Download citation
Download citation
link to html
Maleic acid and fumaric acid, the Z and E isomers of butenedioic acid, form 1:1 adducts with 2-amino-1,3-thia­zole, namely 2-amino-1,3-thia­zolium hydrogen maleate (2ATHM), C3H5N2S+·C4H3O4, and 2-amino-1,3-thia­zolium hydrogen fumarate (2ATHF), C3H5N2S+·C4H3O4, respectively. In both compounds, protonation of the ring N atom of the 2-amino-1,3-thia­zole and deprotonation of one of the carboxyl groups are observed. The asymmetric unit of 2ATHF contains three independent ion pairs. The hydrogen maleate ion of 2ATHM shows a short intra­molecular O—H...O hydrogen bond with an O...O distance of 2.4663 (19) Å. An extensive hydrogen-bonded network is observed in both compounds, involving N—H...O and O—H...O hydrogen bonds. 2ATHM forms two-dimensional sheets parallel to the ab plane, extending as independent parallel sheets along the c axis, whereas 2ATHF forms two-dimensional zigzag layers parallel to the bc plane, extending as independent parallel layers along the a axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110023206/ga3150sup1.cif
Contains datablocks global, 2ATHM, 2ATHF

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110023206/ga31502ATHMsup2.hkl
Contains datablock 2ATHM

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110023206/ga31502ATHFsup3.hkl
Contains datablock 2ATHF

CCDC references: 737178; 751455

Comment top

Many naturally occurring and synthetic thiazole derivatives exhibit biological activities, such as antibiotic, anti-inflammatory, antibacterial and anthelmintic properties (Metzger, 1984; Crews et al., 1988; Shinagawa et al., 1997; Shivarama Holla et al., 2003). Crystal structures and hydrogen-bonding patterns of derivatives of 2-amino-1,3-thiazole have already been reported (Lynch, 2002; Lynch & McClenaghan, 2004, 2005; Glidewell et al., 2004). Maleic acid, the Z isomer of butenedioic acid, is a simple building block in two- and three-dimensional supramolecular architectures (Bowes et al., 2003; Jin et al., 2003), and many crystal structures of 1:1 organic salts of maleic acid with organoamines have been reported to explain their aggregation patterns and hydrogen-bonding interactions (Alagar et al., 2001; Rajagopal et al., 2001; Lah & Leban, 2003). In all such structures, the maleic acid exists in either a monoionized state or its fully deprotonated form. Fumaric acid, the E isomer of butenedioic acid, is a key intermediate in the biosynthesis of organic acids (Natarajan et al., 2009). An extensive network of hydrogen bonding has been observed in the majority of the crystal structures of salts of fumaric acid (Alagar et al., 2003; Natarajan et al., 2009; Büyükgüngör et al., 2004).

The present study reports the structures of 2ATHM and 2ATHF, 1:1 organic salts of 2-amino-1,3-thiazole with the Z and E isomers of butenedioic acid, respectively. This work is a continuation of the study of the salts of the Z and E isomers of butenedioic acid with 8-hydroxyquinoline reported from our laboratory recently (Franklin & Balasubramanian, 2009). The crystal structure of the salt of 2-amino-1,3-thiazole with succinnic acid has also been reported by us recently (Fun et al., 2009). In the present study, the effect of the isomers on the conformational features and hydrogen-bonding networks in the 2-amino-1,3-thiazole adducts are analysed and compared with those of related structures.

The molecular structures of 2ATHM and 2ATHF are shown in Figs. 1 and 2, respectively. The asymmetric unit of 2ATHM consists of a semimaleate anion and a 2-amino-1,3-thiazolium cation, while that of 2ATHF consists of three independent semifumarate anions and 2-amino-1,3-thiazolium cations. The 2-amino-1,3-thiazolium cations in both compounds are protonated at their ring N atoms, which is confirmed by the widening of the internal C—N—C angle from the value in unprotonated 2-amino-1,3-thiazole (Caranoni & Reboul, 1982) (Table 1). A similar configuration was observed in 2,2'-diamino-4,4'-bi-1,3-thiazolium fumarate (Liu et al., 2003). There is an increase in the C—S—C bond angles and a decrease in the N—C—S bond angles of the cations of 2ATHM and 2ATHF from the value in neutral 2-amino-1,3-thiazole (Caranoni & Reboul, 1982) (Table 1). These observed values are comparable with those found in bis(2-amino-1,3-thiazolium) succinate succinic acid (Fun et al., 2009).

The 2-amino-1,3-thiazolium ring of 2ATHM is essentially planar, with the maximum deviation from planarity being 0.007 (1) Å for atom C1. Similarly, the three 2-amino-1,3-thiazolium rings of 2ATHF are essentially planar, with the maximum deviations from planarity being 0.004 (3) Å for atom C14, 0.006 (3) Å for atom C18 and 0.003 (3) Å for atom C21. The semimaleate and semifumarate anions are almost planar. The angle between the planes of the two halves of the semimaleate anion in 2ATHM (O1/O2/C4/C5 and O3/O4/C6/C7) is 5.81 (12)°, while the angles between the planes of two halves of the three semifumarate anions in 2ATHF are 11.76 (18), 16.3 (2) and 13.47 (19)° [Please refer angles to specific anions].

Extensive networks of N—H···O and O—H···O hydrogen bonds (Tables 2 and 3) are observed to stabilize the crystal packing of both 2ATHM and 2ATHF. Parts of the crystal packing of the molecules, depicting the hydrogen-bonding interactions and various hydrogen-bonded motifs formed in 2ATHM and 2ATHF, are shown in Figs. 3 and 4, respectively. In 2ATHM, an intramolecular hydrogen bond between atoms O1 and O4 of the semimaleate anion is asymmetric and generates an S(7) motif (Bernstein et al., 1995), as observed in 8-hydroxyquinolinium hydrogen maleate (Franklin & Balasubramanian, 2009). This intramolecular hydrogen bond with an S(7) motif is a common occurrence in several salts of maleate (Alagar et al., 2001, 2002; Rajagopal et al., 2001, 2002). The corresponding intramolecular hydrogen bond with an S(5) motif is found in the semifumarate anion of 8-hydroxyquinolinium hydrogen fumarate (Franklin & Balasubramanian, 2009) but is not observed here in the semifumarate anions of 2ATHF. The two structures here differ, with intermolecular hydrogen-bonding interactions observed between the semifumarate anions in 2ATHF but not between the semimaleate anions in 2ATHM. In both 2ATHM and 2ATHF, the Namine and Nring atoms of the 2-amino-1,3-thiazolium cations link with the deprotonated carboxylate groups of the anions through strong N—H···O hydrogen bonds, to form a common cyclic ring motif denoted by R22(8). Similar R22(8) motifs have been observed in the vast majority of adducts/organic salts comprising a 2-amino-heterocycle and a carboxylic acid molecule (Lynch, 2004; Büyükgüngör et al., 2004; Fun et al., 2009).

In 2ATHM, a pair of 2-amino-1,3-thiazolium cations is linked to a pair of maleate anions through Namine—H···O and Nring—H···O hydrogen bonds, in which the acceptor O atom forms a bifurcated interaction (entries 3 and 4 in Table 2), along with two C—H···O interactions (entries 5 and 6 in Table 2), resulting in a supramolecular ring motif of type R34(14). Two Namine—H···O hydrogen bonds (entries 2 and 3 in Table 2) and two C—H···O interactions (entries 5 and 6 in Table 2), along with an intramolecular O—H···O hydrogen bond, form a ring motif of type R44(16). The combination of these interactions with two other supramolecular R22(8) and R34(14) motifs forms two-dimensional sheets extending parallel to the ab plane (Fig. 5). The overall packing of the structure consists of supramolecular sheets built from anions and cations stacked discretely one above the other along the [001] direction.

In 2ATHF, a very simple one-dimensional substructure is generated by an intermolecular interaction between the anions alone. A second-level graph-set motif of D22(9) (Sudbeck et al., 1995) is formed by three independent fumarate anions linked through O—H···O hydrogen bonds (entries 8 and 12 in Table 3). These D22(9) motifs are linked through an O—H···O hydrogen bond (entry 7 in Table 3), forming a one-dimensional anionic chain extending along the [001] direction. A similar one-dimensional anionic chain is observed in most of the fumarate salts (Franklin & Balasubramanian, 2009; Bowes et al., 2003; Büyükgüngör et al., 2004). The cations are linked to these anionic chains through N—H···O hydrogen bonds to form a ring motif of type R54(24). These alternately fused R22(8) (mentioned earlier) and R54(24) supramolecular motifs combine with the D22(9) motif to generate a two-dimensional hydrogen-bonded zigzag layer extending parallel to the bc plane (Fig. 6). This matrix extends along the [100] direction as parallel independent layers, with no classical hydrogen bonds observed to bind the layers.

Related literature top

For related literature, see: Alagar et al. (2001, 2002, 2003); Büyükgüngör et al. (2004); Bernstein et al. (1995); Bowes et al. (2003); Caranoni & Reboul (1982); Crews et al. (1988); Franklin & Balasubramanian (2009); Fun et al. (2009); Glidewell et al. (2004); Jin et al. (2003); Lah & Leban (2003); Liu et al. (2003); Lynch (2002, 2004); Lynch & McClenaghan (2004, 2005); Metzger (1984); Natarajan et al. (2009); Rajagopal et al. (2001, 2002); Shinagawa et al. (1997); Shivarama Holla, Malini, Sooryanarayana Rao, Sarojini & Suchetha Kumari (2003); Sudbeck et al. (1995).

Experimental top

Equimolar quantities of 2-amino-1,3-thiazole (0.3 g, 3 mmol) and maleic acid (0.35 g, 3 mmol) were dissolved in water and stirred. Concentrated hydrochloric acid (2 ml) was added and the mixture was refluxed at 333 K for 6 h. Brown crystals of 2ATHM were harvested after a month from the slow evaporation of the solvent. Similarly, equimolar quantities of 2-amino-1,3-thiazole (0.3 g, 3 mmol) and fumaric acid (0.35 g, 3 mmol) were dissolved in acetonitrile and stirred. Dilute hydrochloric acid (2 ml) was added and the stirred solution was refluxed at 333 K for 6 h. Brown crystals of 2ATHF were harvested from the resulting solution after two weeks of solvent evaporation.

Refinement top

The positions of H atoms bound to N and O atoms were identified from difference electron-density maps and then constrained. For 2ATHM, these H atoms were allowed to ride upon the parent atom, with N—H = 0.86 and O—H = 0.82 Å, and Uiso(H) = 1.2Ueq(N,O). For 2ATHF, the O—H positions were allowed to rotate around the C—O bond, with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O), and N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N). [Please check added text for N-bound H atoms] H atoms bound to C atoms were treated as riding, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). Three (for 2ATHM) and seven (for 2ATHF) outlier reflections were excluded from the intensity data.

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004) and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004) and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of 2ATHM, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of 2ATHF, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. Part of the crystal structure of 2ATHM, showing the formation of the hydrogen-bonded sheet parallel to the ab plane built from R22(8), R44(16) and R34(14) motifs. Dotted lines indicate hydrogen bonds. [Symmetry codes: (I) x + 1, y, z; (II) -x + 1/2, y + 1/2, -z + 3/2; (III) -x + 3/2, y + 1/2, -z + 3/2.]
[Figure 4] Fig. 4. Part of the crystal structure of 2ATHF, showing the formation of the anionic chain along the [001] direction and the formation of R22(8), R54(24) and D22(9) motifs. Dotted lines indicate hydrogen bonds. [Symmetry codes: (I) -x + 3/2, y - 1/2, z; (IV) x + 1/2, -y + 1/2, -z + 2; (V) -x + 1, -y + 1, -z + 2; (*) x + 1/2, y, -z + 3/2.]
[Figure 5] Fig. 5. The two-dimensional hydrogen-bonded sheets of 2ATHM, parallel to the c axis. Dotted lines indicate hydrogen bonds.
[Figure 6] Fig. 6. The two dimensional hydrogen-bonded zigzag layers of 2ATHF, parallel to the a axis. Dotted lines indicate hydrogen bonds.
(2ATHM) 2-amino-1,3-thiazolium hydrogen maleate top
Crystal data top
C3H5N2S+·C4H3O4F(000) = 448
Mr = 216.21Dx = 1.579 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4591 reflections
a = 6.3372 (4) Åθ = 3.2–29.6°
b = 22.4153 (14) ŵ = 0.35 mm1
c = 6.8618 (4) ÅT = 292 K
β = 111.112 (2)°Block, brown
V = 909.29 (10) Å30.28 × 0.16 × 0.08 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2529 independent reflections
Radiation source: fine-focus sealed tube2056 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scansθmax = 29.6°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker 2004)
h = 88
Tmin = 0.909, Tmax = 0.973k = 3131
11445 measured reflectionsl = 69
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.2435P]
where P = (Fo2 + 2Fc2)/3
2529 reflections(Δ/σ)max = 0.001
128 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C3H5N2S+·C4H3O4V = 909.29 (10) Å3
Mr = 216.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.3372 (4) ŵ = 0.35 mm1
b = 22.4153 (14) ÅT = 292 K
c = 6.8618 (4) Å0.28 × 0.16 × 0.08 mm
β = 111.112 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2529 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2004)
2056 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.973Rint = 0.028
11445 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.06Δρmax = 0.35 e Å3
2529 reflectionsΔρmin = 0.22 e Å3
128 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.56775 (6)1.020194 (18)0.76736 (7)0.03488 (14)
O10.0110 (2)0.81152 (6)0.8246 (2)0.0494 (4)
O20.2255 (2)0.88013 (5)0.7936 (2)0.0468 (3)
C10.7308 (2)0.95801 (7)0.7824 (2)0.0301 (3)
O40.0229 (2)0.70180 (6)0.8455 (3)0.0552 (4)
H40.02560.73820.83270.066*
C30.7656 (3)1.06393 (7)0.7146 (3)0.0373 (4)
H30.75131.10480.69010.045*
N20.6760 (2)0.90400 (6)0.8202 (3)0.0421 (4)
H2A0.76580.87460.8270.051*
H2B0.55030.89790.83830.051*
N10.9204 (2)0.97152 (6)0.7526 (2)0.0330 (3)
H11.02170.94550.75710.04*
O30.1971 (3)0.62793 (6)0.8319 (3)0.0670 (5)
C40.1679 (3)0.82723 (7)0.7994 (3)0.0351 (3)
C50.3251 (3)0.78120 (8)0.7723 (3)0.0430 (4)
H50.44740.79650.7440.052*
C60.3200 (3)0.72225 (8)0.7817 (3)0.0430 (4)
H60.43990.70340.7590.052*
C20.9405 (3)1.03152 (8)0.7135 (3)0.0366 (4)
H21.06411.04750.6890.044*
C70.1578 (3)0.68076 (8)0.8220 (3)0.0404 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0289 (2)0.0270 (2)0.0532 (3)0.00284 (14)0.02014 (19)0.00037 (16)
O10.0379 (7)0.0313 (6)0.0903 (10)0.0034 (5)0.0366 (7)0.0048 (6)
O20.0364 (7)0.0260 (6)0.0845 (10)0.0015 (5)0.0297 (7)0.0025 (6)
C10.0245 (7)0.0264 (7)0.0401 (8)0.0009 (5)0.0124 (6)0.0007 (6)
O40.0513 (8)0.0293 (7)0.1008 (12)0.0020 (6)0.0463 (8)0.0028 (7)
C30.0387 (9)0.0253 (7)0.0502 (9)0.0031 (6)0.0187 (8)0.0030 (7)
N20.0327 (7)0.0255 (7)0.0752 (11)0.0010 (5)0.0279 (7)0.0054 (6)
N10.0259 (6)0.0282 (7)0.0483 (8)0.0016 (5)0.0175 (6)0.0004 (5)
O30.0711 (11)0.0250 (7)0.1186 (14)0.0021 (6)0.0506 (10)0.0046 (7)
C40.0310 (8)0.0280 (8)0.0485 (9)0.0021 (6)0.0170 (7)0.0022 (6)
C50.0362 (9)0.0302 (8)0.0730 (12)0.0014 (7)0.0321 (9)0.0030 (8)
C60.0383 (9)0.0298 (8)0.0684 (12)0.0021 (7)0.0282 (9)0.0041 (8)
C20.0319 (8)0.0325 (9)0.0490 (9)0.0052 (6)0.0188 (7)0.0012 (6)
C70.0428 (9)0.0277 (8)0.0547 (10)0.0017 (7)0.0225 (8)0.0034 (7)
Geometric parameters (Å, º) top
S1—C11.7159 (15)N2—H2B0.86
S1—C31.7296 (17)N1—C21.386 (2)
O1—C41.257 (2)N1—H10.86
O2—C41.2454 (19)O3—C71.207 (2)
C1—N21.311 (2)C4—C51.492 (2)
C1—N11.3243 (19)C5—C61.324 (2)
O4—C71.301 (2)C5—H50.93
O4—H40.82C6—C71.484 (2)
C3—C21.327 (2)C6—H60.93
C3—H30.93C2—H20.93
N2—H2A0.86
C1—S1—C390.39 (8)O2—C4—C5115.96 (15)
N2—C1—N1124.15 (14)O1—C4—C5119.95 (14)
N2—C1—S1124.42 (12)C6—C5—C4130.93 (16)
N1—C1—S1111.42 (12)C6—C5—H5114.5
C7—O4—H4109.5C4—C5—H5114.5
C2—C3—S1111.13 (13)C5—C6—C7131.70 (16)
C2—C3—H3124.4C5—C6—H6114.1
S1—C3—H3124.4C7—C6—H6114.1
C1—N2—H2A120C3—C2—N1113.26 (14)
C1—N2—H2B120C3—C2—H2123.4
H2A—N2—H2B120N1—C2—H2123.4
C1—N1—C2113.79 (13)O3—C7—O4121.44 (17)
C1—N1—H1123.1O3—C7—C6118.86 (17)
C2—N1—H1123.1O4—C7—C6119.70 (15)
O2—C4—O1124.08 (15)
C3—S1—C1—N2179.46 (16)O1—C4—C5—C64.6 (3)
C3—S1—C1—N11.07 (13)C4—C5—C6—C70.1 (4)
C1—S1—C3—C20.90 (14)S1—C3—C2—N10.5 (2)
N2—C1—N1—C2179.53 (16)C1—N1—C2—C30.3 (2)
S1—C1—N1—C21.00 (18)C5—C6—C7—O3176.6 (2)
O2—C4—C5—C6175.9 (2)C5—C6—C7—O43.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O10.821.652.4663 (19)175
N2—H2A···O1i0.862.012.8618 (19)174
N2—H2B···O20.862.012.8453 (19)164
N1—H1···O2i0.861.912.7607 (18)171
C3—H3···O4ii0.932.573.410 (2)150
C2—H2···O3iii0.932.393.249 (2)153
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+3/2; (iii) x+3/2, y+1/2, z+3/2.
(2ATHF) 2-amino-1,3-thiazolium hydrogen fumarate top
Crystal data top
C3H5N2S+·C4H3O4F(000) = 2688
Mr = 216.21Dx = 1.547 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5488 reflections
a = 20.7129 (5) Åθ = 2.9–25.5°
b = 7.1803 (2) ŵ = 0.34 mm1
c = 37.4469 (9) ÅT = 292 K
V = 5569.3 (2) Å3Block, brown
Z = 240.3 × 0.2 × 0.2 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5302 independent reflections
Radiation source: fine-focus sealed tube4161 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scansθmax = 25.8°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker 2004)
h = 2525
Tmin = 0.905, Tmax = 0.935k = 88
44583 measured reflectionsl = 3345
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0716P)2 + 4.8111P]
where P = (Fo2 + 2Fc2)/3
5302 reflections(Δ/σ)max = 0.001
382 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C3H5N2S+·C4H3O4V = 5569.3 (2) Å3
Mr = 216.21Z = 24
Orthorhombic, PbcaMo Kα radiation
a = 20.7129 (5) ŵ = 0.34 mm1
b = 7.1803 (2) ÅT = 292 K
c = 37.4469 (9) Å0.3 × 0.2 × 0.2 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5302 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2004)
4161 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.935Rint = 0.030
44583 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.04Δρmax = 0.77 e Å3
5302 reflectionsΔρmin = 0.29 e Å3
382 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.25737 (12)0.5170 (4)0.89229 (7)0.0411 (6)
C20.19739 (12)0.4825 (4)0.91260 (7)0.0440 (6)
H20.15820.51630.90240.053*
C30.19714 (13)0.4072 (4)0.94391 (7)0.0452 (7)
H30.23690.3760.95370.054*
C40.13873 (12)0.3661 (4)0.96573 (6)0.0372 (6)
C50.86090 (13)0.6438 (4)0.70563 (7)0.0436 (6)
C60.80118 (15)0.6140 (5)0.72760 (8)0.0598 (9)
H60.76180.64080.71680.072*
C70.79956 (14)0.5566 (5)0.75901 (8)0.0560 (8)
H70.83830.53150.77060.067*
C80.73750 (14)0.5263 (5)0.77895 (8)0.0517 (7)
C90.77805 (14)0.5346 (4)0.93029 (7)0.0475 (7)
C100.73045 (14)0.4872 (5)0.90186 (8)0.0578 (8)
H100.7470.45820.87950.069*
C110.66998 (14)0.4826 (4)0.90524 (8)0.0510 (7)
H110.65250.51830.92710.061*
C120.62398 (13)0.4228 (4)0.87609 (7)0.0420 (6)
C130.39085 (15)0.1607 (5)0.81328 (9)0.0589 (8)
H130.34870.11630.81320.071*
C140.41948 (14)0.2358 (5)0.84128 (8)0.0535 (7)
H140.39920.25140.86320.064*
C150.50171 (12)0.2564 (4)0.80162 (6)0.0372 (6)
C160.59895 (15)0.8931 (5)0.84973 (8)0.0573 (8)
H160.64080.93890.84820.069*
C170.56693 (14)0.8182 (5)0.82280 (8)0.0533 (8)
H170.58420.80610.80.064*
C180.49081 (12)0.7891 (4)0.86561 (6)0.0381 (6)
C190.38371 (15)0.3360 (5)0.98867 (9)0.0633 (9)
H190.34020.36550.99110.076*
C200.41957 (14)0.2647 (5)1.01418 (8)0.0569 (8)
H200.40390.23841.03690.068*
C210.49482 (12)0.2793 (4)0.97054 (6)0.0366 (6)
N10.48214 (10)0.2887 (3)0.83475 (5)0.0408 (5)
H1A0.50650.33820.85070.049*
N20.55871 (11)0.2991 (4)0.78937 (6)0.0520 (6)
H2A0.58650.35190.80310.062*
H2B0.56850.27450.76760.062*
N30.50586 (10)0.7601 (3)0.83150 (5)0.0416 (5)
H3A0.47980.70990.81640.05*
N40.43638 (11)0.7409 (4)0.88036 (6)0.0564 (7)
H4A0.40710.68630.86790.068*
H4B0.42970.76380.90260.068*
N50.48241 (10)0.2326 (3)1.00419 (5)0.0406 (5)
H5A0.5110.18681.01830.049*
N60.55055 (11)0.2572 (4)0.95520 (6)0.0595 (7)
H6A0.58220.20970.96690.071*
H6B0.55580.290.93330.071*
O10.24545 (9)0.5865 (4)0.86082 (5)0.0577 (6)
H10.27950.6020.85010.087*
O20.31055 (9)0.4863 (3)0.90351 (5)0.0584 (6)
O30.08426 (9)0.3686 (3)0.95174 (4)0.0434 (5)
O40.14913 (9)0.3287 (3)0.99796 (5)0.0548 (6)
O50.85032 (9)0.6565 (4)0.67310 (5)0.0607 (6)
O60.91552 (9)0.6570 (3)0.71945 (5)0.0487 (5)
O70.68476 (11)0.5522 (4)0.76654 (6)0.0694 (7)
O80.74817 (10)0.4671 (4)0.81063 (6)0.0721 (7)
H80.71370.44960.82090.108*
O90.83375 (10)0.5238 (4)0.92449 (5)0.0663 (7)
O100.75331 (9)0.5916 (4)0.96080 (5)0.0588 (6)
H10A0.78240.60650.97540.088*
O110.64324 (9)0.3995 (3)0.84501 (5)0.0600 (6)
O120.56694 (9)0.4015 (3)0.88564 (4)0.0473 (5)
S10.44144 (4)0.15539 (11)0.776860 (19)0.0533 (2)
S20.55304 (4)0.89448 (11)0.887911 (18)0.0491 (2)
S30.42763 (4)0.36780 (11)0.95001 (2)0.0511 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0324 (14)0.0494 (16)0.0415 (13)0.0039 (12)0.0040 (11)0.0025 (12)
C20.0307 (13)0.0549 (17)0.0464 (15)0.0006 (12)0.0012 (11)0.0075 (13)
C30.0316 (13)0.0630 (18)0.0409 (14)0.0020 (13)0.0001 (11)0.0027 (13)
C40.0334 (13)0.0473 (15)0.0308 (12)0.0087 (11)0.0008 (10)0.0043 (11)
C50.0387 (15)0.0515 (16)0.0405 (14)0.0142 (12)0.0070 (12)0.0072 (12)
C60.0480 (17)0.086 (2)0.0456 (17)0.0077 (16)0.0024 (13)0.0026 (16)
C70.0430 (16)0.071 (2)0.0542 (18)0.0037 (15)0.0048 (13)0.0108 (16)
C80.0373 (16)0.0610 (19)0.0568 (18)0.0047 (14)0.0108 (13)0.0012 (15)
C90.0449 (16)0.0566 (18)0.0412 (14)0.0014 (14)0.0096 (12)0.0046 (13)
C100.0457 (17)0.080 (2)0.0473 (16)0.0016 (16)0.0010 (13)0.0036 (16)
C110.0438 (16)0.0601 (19)0.0492 (16)0.0039 (14)0.0042 (13)0.0008 (14)
C120.0414 (15)0.0487 (16)0.0359 (13)0.0077 (12)0.0075 (11)0.0073 (12)
C130.0412 (16)0.066 (2)0.070 (2)0.0146 (15)0.0025 (15)0.0039 (17)
C140.0452 (16)0.066 (2)0.0490 (16)0.0056 (15)0.0075 (13)0.0044 (15)
C150.0398 (14)0.0410 (14)0.0309 (12)0.0002 (11)0.0054 (10)0.0034 (11)
C160.0455 (17)0.070 (2)0.0562 (18)0.0179 (15)0.0034 (14)0.0053 (16)
C170.0479 (17)0.071 (2)0.0411 (15)0.0113 (15)0.0039 (13)0.0003 (14)
C180.0378 (14)0.0451 (15)0.0314 (12)0.0012 (11)0.0062 (10)0.0004 (11)
C190.0411 (17)0.077 (2)0.072 (2)0.0157 (16)0.0009 (15)0.0061 (18)
C200.0477 (17)0.075 (2)0.0484 (17)0.0086 (16)0.0114 (14)0.0033 (16)
C210.0368 (13)0.0413 (14)0.0318 (12)0.0004 (11)0.0055 (10)0.0010 (11)
N10.0403 (12)0.0524 (14)0.0295 (10)0.0060 (10)0.0021 (9)0.0002 (10)
N20.0436 (13)0.0771 (18)0.0353 (12)0.0083 (12)0.0022 (10)0.0009 (12)
N30.0411 (12)0.0538 (14)0.0299 (10)0.0062 (11)0.0049 (9)0.0043 (10)
N40.0410 (13)0.093 (2)0.0350 (12)0.0102 (14)0.0016 (10)0.0088 (13)
N50.0393 (12)0.0495 (13)0.0330 (10)0.0061 (10)0.0021 (9)0.0016 (10)
N60.0386 (13)0.103 (2)0.0366 (12)0.0049 (14)0.0005 (10)0.0146 (14)
O10.0332 (10)0.0933 (17)0.0467 (11)0.0075 (11)0.0024 (9)0.0213 (11)
O20.0339 (11)0.0893 (17)0.0519 (12)0.0016 (11)0.0008 (9)0.0119 (11)
O30.0344 (10)0.0631 (13)0.0325 (9)0.0060 (9)0.0017 (7)0.0001 (8)
O40.0403 (11)0.0930 (16)0.0312 (9)0.0174 (11)0.0021 (8)0.0027 (10)
O50.0407 (11)0.1045 (18)0.0369 (10)0.0230 (11)0.0018 (8)0.0033 (11)
O60.0429 (11)0.0729 (14)0.0303 (9)0.0124 (10)0.0012 (8)0.0017 (9)
O70.0598 (14)0.0997 (19)0.0486 (12)0.0030 (13)0.0054 (11)0.0174 (12)
O80.0367 (11)0.116 (2)0.0636 (13)0.0100 (13)0.0070 (11)0.0262 (15)
O90.0446 (12)0.1029 (19)0.0513 (12)0.0098 (12)0.0036 (10)0.0208 (12)
O100.0276 (9)0.0932 (17)0.0557 (12)0.0071 (11)0.0017 (9)0.0097 (12)
O110.0368 (11)0.0981 (18)0.0452 (11)0.0192 (11)0.0025 (9)0.0027 (11)
O120.0369 (10)0.0716 (14)0.0335 (9)0.0090 (9)0.0027 (8)0.0009 (9)
S10.0576 (5)0.0592 (5)0.0430 (4)0.0104 (4)0.0152 (3)0.0054 (3)
S20.0518 (4)0.0564 (5)0.0392 (4)0.0095 (3)0.0138 (3)0.0049 (3)
S30.0453 (4)0.0552 (5)0.0528 (4)0.0059 (3)0.0162 (3)0.0074 (3)
Geometric parameters (Å, º) top
C1—O21.199 (3)C15—N21.303 (3)
C1—O11.304 (3)C15—N11.326 (3)
C1—C21.478 (3)C15—S11.716 (3)
C2—C31.291 (4)C16—C171.321 (4)
C2—H20.93C16—S21.717 (3)
C3—C41.489 (3)C16—H160.93
C3—H30.93C17—N31.371 (4)
C4—O31.244 (3)C17—H170.93
C4—O41.255 (3)C18—N41.302 (3)
C5—O51.241 (3)C18—N31.331 (3)
C5—O61.248 (3)C18—S21.712 (3)
C5—C61.501 (4)C19—C201.314 (4)
C6—C71.247 (4)C19—S31.725 (3)
C6—H60.93C19—H190.93
C7—C81.502 (4)C20—N51.374 (4)
C7—H70.93C20—H200.93
C8—O71.202 (4)C21—N61.299 (3)
C8—O81.279 (4)C21—N51.329 (3)
C9—O91.176 (3)C21—S31.712 (2)
C9—O101.317 (3)N1—H1A0.86
C9—C101.491 (4)N2—H2A0.86
C10—C111.259 (4)N2—H2B0.86
C10—H100.93N3—H3A0.86
C11—C121.511 (4)N4—H4A0.86
C11—H110.93N4—H4B0.86
C12—O111.242 (3)N5—H5A0.86
C12—O121.244 (3)N6—H6A0.86
C13—C141.320 (4)N6—H6B0.86
C13—S11.720 (3)O1—H10.82
C13—H130.93O8—H80.82
C14—N11.374 (3)O10—H10A0.82
C14—H140.93
O2—C1—O1124.1 (2)N1—C15—S1110.91 (19)
O2—C1—C2124.1 (2)C17—C16—S2111.1 (2)
O1—C1—C2111.7 (2)C17—C16—H16124.4
C3—C2—C1122.8 (2)S2—C16—H16124.4
C3—C2—H2118.6C16—C17—N3113.9 (3)
C1—C2—H2118.6C16—C17—H17123
C2—C3—C4125.8 (3)N3—C17—H17123
C2—C3—H3117.1N4—C18—N3124.6 (2)
C4—C3—H3117.1N4—C18—S2124.2 (2)
O3—C4—O4124.3 (2)N3—C18—S2111.14 (19)
O3—C4—C3120.2 (2)C20—C19—S3111.3 (2)
O4—C4—C3115.5 (2)C20—C19—H19124.3
O5—C5—O6124.2 (2)S3—C19—H19124.3
O5—C5—C6113.8 (2)C19—C20—N5113.8 (3)
O6—C5—C6122.1 (2)C19—C20—H20123.1
C7—C6—C5125.9 (3)N5—C20—H20123.1
C7—C6—H6117N6—C21—N5124.1 (2)
C5—C6—H6117N6—C21—S3124.7 (2)
C6—C7—C8122.7 (3)N5—C21—S3111.23 (19)
C6—C7—H7118.7C15—N1—C14114.0 (2)
C8—C7—H7118.7C15—N1—H1A123
O7—C8—O8124.6 (3)C14—N1—H1A123
O7—C8—C7124.3 (3)C15—N2—H2A120
O8—C8—C7111.2 (3)C15—N2—H2B120
O9—C9—O10124.2 (3)H2A—N2—H2B120
O9—C9—C10120.1 (3)C18—N3—C17113.4 (2)
O10—C9—C10115.7 (3)C18—N3—H3A123.3
C11—C10—C9126.3 (3)C17—N3—H3A123.3
C11—C10—H10116.8C18—N4—H4A120
C9—C10—H10116.8C18—N4—H4B120
C10—C11—C12124.2 (3)H4A—N4—H4B120
C10—C11—H11117.9C21—N5—C20113.5 (2)
C12—C11—H11117.9C21—N5—H5A123.2
O11—C12—O12123.9 (2)C20—N5—H5A123.2
O11—C12—C11120.8 (2)C21—N6—H6A120
O12—C12—C11115.2 (2)C21—N6—H6B120
C14—C13—S1111.4 (2)H6A—N6—H6B120
C14—C13—H13124.3C1—O1—H1109.5
S1—C13—H13124.3C8—O8—H8109.5
C13—C14—N1113.3 (3)C9—O10—H10A109.5
C13—C14—H14123.3C15—S1—C1390.31 (14)
N1—C14—H14123.3C18—S2—C1690.47 (13)
N2—C15—N1124.4 (2)C21—S3—C1990.14 (14)
N2—C15—S1124.6 (2)
O2—C1—C2—C33.4 (5)N2—C15—N1—C14178.4 (3)
O1—C1—C2—C3177.2 (3)S1—C15—N1—C140.4 (3)
C1—C2—C3—C4179.2 (3)C13—C14—N1—C150.7 (4)
C2—C3—C4—O314.6 (5)N4—C18—N3—C17178.0 (3)
C2—C3—C4—O4166.0 (3)S2—C18—N3—C170.9 (3)
O5—C5—C6—C7163.1 (4)C16—C17—N3—C180.5 (4)
O6—C5—C6—C718.0 (5)N6—C21—N5—C20178.4 (3)
C5—C6—C7—C8178.6 (3)S3—C21—N5—C200.5 (3)
C6—C7—C8—O70.8 (6)C19—C20—N5—C210.3 (4)
C6—C7—C8—O8180.0 (4)N2—C15—S1—C13178.8 (3)
O9—C9—C10—C11175.6 (4)N1—C15—S1—C130.0 (2)
O10—C9—C10—C116.0 (5)C14—C13—S1—C150.5 (3)
C9—C10—C11—C12176.3 (3)N4—C18—S2—C16178.1 (3)
C10—C11—C12—O1110.4 (5)N3—C18—S2—C160.8 (2)
C10—C11—C12—O12170.2 (3)C17—C16—S2—C180.5 (3)
S1—C13—C14—N10.8 (4)N6—C21—S3—C19178.4 (3)
S2—C16—C17—N30.1 (4)N5—C21—S3—C190.4 (2)
S3—C19—C20—N50.1 (4)C20—C19—S3—C210.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O6i0.862.022.860 (3)167
N3—H3A···O6ii0.861.932.773 (3)167
N4—H4A···O5ii0.861.952.748 (3)155
N4—H4B···O3iii0.862.012.858 (3)169
N5—H5A···O3iv0.861.932.775 (3)168
N6—H6A···O4iv0.861.932.762 (3)162
O1—H1···O5ii0.821.752.566 (3)175
O10—H10A···O4v0.821.82.607 (3)170
N1—H1A···O120.861.872.715 (3)169
N2—H2A···O110.861.992.815 (3)161
N6—H6B···O120.861.972.824 (3)172
O8—H8···O110.821.752.572 (3)175
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x1/2, y, z+3/2; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z+2; (v) x+1, y+1, z+2.

Experimental details

(2ATHM)(2ATHF)
Crystal data
Chemical formulaC3H5N2S+·C4H3O4C3H5N2S+·C4H3O4
Mr216.21216.21
Crystal system, space groupMonoclinic, P21/nOrthorhombic, Pbca
Temperature (K)292292
a, b, c (Å)6.3372 (4), 22.4153 (14), 6.8618 (4)20.7129 (5), 7.1803 (2), 37.4469 (9)
α, β, γ (°)90, 111.112 (2), 9090, 90, 90
V3)909.29 (10)5569.3 (2)
Z424
Radiation typeMo KαMo Kα
µ (mm1)0.350.34
Crystal size (mm)0.28 × 0.16 × 0.080.3 × 0.2 × 0.2
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Bruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 2004)
Multi-scan
(SADABS; Bruker 2004)
Tmin, Tmax0.909, 0.9730.905, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
11445, 2529, 2056 44583, 5302, 4161
Rint0.0280.030
(sin θ/λ)max1)0.6960.611
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.117, 1.06 0.052, 0.149, 1.04
No. of reflections25295302
No. of parameters128382
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.220.77, 0.29

Computer programs: , APEX2 (Bruker, 2004) and SAINT (Bruker, 2004), SAINT (Bruker, 2004) and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) for (2ATHM) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O10.821.652.4663 (19)175.1
N2—H2A···O1i0.862.012.8618 (19)173.9
N2—H2B···O20.862.012.8453 (19)163.9
N1—H1···O2i0.861.912.7607 (18)170.7
C3—H3···O4ii0.932.573.410 (2)149.8
C2—H2···O3iii0.932.393.249 (2)153.3
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+3/2; (iii) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) for (2ATHF) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O6i0.862.022.860 (3)166.7
N3—H3A···O6ii0.861.932.773 (3)166.5
N4—H4A···O5ii0.861.952.748 (3)154.9
N4—H4B···O3iii0.862.012.858 (3)169
N5—H5A···O3iv0.861.932.775 (3)168.2
N6—H6A···O4iv0.861.932.762 (3)162.3
O1—H1···O5ii0.821.752.566 (3)174.8
O10—H10A···O4v0.821.82.607 (3)169.7
N1—H1A···O120.861.872.715 (3)169.1
N2—H2A···O110.861.992.815 (3)160.5
N6—H6B···O120.861.972.824 (3)171.9
O8—H8···O110.821.752.572 (3)175.3
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x1/2, y, z+3/2; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z+2; (v) x+1, y+1, z+2.
Comparision of selected geometric parameters (Å, °) of 2ATHM and 2ATHF with neutral 2-amino-1,3-thiazole top
Neutral 2-amino-1,3-thiazole2ATHM2ATHF (Molecule A)2ATHF (Molecule B)2ATHF (Molecule C)
C—N(ring)—C109.40 (5)113.79 (13)114.0 (2)113.4 (2)113.5 (2)
C—S—C88.60 (3)90.39 (8)90.31 (14)90.47 (14)90.16 (14)
N(ring)—C—S114.9 (5)111.41 (12)110.93 (18)111.15 (18)111.23 (19)
N(ring)—C1.298 (6)1.324 (19) (N1—C1)1.326 (3) (N1—C15)1.331 (3) (N3—C18)1.329 (3) (N5—C21)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds