo)chromotropic properties will be part of our continuing studies, in the light of these structural and crystal-packing results.

Related literature top

For related literature, see: Bamfield (2002); Bernstein et al. (1995); Clauss & Jensen (1973); Cremer & Pople (1975); Das et al. (1998); Dege et al. (2007); Duffy & Anderson (1998); El-Ayaan, Murata & Fukuda (2001); Fonseca et al. (2003); Jahn & Teller (1937); Kapustyanyk & Korchak (2000); Khokhar et al. (1993); Koner et al. (2002); Lalehzari et al. (2008); Linert et al. (2001); Morooka et al. (1991); Mukherjee & Chakrabarti (1997); Sheldrick (2008); Takahashi et al. (2002); Xu & Khokhar (1992); İçbudak et al. (2003, 2006).

Experimental top

[Cu(acs)2(H2O)4] and [Zn(acs)2(H2O)4] complexes were synthesized as reported earlier (İçbudak et al., 2006). A solution of (±)-trans-cyclohexane-1,2-diamine (2 mmol) in 50 ml of ethanol was added dropwise with stirring to a 343 K solution of [Cu(acs)2(H2O)4] (1 mmol) in 50 ml of ethanol. The solution was stirred at 343 K for 2 h and then cooled to ambient temperature. The resulting blue crystals of (I) were washed with acetone-1,2-dichloroethane (1:1) mixture and dried under vacuum (yield 85%). Elemental analyses: found (calculated) for C20H36CuN6O8S2: C 36.87 (38.99); H 6.15 (5.84); N 12.91 (13.64)%.

Similarly, a mixture of the (±)-trans-cyclohexane-1,2-diamine (2 mmol) and [Zn(acs)2(H2O)4] (1 mmol) yielded (II) as colourless crystals. Yield 88%. Elemental analyses: found (calculated) for C20H44N6O12S2Zn: C 36.77 (34.81); H 6.13 (6.38); N 12.87 (12.18)%.

Refinement top

For (I), 16 reflections affected by the backstop or clearly outlier data were omitted from the refinement using OMIT (SHELXL97; Sheldrick, 2008). The water H atoms were located in a difference map and refined subject to a DFIX (SHELXL97; Sheldrick, 2008) restraint of O—H = 0.83 (2) Å. The H atoms bonded to amino N atoms (N1 and N2) and C atoms (C1 and C6) were located in a difference map and refined freely. The methyl H atoms were constrained to an ideal geometry (C—H = 0.96 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the adjacent C—C bonds. The other H atoms attached to C atoms were refined using a riding model with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic C atoms and C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene C atoms since they could not be located from the Fourier map.

Computing details top

For both compounds, data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. (The symmetry code is as in Table 2.)
[Figure 2] Fig. 2. A view of the molecular structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. (The symmetry code is as in Table 4.)
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of R22(12) rings. H atoms not involved in these interactions have been omitted for clarity. (The symmetry codes are as in Table 2.)
[Figure 4] Fig. 4. Part of the crystal structure of (I), showing the formation of an edge-fused chain of R22(12) rings. H atoms not involved in these interactions have been omitted for clarity. (The symmetry codes are as in Table 2.)
[Figure 5] Fig. 5. Part of the crystal structure of (II), showing the formation of an edge-fused chain of R21(6), R33(13) and R44(16) rings. H atoms not involved in these interactions have been omitted for clarity. (The symmetry codes are as in Table 4.)
[Figure 6] Fig. 6. Part of the crystal structure of (II), showing the formation of R21(6) and R32(8) rings. H atoms not involved in these interactions have been omitted for clarity. (The symmetry codes are as in Table 4.)
(I) trans-bis(trans-cyclohexane-1,2-diamine)bis(6-methyl-2,2,4- trioxo-3,4-dihydro-1,2,3-oxathiazin-3-ido)copper(II) top
Crystal data top
[Cu(C4H4NO4S)2(C6H14N2)2]F(000) = 646
Mr = 616.21Dx = 1.442 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 13464 reflections
a = 7.3878 (2) Åθ = 1.8–28.5°
b = 22.2436 (9) ŵ = 0.97 mm1
c = 8.6550 (3) ÅT = 296 K
β = 93.716 (2)°Prism., dark blue
V = 1419.30 (8) Å30.47 × 0.44 × 0.33 mm
Z = 2
Data collection top
Stoe IPDS 2
diffractometer
3391 independent reflections
Radiation source: fine-focus sealed tube2964 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
w scan rotationθmax = 28.0°, θmin = 2.5°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 99
Tmin = 0.626, Tmax = 0.748k = 2929
13462 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.059P)2 + 0.420P]
where P = (Fo2 + 2Fc2)/3
3391 reflections(Δ/σ)max = 0.001
194 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Cu(C4H4NO4S)2(C6H14N2)2]V = 1419.30 (8) Å3
Mr = 616.21Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.3878 (2) ŵ = 0.97 mm1
b = 22.2436 (9) ÅT = 296 K
c = 8.6550 (3) Å0.47 × 0.44 × 0.33 mm
β = 93.716 (2)°
Data collection top
Stoe IPDS 2
diffractometer
3391 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2964 reflections with I > 2σ(I)
Tmin = 0.626, Tmax = 0.748Rint = 0.050
13462 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.47 e Å3
3391 reflectionsΔρmin = 0.54 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5712 (4)0.62157 (10)0.5899 (3)0.0557 (5)
H10.603 (4)0.6122 (12)0.708 (3)0.063 (7)*
C20.6277 (5)0.68507 (11)0.5515 (4)0.0754 (8)
H2A0.75780.68910.57160.090*
H2B0.59920.69270.44230.090*
C30.5326 (7)0.73088 (13)0.6459 (6)0.1138 (15)
H3A0.57920.72800.75300.137*
H3B0.56030.77080.60900.137*
C40.3332 (7)0.72296 (14)0.6384 (5)0.1065 (14)
H4A0.28420.73270.53470.128*
H4B0.28190.75100.70940.128*
C50.2753 (5)0.65949 (12)0.6784 (3)0.0694 (7)
H5A0.30650.65160.78710.083*
H5B0.14480.65570.66050.083*
C60.3686 (3)0.61396 (10)0.5801 (3)0.0532 (5)
H60.326 (3)0.6210 (11)0.460 (3)0.055 (7)*
C70.1083 (3)0.51590 (11)0.2410 (2)0.0472 (4)
C80.0207 (3)0.55466 (11)0.1533 (3)0.0532 (5)
H80.14110.54240.14060.064*
C90.0253 (3)0.60635 (12)0.0910 (3)0.0577 (6)
C100.0972 (4)0.64999 (17)0.0060 (5)0.0968 (12)
H10A0.07980.68930.05050.145*
H10B0.22100.63780.01350.145*
H10C0.06990.65110.10090.145*
N10.6484 (3)0.57544 (8)0.4923 (2)0.0448 (4)
H20.652 (4)0.5864 (13)0.404 (4)0.066 (9)*
H30.757 (5)0.5651 (14)0.524 (4)0.073 (9)*
N20.3314 (3)0.55074 (8)0.6170 (2)0.0443 (4)
H40.207 (4)0.5434 (14)0.601 (3)0.072 (9)*
H50.354 (4)0.5447 (14)0.710 (4)0.071 (9)*
N30.2898 (2)0.52816 (9)0.24080 (19)0.0466 (4)
O10.5170 (2)0.60183 (9)0.1660 (2)0.0649 (5)
O20.3497 (2)0.54643 (9)0.03629 (18)0.0612 (4)
O30.0537 (2)0.47445 (10)0.3214 (2)0.0693 (5)
O40.2046 (2)0.62562 (7)0.1005 (2)0.0587 (4)
S10.35411 (6)0.57181 (2)0.11408 (5)0.04402 (14)
Cu10.50000.50000.50000.04082 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0699 (15)0.0413 (10)0.0559 (12)0.0073 (10)0.0041 (10)0.0048 (9)
C20.099 (2)0.0442 (12)0.0847 (19)0.0160 (14)0.0153 (16)0.0004 (12)
C30.163 (4)0.0405 (14)0.142 (4)0.016 (2)0.039 (3)0.0201 (18)
C40.165 (4)0.0482 (15)0.112 (3)0.028 (2)0.047 (3)0.0013 (16)
C50.096 (2)0.0522 (13)0.0622 (14)0.0181 (13)0.0229 (13)0.0016 (11)
C60.0661 (14)0.0440 (11)0.0506 (11)0.0052 (10)0.0126 (10)0.0027 (9)
C70.0410 (10)0.0572 (11)0.0432 (10)0.0065 (9)0.0007 (8)0.0040 (9)
C80.0376 (10)0.0646 (14)0.0574 (12)0.0022 (9)0.0034 (8)0.0062 (10)
C90.0448 (11)0.0616 (13)0.0675 (14)0.0084 (10)0.0097 (10)0.0072 (11)
C100.0598 (17)0.096 (2)0.136 (3)0.0257 (17)0.0201 (18)0.051 (2)
N10.0444 (9)0.0442 (9)0.0459 (9)0.0072 (7)0.0033 (7)0.0023 (7)
N20.0454 (9)0.0437 (9)0.0447 (9)0.0022 (7)0.0108 (7)0.0009 (7)
N30.0395 (8)0.0602 (11)0.0398 (8)0.0057 (8)0.0004 (6)0.0071 (7)
O10.0474 (9)0.0839 (12)0.0627 (10)0.0210 (8)0.0023 (7)0.0189 (9)
O20.0674 (10)0.0776 (11)0.0392 (7)0.0104 (9)0.0086 (7)0.0014 (7)
O30.0467 (9)0.0873 (13)0.0730 (11)0.0160 (9)0.0024 (8)0.0332 (10)
O40.0509 (9)0.0462 (8)0.0800 (11)0.0002 (7)0.0120 (8)0.0060 (7)
S10.0389 (2)0.0545 (3)0.0388 (2)0.0016 (2)0.00378 (17)0.00674 (19)
Cu10.04103 (19)0.03682 (19)0.0457 (2)0.00619 (13)0.01121 (13)0.00339 (12)
Geometric parameters (Å, º) top
C1—N11.467 (3)C8—C91.324 (3)
C1—C61.504 (4)C8—H80.9300
C1—C21.516 (3)C9—O41.390 (3)
C1—H11.05 (3)C9—C101.489 (4)
C2—C31.508 (5)C10—H10A0.9600
C2—H2A0.9700C10—H10B0.9600
C2—H2B0.9700C10—H10C0.9600
C3—C41.481 (6)N1—Cu12.0077 (17)
C3—H3A0.9700N1—H20.81 (3)
C3—H3B0.9700N1—H30.86 (3)
C4—C51.522 (4)N2—Cu12.0036 (18)
C4—H4A0.9700N2—H40.93 (3)
C4—H4B0.9700N2—H50.82 (3)
C5—C61.517 (3)N3—S11.5617 (17)
C5—H5A0.9700N3—Cu12.7175 (16)
C5—H5B0.9700O1—S11.4235 (16)
C6—N21.472 (3)O2—S11.4171 (17)
C6—H61.08 (3)O4—S11.6277 (17)
C7—O31.239 (3)Cu1—N2i2.0036 (18)
C7—N31.368 (3)Cu1—N1i2.0077 (17)
C7—C81.461 (3)
N1—C1—C6108.14 (18)C8—C9—O4120.8 (2)
N1—C1—C2113.8 (2)C8—C9—C10127.1 (2)
C6—C1—C2112.3 (2)O4—C9—C10112.0 (2)
N1—C1—H1110.4 (15)C9—C10—H10A109.5
C6—C1—H1101.1 (15)C9—C10—H10B109.5
C2—C1—H1110.4 (15)H10A—C10—H10B109.5
C3—C2—C1111.5 (3)C9—C10—H10C109.5
C3—C2—H2A109.3H10A—C10—H10C109.5
C1—C2—H2A109.3H10B—C10—H10C109.5
C3—C2—H2B109.3C1—N1—Cu1109.41 (14)
C1—C2—H2B109.3C1—N1—H2112 (2)
H2A—C2—H2B108.0Cu1—N1—H2110 (2)
C4—C3—C2113.1 (3)C1—N1—H3113 (2)
C4—C3—H3A109.0Cu1—N1—H3105 (2)
C2—C3—H3A109.0H2—N1—H3107 (3)
C4—C3—H3B109.0C6—N2—Cu1107.33 (13)
C2—C3—H3B109.0C6—N2—H4109.3 (19)
H3A—C3—H3B107.8Cu1—N2—H4117.6 (19)
C3—C4—C5113.2 (3)C6—N2—H5110 (2)
C3—C4—H4A108.9Cu1—N2—H5108 (2)
C5—C4—H4A108.9H4—N2—H5105 (3)
C3—C4—H4B108.9C7—N3—S1117.86 (15)
C5—C4—H4B108.9C7—N3—Cu1117.43 (13)
H4A—C4—H4B107.7S1—N3—Cu1122.65 (9)
C6—C5—C4110.3 (2)C9—O4—S1114.66 (15)
C6—C5—H5A109.6O2—S1—O1116.47 (11)
C4—C5—H5A109.6O2—S1—N3114.03 (11)
C6—C5—H5B109.6O1—S1—N3111.05 (10)
C4—C5—H5B109.6O2—S1—O4104.58 (10)
H5A—C5—H5B108.1O1—S1—O4103.51 (11)
N2—C6—C1107.13 (19)N3—S1—O4105.78 (9)
N2—C6—C5114.7 (2)N2—Cu1—N2i180.000 (1)
C1—C6—C5112.4 (2)N2—Cu1—N184.52 (7)
N2—C6—H6107.6 (13)N2i—Cu1—N195.48 (8)
C1—C6—H6105.4 (14)N2—Cu1—N1i95.48 (8)
C5—C6—H6109.2 (14)N2i—Cu1—N1i84.52 (8)
O3—C7—N3120.3 (2)N1—Cu1—N1i180.0
O3—C7—C8120.4 (2)N2—Cu1—N386.94 (7)
N3—C7—C8119.23 (19)N2i—Cu1—N393.06 (7)
C9—C8—C7123.2 (2)N1—Cu1—N393.67 (7)
C9—C8—H8118.4N1i—Cu1—N386.33 (7)
C7—C8—H8118.4
N1—C1—C2—C3175.3 (3)C10—C9—O4—S1152.4 (2)
C6—C1—C2—C352.0 (4)C7—N3—S1—O273.2 (2)
C1—C2—C3—C451.5 (5)Cu1—N3—S1—O2123.51 (11)
C2—C3—C4—C552.8 (5)C7—N3—S1—O1152.78 (18)
C3—C4—C5—C652.9 (4)Cu1—N3—S1—O110.48 (16)
N1—C1—C6—N252.7 (2)C7—N3—S1—O441.1 (2)
C2—C1—C6—N2179.1 (2)Cu1—N3—S1—O4122.14 (11)
N1—C1—C6—C5179.6 (2)C9—O4—S1—O273.64 (18)
C2—C1—C6—C554.1 (3)C9—O4—S1—O1163.93 (17)
C4—C5—C6—N2176.1 (3)C9—O4—S1—N347.08 (19)
C4—C5—C6—C153.4 (4)C6—N2—Cu1—N120.98 (15)
O3—C7—C8—C9166.0 (3)C6—N2—Cu1—N1i159.02 (15)
N3—C7—C8—C910.1 (4)C6—N2—Cu1—N373.01 (15)
C7—C8—C9—O42.8 (4)C1—N1—Cu1—N27.71 (16)
C7—C8—C9—C10177.1 (3)C1—N1—Cu1—N2i172.29 (16)
C6—C1—N1—Cu134.4 (2)C1—N1—Cu1—N394.27 (15)
C2—C1—N1—Cu1159.9 (2)C7—N3—Cu1—N255.26 (17)
C1—C6—N2—Cu145.0 (2)S1—N3—Cu1—N2108.07 (13)
C5—C6—N2—Cu1170.4 (2)C7—N3—Cu1—N2i124.74 (17)
O3—C7—N3—S1168.1 (2)S1—N3—Cu1—N2i71.93 (13)
C8—C7—N3—S115.9 (3)C7—N3—Cu1—N1139.57 (17)
O3—C7—N3—Cu127.8 (3)S1—N3—Cu1—N123.77 (13)
C8—C7—N3—Cu1148.25 (17)C7—N3—Cu1—N1i40.43 (17)
C8—C9—O4—S127.7 (3)S1—N3—Cu1—N1i156.23 (13)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O10.81 (3)2.25 (3)2.984 (3)151 (3)
N2—H4···O3ii0.93 (3)2.12 (3)2.981 (2)153 (2)
N1—H3···O3i0.86 (3)2.07 (3)2.866 (3)154 (3)
N2—H5···O2iii0.82 (3)2.20 (3)2.997 (2)164 (3)
C10—H10B···O1iv0.962.543.421 (4)152
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x, y, z+1; (iv) x1, y, z.
(II) trans-diaquabis(cyclohexane-1,2-diamine)zinc(II) 6-methyl-2,2,4- trioxo-3,4-dihydro-1,2,3-oxathiazin-3-ide dihydrate top
Crystal data top
[Zn(C6H14N2)2(H2O)2](C4H4NO4S)2·2H2OZ = 1
Mr = 690.10F(000) = 364
Triclinic, P1Dx = 1.517 Mg m3
Hall symbol: -P1Mo Kα radiation, λ = 0.71073 Å
a = 6.7489 (8) ÅCell parameters from 7159 reflections
b = 8.8871 (11) Åθ = 1.6–28.5°
c = 13.5562 (15) ŵ = 1.02 mm1
α = 73.476 (9)°T = 296 K
β = 80.522 (9)°Prism., colourless
γ = 77.176 (9)°0.44 × 0.38 × 0.25 mm
V = 755.56 (15) Å3
Data collection top
Stoe IPDS 2
diffractometer
2971 independent reflections
Radiation source: fine-focus sealed tube2618 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
w scan rotationθmax = 26.0°, θmin = 1.6°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 88
Tmin = 0.646, Tmax = 0.795k = 1010
7159 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.3084P]
where P = (Fo2 + 2Fc2)/3
2971 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.56 e Å3
7 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Zn(C6H14N2)2(H2O)2](C4H4NO4S)2·2H2Oγ = 77.176 (9)°
Mr = 690.10V = 755.56 (15) Å3
Triclinic, P1Z = 1
a = 6.7489 (8) ÅMo Kα radiation
b = 8.8871 (11) ŵ = 1.02 mm1
c = 13.5562 (15) ÅT = 296 K
α = 73.476 (9)°0.44 × 0.38 × 0.25 mm
β = 80.522 (9)°
Data collection top
Stoe IPDS 2
diffractometer
2971 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2618 reflections with I > 2σ(I)
Tmin = 0.646, Tmax = 0.795Rint = 0.023
7159 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0347 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.56 e Å3
2971 reflectionsΔρmin = 0.36 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9183 (4)0.5081 (3)0.71767 (17)0.0475 (5)
H50.829 (4)0.625 (3)0.695 (2)0.062 (8)*
C20.9712 (4)0.4758 (3)0.82760 (17)0.0523 (6)
H2A1.06070.37260.84580.063*
H2B1.04400.55640.83110.063*
C30.7805 (4)0.4772 (4)0.90487 (19)0.0630 (7)
H3A0.81970.44970.97440.076*
H3B0.69810.58380.89150.076*
C40.6568 (5)0.3613 (4)0.8974 (2)0.0699 (8)
H4A0.53480.36610.94630.084*
H4B0.73590.25380.91530.084*
C50.5956 (4)0.3990 (3)0.78771 (18)0.0518 (5)
H5A0.51950.32050.78400.062*
H5B0.50800.50330.77150.062*
C60.7851 (4)0.3969 (3)0.70907 (17)0.0466 (5)
H60.884 (4)0.278 (3)0.725 (2)0.060 (7)*
C70.7074 (4)0.0321 (3)0.65712 (17)0.0458 (5)
C80.8194 (3)0.0524 (3)0.74538 (18)0.0486 (5)
H70.95750.09440.73320.058*
C90.7346 (3)0.0727 (3)0.84261 (18)0.0454 (5)
C100.8393 (4)0.1350 (3)0.9377 (2)0.0623 (7)
H10A0.98380.16270.91930.093*
H10B0.78890.22810.98020.093*
H10C0.81310.05470.97530.093*
N11.1015 (3)0.4927 (3)0.64135 (15)0.0481 (5)
H101.183 (5)0.405 (4)0.663 (2)0.076 (10)*
H111.164 (4)0.566 (3)0.638 (2)0.051 (8)*
N20.7345 (3)0.4428 (3)0.60019 (14)0.0419 (4)
H80.691 (4)0.367 (3)0.5890 (19)0.047 (7)*
H90.639 (5)0.522 (4)0.590 (2)0.062 (8)*
N30.5014 (3)0.0754 (2)0.67060 (15)0.0516 (5)
O10.8650 (3)0.7628 (2)0.47792 (16)0.0596 (4)
H10.749 (3)0.807 (4)0.478 (3)0.121 (16)*
H20.942 (4)0.825 (3)0.463 (2)0.074 (10)*
O20.3959 (4)0.7348 (3)0.5918 (2)0.0866 (7)
H30.341 (6)0.802 (4)0.545 (2)0.100 (13)*
H40.384 (5)0.775 (4)0.6394 (19)0.091 (12)*
O30.3569 (3)0.1605 (2)0.77953 (14)0.0608 (4)
O40.2057 (3)0.1030 (2)0.80124 (16)0.0691 (5)
O50.8022 (3)0.0759 (2)0.56966 (13)0.0646 (5)
O60.5266 (2)0.0264 (2)0.86540 (12)0.0539 (4)
S10.38368 (8)0.00395 (7)0.77512 (4)0.04680 (16)
Zn11.00000.50000.50000.04444 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0465 (12)0.0597 (14)0.0381 (11)0.0097 (10)0.0016 (9)0.0171 (10)
C20.0554 (14)0.0643 (15)0.0378 (11)0.0031 (11)0.0079 (10)0.0185 (10)
C30.0757 (18)0.0740 (17)0.0376 (12)0.0081 (14)0.0001 (11)0.0199 (11)
C40.089 (2)0.0738 (18)0.0417 (13)0.0217 (16)0.0130 (13)0.0130 (12)
C50.0501 (13)0.0571 (14)0.0474 (12)0.0151 (11)0.0076 (10)0.0153 (10)
C60.0469 (12)0.0530 (13)0.0395 (11)0.0080 (10)0.0000 (9)0.0151 (9)
C70.0506 (12)0.0441 (12)0.0446 (12)0.0141 (10)0.0043 (10)0.0107 (9)
C80.0409 (11)0.0521 (13)0.0509 (13)0.0076 (10)0.0069 (10)0.0100 (10)
C90.0470 (12)0.0433 (11)0.0477 (12)0.0099 (9)0.0107 (9)0.0102 (9)
C100.0654 (16)0.0682 (17)0.0535 (14)0.0131 (13)0.0211 (12)0.0072 (12)
N10.0398 (10)0.0672 (14)0.0410 (10)0.0131 (10)0.0009 (8)0.0195 (9)
N20.0404 (10)0.0489 (11)0.0393 (9)0.0086 (9)0.0032 (7)0.0165 (8)
N30.0520 (11)0.0551 (11)0.0450 (10)0.0059 (9)0.0115 (9)0.0083 (8)
O10.0526 (11)0.0561 (8)0.0709 (12)0.0127 (8)0.0005 (9)0.0191 (9)
O20.118 (2)0.0666 (13)0.0775 (15)0.0230 (13)0.0444 (14)0.0346 (12)
O30.0625 (11)0.0584 (11)0.0667 (11)0.0184 (8)0.0028 (9)0.0211 (9)
O40.0504 (10)0.0771 (13)0.0781 (13)0.0115 (9)0.0066 (9)0.0355 (10)
O50.0639 (11)0.0806 (13)0.0445 (9)0.0230 (10)0.0001 (8)0.0046 (8)
O60.0480 (9)0.0723 (11)0.0430 (8)0.0071 (8)0.0055 (7)0.0201 (8)
S10.0405 (3)0.0525 (3)0.0489 (3)0.0036 (2)0.0064 (2)0.0183 (2)
Zn10.0391 (2)0.0643 (3)0.03440 (19)0.01332 (16)0.00247 (13)0.02037 (16)
Geometric parameters (Å, º) top
C1—N11.484 (3)C9—O61.381 (3)
C1—C61.514 (3)C9—C101.479 (3)
C1—C21.522 (3)C10—H10A0.9600
C1—H51.07 (3)C10—H10B0.9600
C2—C31.520 (3)C10—H10C0.9600
C2—H2A0.9700N1—Zn12.118 (2)
C2—H2B0.9700N1—H100.85 (3)
C3—C41.496 (4)N1—H110.84 (3)
C3—H3A0.9700N2—Zn12.1270 (19)
C3—H3B0.9700N2—H80.85 (3)
C4—C51.533 (4)N2—H90.84 (3)
C4—H4A0.9700N3—S11.564 (2)
C4—H4B0.9700O1—Zn12.2631 (19)
C5—C61.524 (3)O1—H10.793 (18)
C5—H5A0.9700O1—H20.808 (17)
C5—H5B0.9700O2—H30.815 (18)
C6—N21.491 (3)O2—H40.810 (18)
C6—H61.10 (3)O3—S11.4259 (19)
C7—O51.251 (3)O4—S11.4201 (18)
C7—N31.354 (3)O6—S11.6224 (17)
C7—C81.449 (3)Zn1—N1i2.118 (2)
C8—C91.326 (3)Zn1—N2i2.1270 (19)
C8—H70.9300Zn1—O1i2.2631 (19)
N1—C1—C6107.49 (18)C9—C10—H10A109.5
N1—C1—C2112.97 (19)C9—C10—H10B109.5
C6—C1—C2112.1 (2)H10A—C10—H10B109.5
N1—C1—H5109.0 (15)C9—C10—H10C109.5
C6—C1—H5105.0 (15)H10A—C10—H10C109.5
C2—C1—H5110.0 (15)H10B—C10—H10C109.5
C3—C2—C1111.4 (2)C1—N1—Zn1107.54 (14)
C3—C2—H2A109.3C1—N1—H10110 (2)
C1—C2—H2A109.3Zn1—N1—H10110 (2)
C3—C2—H2B109.3C1—N1—H11107.8 (19)
C1—C2—H2B109.3Zn1—N1—H11114.3 (18)
H2A—C2—H2B108.0H10—N1—H11107 (3)
C4—C3—C2111.0 (2)C6—N2—Zn1108.25 (14)
C4—C3—H3A109.4C6—N2—H8109.3 (17)
C2—C3—H3A109.4Zn1—N2—H8112.8 (17)
C4—C3—H3B109.4C6—N2—H9111 (2)
C2—C3—H3B109.4Zn1—N2—H9109 (2)
H3A—C3—H3B108.0H8—N2—H9107 (3)
C3—C4—C5111.0 (2)C7—N3—S1118.54 (16)
C3—C4—H4A109.4Zn1—O1—H1130 (3)
C5—C4—H4A109.4Zn1—O1—H2118 (2)
C3—C4—H4B109.4H1—O1—H2111 (3)
C5—C4—H4B109.4H3—O2—H4107 (3)
H4A—C4—H4B108.0C9—O6—S1116.96 (14)
C6—C5—C4110.4 (2)O4—S1—O3116.33 (12)
C6—C5—H5A109.6O4—S1—N3110.87 (12)
C4—C5—H5A109.6O3—S1—N3112.72 (11)
C6—C5—H5B109.6O4—S1—O6103.39 (11)
C4—C5—H5B109.6O3—S1—O6105.74 (11)
H5A—C5—H5B108.1N3—S1—O6106.76 (10)
N2—C6—C1107.97 (18)N1—Zn1—N1i180.000 (1)
N2—C6—C5112.77 (19)N1—Zn1—N281.81 (7)
C1—C6—C5111.64 (19)N1i—Zn1—N298.19 (8)
N2—C6—H6109.7 (14)N1—Zn1—N2i98.19 (8)
C1—C6—H6104.1 (14)N1i—Zn1—N2i81.81 (7)
C5—C6—H6110.3 (14)N2—Zn1—N2i180.0
O5—C7—N3119.7 (2)N1—Zn1—O190.27 (9)
O5—C7—C8119.9 (2)N1i—Zn1—O189.73 (9)
N3—C7—C8120.1 (2)N2—Zn1—O189.50 (8)
C9—C8—C7123.2 (2)N2i—Zn1—O190.50 (8)
C9—C8—H7118.4N1—Zn1—O1i89.73 (9)
C7—C8—H7118.4N1i—Zn1—O1i90.27 (9)
C8—C9—O6121.0 (2)N2—Zn1—O1i90.50 (8)
C8—C9—C10127.5 (2)N2i—Zn1—O1i89.50 (8)
O6—C9—C10111.4 (2)O1—Zn1—O1i180.00 (11)
N1—C1—C2—C3174.7 (2)O5—C7—N3—S1169.85 (18)
C6—C1—C2—C353.0 (3)C8—C7—N3—S115.7 (3)
C1—C2—C3—C455.5 (3)C8—C9—O6—S120.1 (3)
C2—C3—C4—C557.9 (3)C10—C9—O6—S1162.98 (17)
C3—C4—C5—C657.4 (3)C7—N3—S1—O4148.71 (19)
N1—C1—C6—N257.7 (2)C7—N3—S1—O378.9 (2)
C2—C1—C6—N2177.52 (19)C7—N3—S1—O636.8 (2)
N1—C1—C6—C5177.78 (19)C9—O6—S1—O4156.22 (18)
C2—C1—C6—C553.0 (3)C9—O6—S1—O381.05 (18)
C4—C5—C6—N2176.4 (2)C9—O6—S1—N339.21 (19)
C4—C5—C6—C154.7 (3)C1—N1—Zn1—N218.66 (17)
O5—C7—C8—C9165.2 (2)C1—N1—Zn1—N2i161.34 (17)
N3—C7—C8—C99.2 (4)C1—N1—Zn1—O170.80 (18)
C7—C8—C9—O66.2 (4)C1—N1—Zn1—O1i109.20 (18)
C7—C8—C9—C10170.2 (2)C6—N2—Zn1—N111.85 (16)
C6—C1—N1—Zn145.7 (2)C6—N2—Zn1—N1i168.15 (16)
C2—C1—N1—Zn1169.95 (17)C6—N2—Zn1—O1102.20 (16)
C1—C6—N2—Zn140.0 (2)C6—N2—Zn1—O1i77.80 (16)
C5—C6—N2—Zn1163.79 (16)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H8···O50.85 (3)2.60 (3)3.324 (3)143 (2)
N2—H9···O20.84 (3)2.21 (3)3.042 (3)170 (3)
O2—H4···O3ii0.81 (2)2.10 (2)2.903 (3)170 (3)
C6—H6···O4iii1.10 (3)2.55 (3)3.530 (3)147.5 (19)
C2—H2A···O4iii0.972.583.430 (3)147
N1—H11···O2iii0.84 (3)2.30 (3)3.108 (4)163 (2)
O2—H3···O5iv0.82 (2)1.89 (2)2.698 (3)169 (4)
O1—H2···O5i0.81 (2)2.03 (2)2.818 (3)163 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x+1, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu(C4H4NO4S)2(C6H14N2)2][Zn(C6H14N2)2(H2O)2](C4H4NO4S)2·2H2O
Mr616.21690.10
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)296296
a, b, c (Å)7.3878 (2), 22.2436 (9), 8.6550 (3)6.7489 (8), 8.8871 (11), 13.5562 (15)
α, β, γ (°)90, 93.716 (2), 9073.476 (9), 80.522 (9), 77.176 (9)
V3)1419.30 (8)755.56 (15)
Z21
Radiation typeMo KαMo Kα
µ (mm1)0.971.02
Crystal size (mm)0.47 × 0.44 × 0.330.44 × 0.38 × 0.25
Data collection
DiffractometerStoe IPDS 2
diffractometer
Stoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Integration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.626, 0.7480.646, 0.795
No. of measured, independent and
observed [I > 2σ(I)] reflections
13462, 3391, 2964 7159, 2971, 2618
Rint0.0500.023
(sin θ/λ)max1)0.6590.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.06 0.034, 0.089, 1.03
No. of reflections33912971
No. of parameters194228
No. of restraints07
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.540.56, 0.36

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) for (I) top
C7—O31.239 (3)N3—Cu12.7175 (16)
N1—Cu12.0077 (17)O1—S11.4235 (16)
N2—Cu12.0036 (18)O2—S11.4171 (17)
O2—S1—O1116.47 (11)N2i—Cu1—N393.06 (7)
N2—Cu1—N184.52 (7)N1—Cu1—N393.67 (7)
N2i—Cu1—N195.48 (8)N1i—Cu1—N386.33 (7)
N2—Cu1—N386.94 (7)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O10.81 (3)2.25 (3)2.984 (3)151 (3)
N2—H4···O3ii0.93 (3)2.12 (3)2.981 (2)153 (2)
N1—H3···O3i0.86 (3)2.07 (3)2.866 (3)154 (3)
N2—H5···O2iii0.82 (3)2.20 (3)2.997 (2)164 (3)
C10—H10B···O1iv0.962.543.421 (4)152.2
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x, y, z+1; (iv) x1, y, z.
Selected geometric parameters (Å, º) for (II) top
C7—O51.251 (3)O1—Zn12.2631 (19)
N1—Zn12.118 (2)O3—S11.4259 (19)
N2—Zn12.1270 (19)O4—S11.4201 (18)
O4—S1—O3116.33 (12)N2—Zn1—O189.50 (8)
N1—Zn1—N281.81 (7)N1—Zn1—O1i89.73 (9)
N1—Zn1—O190.27 (9)N2—Zn1—O1i90.50 (8)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H8···O50.85 (3)2.60 (3)3.324 (3)143 (2)
N2—H9···O20.84 (3)2.21 (3)3.042 (3)170 (3)
O2—H4···O3ii0.810 (18)2.103 (18)2.903 (3)170 (3)
C6—H6···O4iii1.10 (3)2.55 (3)3.530 (3)147.5 (19)
C2—H2A···O4iii0.972.583.430 (3)147
N1—H11···O2iii0.84 (3)2.30 (3)3.108 (4)163 (2)
O2—H3···O5iv0.815 (18)1.893 (18)2.698 (3)169 (4)
O1—H2···O5i0.808 (17)2.034 (18)2.818 (3)163 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x+1, y+1, z+1.
Puckering parameters (Å, °) (Cremer &amp; Pople, 1975) top
RingQθϕ
(I) S1,O4,C9,C8,C7,N30.4395 (16)60.7 (3)11.4 (3)
(II) S1,O6,C9,C8,C7,N30.3781 (16)62.4 (3)5.7 (4)
(I) C1–C60.529 (4)178.2 (4)104 (12)
(II) C1–C60.563 (3)3.6 (3)181 (5)
Comparison of Zn,Cu—N bond distances (Å) and angles(°) in related compounds. top
Compound(Cu,Zn)—N (equatorial)(Cu,Zn)—O,N axialN—M—N angle most distorted from 90°Reference
(I)2.077 (17), 2.0036 (18)2.7175 (16)95.48 (8)this paper
(II)2.118 (2), 2.1270 (19)2.2631 (19)90.50 (8)this paper
[Cu(dmen)2(H2O)2](acs)2a2.035 (2), 2.051 (2)2.479 (2)94.9 (1)İçbudak, Uyanık et al. (2007)
6-Cu(II)OTfb2.019 (7), 2.017 (6), 2.056 (4), 2.022 (5)2.530 (4), 2.525 (4)85.3 (2)Fonseca et al. (2003)
[Cu(dmen)2(H2O)2](sac)2a,c2.040 (2), 2.052 (2)2.522 (2)94.7 (1)İçbudak et al. (2003)
[Cu(dpyam)2(H2O)2](S4O6)d2.001 (2),2.021 (2)2.458 (3)94.05 (8)Youngme & Chaichit (2005)
[Cu(dpyam)2(CF3SO3)2]d1.983 (7), 1.999 (7), 2.022 (7), 2.030 (7)2.498 (7), 2.471 (7)95.2 (3)Youngme & Chaichit (2002)
[CuL2(H2O)2]Cl2e2.044 (2), 2.027 (3)2.590 (2)95.8 (1)Pariya, Liao et al. (1998)
[CuL2(NO3)2]e1.990 (4), 2.006 (4)2.620 (3)95.2 (2)Pariya, Liao et al. (1998)
Notes: (a) dmen is N,N'-dimethylethylenediamine and acs is 6-methyl-1,2,3-oxathiazin-4(3H)-one 2,2-dioxide; (b) 6 is N,N'-bis(2-ethylphenylamino)cyclohexane and OTf is trifluoromethanesulfonate; (c) sac is 1,1-dioxo-1,2-benzothiazol-3-one; (d) dpyam is di-2-pyridylamine; (e) L is cyclohexane-1,2-diamine.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds