Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Ethyl 1-ethyl-6-iodo-4-oxo-1,4-dihydro­quinoline-3-carboxyl­ate, C14H14INO3, (I), and ethyl 1-cyclo­propyl-6-iodo-4-oxo-1,4-dihydro­quinoline-3-carboxyl­ate, C15H14INO3, (II), have iso­morphous crystal structures, while ethyl 1-dimethyl­amino-6-iodo-4-oxo-1,4-dihydro­quinoline-3-carboxyl­ate, C14H15IN2O3, (III), possesses a different solid-state supra­molecular architecture. In all three structures, O...I halogen-bonding inter­actions connect the quinolone mol­ecules into infinite chains parallel to the unique crystallographic b axis. In (I) and (II), these mol­ecular chains are arranged in (101) layers, via π–π stacking and C—H...π inter­actions, and these layers are then inter­linked by C—H...O inter­actions. The structural fragments involved in the C—H...O inter­actions differ between (I) and (II), accounting for the observed difference in planarity of the quinolone moieties in the two isomorphous structures. In (III), C—H...O and C—H...π inter­actions form (100) mol­ecular layers, which are crosslinked by O...I and C—H...I inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109036361/ga3130sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109036361/ga3130Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109036361/ga3130IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109036361/ga3130IIIsup4.hkl
Contains datablock III

CCDC references: 713832; 713833; 713834

Comment top

Halogen bonding is an interaction between halogen atoms (I, Br and Cl) acting as Lewis acids and neutral or anionic Lewis bases (Karpfen, 2008). The interaction has received a great deal of attention recently as it has frequently been observed in solids (Metrangolo et al., 2008), liquids (Wash et al., 1999) and gases (Legon, 2008). It has also been found in liquid crystals (Nguyen et al., 2004), as well as in biologically important molecules (Metrangolo et al., 2005). For this reason, halogen bonding is considered to be just as important as the analogous hydrogen bonding (Corradi et al., 2000; Aakeröy et al., 2007).

Quinolones have been thoroughly investigated since the early 1960s as potent antibacterial agents (Andriole, 1998). Many quinolonic structures have been characterized and quinolone chemistry has been well explored (Grohe, 1998). A search of the Cambridge Structural Database (CSD; Version 5.30 with May 2009 updates; Allen, 2002) revealed 267 solid-state structures containing the quinolone moiety, 201 of which are halogenated. 61 of these contain Cl, 5 contain Br and only one contains I (CSD refcode BARTIX; Keller et al., 1981). To the best of our knowledge, there has been no report on O···I halogen bonding for this class of compounds. We have observed O···I halogen bonding in the crystal structures of ethyl 1-ethyl-, 1-cyclopropyl- and 1-(dimethylamino)-6-iodo-4-oxo-1,4-dihydroquinoline-3-carboxylate, (I), (II) and (III), respectively. The solid-state structures of (I) and (II) are isomorphous by substitution of the N-substituent.

The non-substituted 4-quinolone molecule (CSD refcode NICJOZ; Nasiri et al., 2006) is planar. Depending on the number, position and type of substituents, as well as the mode of crystal packing, the quinolone moiety (atoms N1/C2–C10/O1 for the structures presented herein; Fig. 1) can significantly deviate from planarity (by up to 0.23 Å in some quinolones; e.g. Polborn et al., 1992; Gulyakevich et al., 1999; Hashimoto et al., 2007). The quinolone moiety in (I) is almost planar [the largest deviation from the mean plane is 0.012 (2) Å for atom C3], whereas the quinolone moieties in (II) and (III) are more distorted from planarity, the largest displacement from the mean plane being that of keto atom O1 [0.072 (2) Å in (II) and 0.102 (2) Å in (III)]. The observed difference in the quinolone (non)planarity between isomorphous structures (I) and (II) could be attributed to slightly different intermolecular interactions (see below). In all three studied structures, the non-H atoms in the ester moiety (C11–C13/O2/O3) are nearly coplanar. The angles between the mean planes of the quinolone and ester moieties are 9.54 (12), 9.88 (11) and 7.72 (13)° for (I), (II) and (III), respectively. The 3-carboxy and quinolone carbonyl groups are mutually in a syn conformation, as also observed for the crystal structures of several other 4-quinolone-3-carboxylic acid ethyl esters (Barrett et al., 1995, 1996; Al-Hiari et al., 2006; Ukrainets et al., 2007; Abu-Sheaib et al., 2008; Pan et al., 2008). The N-ethyl group in (I) is out of the quinolone plane, with a C9—N1—C14—C15 torsion angle of -78.0 (3)°. The angle between the planes through the N-cyclopropyl group (C14–C16) and the quinolone moiety in (II) is 59.92 (18)°, while the plane of the N-(dimethylamino) group (N2/C14/C15) is inclined to the mean plane of the quinolone moiety at 83.9 (2)° in (III).

Intermolecular halogen O···I bonds involving the quinolone keto groups (Table 1) play an important role in the solid-state supramolecular architectures of all three title quinolone esters. In all of these structures, molecules connected by O···I bonds form infinite zigzag chains parallel to the crystallographic b axis (Figs. 2 and 3). The mean quinolone planes of the two halogen-bonded molecules in (III) make an angle of 10.93 (5)°, while this angle is much larger in the structures of (I) and (II) [63.39 (5) and 70.37 (5)°, respectively]. As found by a search of the CSD, refcodes EVINIG (Song et al., 2004) and BAKSUC (Mphahlele et al., 2002) are the only two other quinolone structures with halogen bonds involving the quinolone keto group. In EVINIG (7-chloro-1-ethyl-6-fluoro-4-quinolone-3-carboxylic acid), O···Cl interactions connect the molecules into infinite chains. Contrary to the zigzag chains in (I), (II) and (III), the molecular chains formed by halogen bonding in EVINIG are straight, the quinolone moieties of the linked molecules being coplanar. In BAKSUC [3-bromo-2-(4'-fluorophenyl)-4-quinolone], six quinolone molecules are joined via O···Br bonds into a ring with R66(24) topology (Etter et al., 1990; Bernstein et al., 1995) and crystallographic 3 symmetry. There is only one example of iodine halogen bonding for the quinolone compounds (CSD refcode BARTIX; Keller et al., 1981), where a 6-iodo-4-quinolonium cation makes a discrete N···I interaction with a 7,7,8,8-tetracyanoquinodimethane molecule.

In the isomorphous structures of (I) and (II), each quinolone molecule is stacked between two neighbouring molecules, both belonging to the same molecular chain formed by halogen bonding (Fig. 2). Molecules from different chains are connected into centrosymmetric dimers by C—H···π interactions (Table 2), and packing along the crystallographic b axis is achieved by ππ interactions (Desiraju & Gavezzotti, 1989) between adjacent molecular dimers (Table 3). Therefore, each molecular chain forms zipper-like motifs with two adjacent chains, resulting in (101) molecular layers (Fig. 2). These layers are crosslinked by C—H···O interactions, but these are different in the two isomorphous structures (illustrated in Fig. 4 and Table 2). In the structure of (I), C—H···O interactions engage the N-ethyl and ester carbonyl groups. By contrast, molecules of (II) are linked by C—H···O interactions between the N-cyclopropyl and quinolone keto groups, thus accounting for the considerable displacement of keto atom O1 from the quinolone mean plane in (II) noted above. The molecular chains formed via the C—H···O interactions run in the [101] direction, and for both isomorphs can be described by graph-set motif C(8) (Fig. 4).

Molecules in (III) are arranged into (100) layers via C—H···π and C—H···O interactions (Table 2 and Fig. 5). C12—H12B···Cg2v and C15—H15A···O2v interactions form centrosymmetric dimers, similar to those observed in the structures of (I) and (II), which are then linked by C14—H14C···O1iv interactions (symmetry codes as in Table 2). If each molecular dimer is represented by a node, then the pattern created by the C14—H14C···O1iv interactions can be described as a two-dimensional network with (4,4) topology (Wells, 1977; Batten & Robson 1998; Fig. 5). As found in (II), the C14—H14C···O1iv interaction affects the planarity of the quinolone moiety by displacing keto atom O1 significantly from the mean quinolone plane. The (100) molecular layers are crosslinked by O···I and C—H···I interactions (Table 2).

Experimental top

The title compounds were prepared as described previously (Alihodžić et al., 2007; Elder et al., 2007; Turner et al., 2000). Crystals of (I), (II) and (III) were grown by slow cooling of warm methanol, methanol–dichloromethane (3:1 v/v) and dichloromethane solutions, respectively.

Refinement top

Reflections 202 and 004 in the data set of (II) were omitted as outliers. H atoms were constrained to ideal geometry using an appropriate riding model, with C—H = 0.96 (methyl), 0.97 (methylene), 0.98 (methine) or 0.93 Å (aromatic). Methyl H atoms were refined with Uiso(H) = 1.5Ueq(C); all other H atoms were refined with Uiso(H) = 1.2Ueq(C).

Computing details top

For all compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) integrated in WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) integrated in WinGX (Farrugia, 1999); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structures of (I), (II) and (III), with the atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The (101) molecular layers in the isomorphous structures of (I) (thick bonds) and (II) (thin bonds) formed by O···I and C—H···π interactions [dashed lines; for the sake of clarity, they are represented only for (I)]. H atoms [except for H12A in (I)] are not shown. Cg2 (small dots) represent the centroids of the C5–C10 benzene rings. [Symmetry codes: (i) -x + 1/2, y - 1/2, -z + 1/2; (iii) -x + 1, -y, -z.]
[Figure 3] Fig. 3. The molecular chains in (III), formed by O···I and C—H···I interactions (dashed lines). [Symmetry code: (i) -x + 1, y - 1/2, -z + 1/2.]
[Figure 4] Fig. 4. Packing differences between (I) and (II). Molecules of (I) (thin bonds) are linked by C15—H15A···O2ii interactions, while molecules of (II) (thick bonds) form C15—H15A···O1ii interactions. For clarity, O···I halogen bonding is shown only for (II). Interactions are indicated by dashed lines. [Symmetry codes: (i) -x + 1/2, y - 1/2, -z + 1/2; (ii) x - 1/2, -y + 1/2, z - 1/2.]
[Figure 5] Fig. 5. The (100) molecular layers in (III), with C—H···O and C—H···π interactions shown as dashed lines. Cg2 (small dots) represent the centroids of the C5–C10 benzene rings. [Symmetry codes: (iv) -x + 2, y + 1/2, -z + 1/2; (v) -x + 2, -y, -z + 1.]
(I) Ethyl 1-ethyl-6-iodo-4-oxo-1,4-dihydroquinoline-3-carboxylate top
Crystal data top
C14H14INO3F(000) = 728
Mr = 371.05Dx = 1.786 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 12268 reflections
a = 10.8169 (3) Åθ = 4.0–31.9°
b = 8.0588 (2) ŵ = 2.32 mm1
c = 15.8422 (4) ÅT = 295 K
β = 91.326 (3)°Prism, colourless
V = 1380.61 (6) Å30.50 × 0.35 × 0.30 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
4010 independent reflections
Radiation source: Enhance (Mo) X-ray Source3045 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 16.3426 pixels mm-1θmax = 30.0°, θmin = 4.1°
ω and ϕ scansh = 1515
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1111
Tmin = 0.396, Tmax = 0.498l = 2222
21815 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0502P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4010 reflectionsΔρmax = 0.74 e Å3
175 parametersΔρmin = 0.69 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0028 (5)
Crystal data top
C14H14INO3V = 1380.61 (6) Å3
Mr = 371.05Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8169 (3) ŵ = 2.32 mm1
b = 8.0588 (2) ÅT = 295 K
c = 15.8422 (4) Å0.50 × 0.35 × 0.30 mm
β = 91.326 (3)°
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
4010 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
3045 reflections with I > 2σ(I)
Tmin = 0.396, Tmax = 0.498Rint = 0.015
21815 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.07Δρmax = 0.74 e Å3
4010 reflectionsΔρmin = 0.69 e Å3
175 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.52803 (18)0.2297 (2)0.07888 (11)0.0340 (4)
H20.57520.19200.12330.041*
C30.56926 (17)0.1942 (2)0.00146 (11)0.0322 (4)
C40.49926 (17)0.2478 (2)0.07310 (11)0.0354 (4)
C50.31198 (19)0.4005 (3)0.11492 (12)0.0374 (4)
H50.33530.38050.17090.045*
C60.20568 (19)0.4876 (3)0.09711 (13)0.0385 (4)
C70.17217 (19)0.5219 (3)0.01348 (14)0.0407 (4)
H70.10110.58320.00150.049*
C80.2426 (2)0.4663 (3)0.05113 (13)0.0387 (4)
H80.21900.48940.10670.046*
C90.35052 (17)0.3742 (2)0.03400 (11)0.0325 (4)
C100.38567 (16)0.3415 (2)0.05036 (11)0.0322 (4)
C110.68878 (19)0.1085 (3)0.01322 (12)0.0384 (4)
C120.8576 (2)0.0161 (4)0.05262 (16)0.0538 (6)
H12A0.85350.11660.01910.065*
H12B0.91440.06010.02450.065*
C130.9028 (3)0.0564 (3)0.13839 (18)0.0578 (6)
H13A0.84990.13840.16420.087*
H13B0.98560.09890.13380.087*
H13C0.90210.04220.17240.087*
C140.3902 (2)0.3422 (3)0.18834 (11)0.0443 (5)
H14A0.46300.32760.22220.053*
H14B0.36190.45560.19570.053*
C150.2900 (3)0.2247 (4)0.21974 (15)0.0618 (7)
H15B0.21740.23930.18680.093*
H15C0.31860.11240.21440.093*
H15A0.27040.24800.27800.093*
I10.094593 (14)0.568217 (19)0.196219 (9)0.04968 (8)
N10.42447 (14)0.3151 (2)0.09823 (9)0.0341 (3)
O10.52733 (14)0.2203 (2)0.14751 (9)0.0556 (4)
O20.7437 (2)0.0866 (3)0.08001 (11)0.0702 (6)
O30.73684 (14)0.05810 (18)0.05980 (10)0.0470 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0322 (9)0.0391 (9)0.0308 (8)0.0001 (7)0.0023 (7)0.0003 (7)
C30.0296 (9)0.0353 (9)0.0316 (8)0.0020 (7)0.0026 (7)0.0017 (7)
C40.0306 (9)0.0452 (10)0.0305 (9)0.0008 (7)0.0011 (7)0.0026 (7)
C50.0348 (10)0.0474 (11)0.0301 (9)0.0034 (8)0.0032 (7)0.0009 (7)
C60.0344 (10)0.0401 (10)0.0415 (10)0.0011 (8)0.0076 (8)0.0043 (8)
C70.0306 (10)0.0446 (10)0.0468 (11)0.0022 (8)0.0003 (8)0.0016 (9)
C80.0345 (10)0.0476 (11)0.0337 (9)0.0012 (8)0.0033 (8)0.0026 (8)
C90.0300 (9)0.0369 (9)0.0307 (8)0.0037 (7)0.0017 (7)0.0000 (7)
C100.0291 (9)0.0391 (10)0.0283 (8)0.0029 (7)0.0018 (7)0.0008 (7)
C110.0365 (10)0.0431 (10)0.0357 (10)0.0034 (8)0.0004 (8)0.0030 (8)
C120.0390 (12)0.0677 (14)0.0547 (14)0.0170 (11)0.0001 (10)0.0056 (12)
C130.0512 (14)0.0593 (15)0.0633 (15)0.0128 (11)0.0125 (12)0.0061 (11)
C140.0450 (12)0.0619 (14)0.0261 (9)0.0070 (9)0.0003 (8)0.0071 (8)
C150.0670 (17)0.0801 (17)0.0375 (11)0.0027 (14)0.0170 (11)0.0060 (12)
I10.04642 (11)0.05494 (12)0.04832 (11)0.00447 (6)0.01515 (7)0.00530 (6)
N10.0319 (8)0.0446 (9)0.0257 (7)0.0003 (6)0.0007 (6)0.0021 (6)
O10.0430 (9)0.0954 (12)0.0285 (7)0.0151 (8)0.0018 (6)0.0091 (7)
O20.0731 (13)0.1022 (15)0.0352 (8)0.0372 (11)0.0006 (8)0.0031 (8)
O30.0350 (8)0.0657 (10)0.0403 (8)0.0146 (7)0.0001 (6)0.0070 (6)
Geometric parameters (Å, º) top
C2—N11.344 (2)C9—C101.406 (2)
C2—C31.369 (2)C11—O21.214 (3)
C2—H20.9300C11—O31.342 (2)
C3—C41.445 (2)C12—O31.438 (3)
C3—C111.474 (3)C12—C131.491 (4)
C4—O11.230 (2)C12—H12A0.9700
C4—C101.479 (3)C12—H12B0.9700
C5—C61.371 (3)C13—H13A0.9600
C5—C101.395 (3)C13—H13B0.9600
C5—H50.9300C13—H13C0.9600
C6—C71.393 (3)C14—N11.483 (2)
C6—I12.1019 (19)C14—C151.515 (3)
C7—C81.366 (3)C14—H14A0.9700
C7—H70.9300C14—H14B0.9700
C8—C91.404 (3)C15—H15B0.9600
C8—H80.9300C15—H15C0.9600
C9—N11.393 (2)C15—H15A0.9600
N1—C2—C3124.82 (17)O3—C11—C3112.89 (16)
N1—C2—H2117.6O3—C12—C13109.6 (2)
C3—C2—H2117.6O3—C12—H12A109.8
C2—C3—C4120.14 (17)C13—C12—H12A109.8
C2—C3—C11118.78 (16)O3—C12—H12B109.8
C4—C3—C11121.00 (16)C13—C12—H12B109.8
O1—C4—C3125.20 (18)H12A—C12—H12B108.2
O1—C4—C10120.67 (17)C12—C13—H13A109.5
C3—C4—C10114.13 (15)C12—C13—H13B109.5
C6—C5—C10120.98 (18)H13A—C13—H13B109.5
C6—C5—H5119.5C12—C13—H13C109.5
C10—C5—H5119.5H13A—C13—H13C109.5
C5—C6—C7119.72 (18)H13B—C13—H13C109.5
C5—C6—I1119.72 (15)N1—C14—C15112.63 (18)
C7—C6—I1120.56 (15)N1—C14—H14A109.1
C8—C7—C6120.69 (19)C15—C14—H14A109.1
C8—C7—H7119.7N1—C14—H14B109.1
C6—C7—H7119.7C15—C14—H14B109.1
C7—C8—C9120.27 (18)H14A—C14—H14B107.8
C7—C8—H8119.9C14—C15—H15B109.5
C9—C8—H8119.9C14—C15—H15C109.5
N1—C9—C8121.90 (16)H15B—C15—H15C109.5
N1—C9—C10118.88 (16)C14—C15—H15A109.5
C8—C9—C10119.22 (17)H15B—C15—H15A109.5
C5—C10—C9119.10 (17)H15C—C15—H15A109.5
C5—C10—C4118.76 (16)C2—N1—C9119.89 (15)
C9—C10—C4122.14 (16)C2—N1—C14118.90 (16)
O2—C11—O3121.05 (19)C9—N1—C14121.21 (16)
O2—C11—C3126.02 (19)C11—O3—C12115.26 (17)
N1—C2—C3—C40.7 (3)O1—C4—C10—C51.1 (3)
N1—C2—C3—C11176.15 (17)C3—C4—C10—C5179.32 (17)
C2—C3—C4—O1179.0 (2)O1—C4—C10—C9179.64 (19)
C11—C3—C4—O14.2 (3)C3—C4—C10—C90.0 (3)
C2—C3—C4—C100.6 (3)C2—C3—C11—O2170.7 (2)
C11—C3—C4—C10176.15 (16)C4—C3—C11—O26.1 (3)
C10—C5—C6—C71.8 (3)C2—C3—C11—O37.3 (3)
C10—C5—C6—I1178.18 (14)C4—C3—C11—O3175.87 (17)
C5—C6—C7—C81.5 (3)C3—C2—N1—C90.0 (3)
I1—C6—C7—C8178.43 (16)C3—C2—N1—C14179.13 (19)
C6—C7—C8—C90.3 (3)C8—C9—N1—C2178.95 (18)
C7—C8—C9—N1179.83 (18)C10—C9—N1—C20.6 (3)
C7—C8—C9—C100.6 (3)C8—C9—N1—C142.0 (3)
C6—C5—C10—C90.8 (3)C10—C9—N1—C14178.44 (18)
C6—C5—C10—C4179.83 (18)C15—C14—N1—C2101.1 (2)
N1—C9—C10—C5179.94 (17)C15—C14—N1—C978.0 (3)
C8—C9—C10—C50.4 (3)O2—C11—O3—C122.2 (3)
N1—C9—C10—C40.6 (3)C3—C11—O3—C12175.88 (18)
C8—C9—C10—C4178.94 (18)C13—C12—O3—C11176.5 (2)
(II) Ethyl 1-cyclopropyl-6-iodo-4-oxo-1,4-dihydroquinoline-3-carboxylate top
Crystal data top
C15H14INO3F(000) = 752
Mr = 383.17Dx = 1.782 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6715 reflections
a = 10.8406 (2) Åθ = 3.9–32.9°
b = 8.2843 (2) ŵ = 2.25 mm1
c = 15.9269 (3) ÅT = 295 K
β = 93.127 (2)°Needle, colourless
V = 1428.21 (5) Å30.60 × 0.35 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
4146 independent reflections
Radiation source: Enhance (Mo) X-ray Source2708 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 16.3426 pixels mm-1θmax = 30.0°, θmin = 4.1°
ω scansh = 1513
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1011
Tmin = 0.313, Tmax = 0.638l = 2222
13158 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0441P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
4146 reflectionsΔρmax = 0.82 e Å3
183 parametersΔρmin = 0.59 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0054 (6)
Crystal data top
C15H14INO3V = 1428.21 (5) Å3
Mr = 383.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8406 (2) ŵ = 2.25 mm1
b = 8.2843 (2) ÅT = 295 K
c = 15.9269 (3) Å0.60 × 0.35 × 0.20 mm
β = 93.127 (2)°
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
4146 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2708 reflections with I > 2σ(I)
Tmin = 0.313, Tmax = 0.638Rint = 0.017
13158 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.01Δρmax = 0.82 e Å3
4146 reflectionsΔρmin = 0.59 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Reflections 2 0 2 and 0 0 4 were omitted as outliers.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.51719 (17)0.2224 (2)0.07436 (13)0.0345 (4)
H20.56200.18000.11740.041*
C30.56069 (18)0.1968 (2)0.00669 (12)0.0325 (4)
C40.49446 (18)0.2587 (3)0.07631 (13)0.0371 (5)
C50.3188 (2)0.4317 (3)0.11251 (13)0.0376 (5)
H50.34520.42000.16870.045*
C60.2148 (2)0.5211 (3)0.09101 (14)0.0390 (5)
C70.1768 (2)0.5414 (3)0.00613 (15)0.0434 (5)
H70.10690.60250.00830.052*
C80.2413 (2)0.4727 (3)0.05525 (14)0.0400 (5)
H80.21550.48730.11140.048*
C90.34678 (19)0.3795 (2)0.03432 (13)0.0324 (4)
C100.38433 (18)0.3592 (2)0.05014 (13)0.0329 (4)
C110.6786 (2)0.1080 (2)0.02219 (14)0.0396 (5)
C120.8424 (2)0.0288 (3)0.03904 (18)0.0565 (7)
H12A0.83860.12020.00120.068*
H12B0.90290.04700.01530.068*
C130.8789 (3)0.0837 (3)0.1225 (2)0.0674 (8)
H13A0.81880.15910.14540.101*
H13B0.95830.13510.11670.101*
H13C0.88330.00750.15940.101*
C140.3732 (2)0.3237 (3)0.18489 (12)0.0405 (5)
H140.39040.42830.21050.049*
C150.2558 (2)0.2425 (3)0.21532 (14)0.0482 (6)
H15A0.20350.29780.25750.058*
H15B0.21210.17920.17520.058*
C160.3786 (2)0.1815 (3)0.24061 (15)0.0505 (6)
H16A0.40870.08090.21600.061*
H16B0.40010.19940.29820.061*
I10.111620 (15)0.61988 (2)0.186353 (11)0.05525 (10)
N10.41297 (15)0.3055 (2)0.09567 (10)0.0336 (4)
O10.52079 (14)0.2335 (2)0.15105 (9)0.0570 (5)
O20.73195 (19)0.0919 (2)0.08887 (12)0.0680 (6)
O30.72183 (14)0.0486 (2)0.04857 (10)0.0488 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0299 (10)0.0385 (11)0.0350 (10)0.0005 (8)0.0001 (8)0.0023 (9)
C30.0275 (10)0.0341 (10)0.0354 (10)0.0008 (8)0.0029 (8)0.0070 (9)
C40.0321 (11)0.0458 (12)0.0328 (11)0.0043 (9)0.0031 (9)0.0048 (9)
C50.0386 (12)0.0452 (11)0.0290 (10)0.0053 (10)0.0016 (9)0.0004 (9)
C60.0362 (11)0.0396 (11)0.0416 (11)0.0060 (9)0.0071 (9)0.0044 (10)
C70.0374 (12)0.0418 (12)0.0509 (14)0.0044 (10)0.0030 (10)0.0018 (11)
C80.0405 (12)0.0442 (12)0.0343 (11)0.0065 (10)0.0084 (9)0.0010 (10)
C90.0311 (10)0.0346 (10)0.0311 (10)0.0000 (8)0.0024 (8)0.0016 (9)
C100.0263 (10)0.0394 (11)0.0327 (10)0.0059 (8)0.0011 (8)0.0008 (9)
C110.0382 (12)0.0411 (12)0.0393 (12)0.0020 (9)0.0019 (10)0.0048 (10)
C120.0358 (13)0.0689 (17)0.0642 (17)0.0152 (12)0.0029 (12)0.0009 (14)
C130.0596 (18)0.0614 (17)0.082 (2)0.0122 (13)0.0104 (16)0.0081 (16)
C140.0473 (13)0.0468 (11)0.0266 (10)0.0061 (10)0.0044 (9)0.0047 (9)
C150.0466 (13)0.0603 (14)0.0358 (12)0.0067 (12)0.0146 (10)0.0047 (11)
C160.0526 (14)0.0650 (15)0.0332 (12)0.0112 (13)0.0042 (11)0.0066 (12)
I10.05359 (13)0.05664 (13)0.05753 (13)0.00088 (7)0.02147 (9)0.00666 (8)
N10.0313 (9)0.0411 (9)0.0277 (8)0.0018 (8)0.0053 (7)0.0002 (8)
O10.0443 (9)0.0957 (14)0.0304 (8)0.0123 (9)0.0024 (7)0.0105 (9)
O20.0630 (12)0.0958 (15)0.0434 (10)0.0378 (10)0.0128 (9)0.0041 (9)
O30.0349 (8)0.0625 (10)0.0485 (9)0.0125 (8)0.0032 (7)0.0016 (8)
Geometric parameters (Å, º) top
C2—N11.351 (2)C11—O21.189 (3)
C2—C31.367 (3)C11—O31.338 (3)
C2—H20.9300C12—O31.456 (3)
C3—C41.447 (3)C12—C131.479 (4)
C3—C111.484 (3)C12—H12A0.9700
C4—O11.227 (2)C12—H12B0.9700
C4—C101.496 (3)C13—H13A0.9600
C5—C61.376 (3)C13—H13B0.9600
C5—C101.389 (3)C13—H13C0.9600
C5—H50.9300C14—N11.470 (2)
C6—C71.402 (3)C14—C161.478 (3)
C6—I12.100 (2)C14—C151.496 (3)
C7—C81.358 (3)C14—H140.9800
C7—H70.9300C15—C161.499 (3)
C8—C91.405 (3)C15—H15A0.9700
C8—H80.9300C15—H15B0.9700
C9—N11.386 (3)C16—H16A0.9700
C9—C101.394 (3)C16—H16B0.9700
N1—C2—C3123.9 (2)C13—C12—H12A109.9
N1—C2—H2118.1O3—C12—H12B109.9
C3—C2—H2118.1C13—C12—H12B109.9
C2—C3—C4120.57 (18)H12A—C12—H12B108.3
C2—C3—C11118.94 (19)C12—C13—H13A109.5
C4—C3—C11120.47 (18)C12—C13—H13B109.5
O1—C4—C3125.74 (19)H13A—C13—H13B109.5
O1—C4—C10120.3 (2)C12—C13—H13C109.5
C3—C4—C10113.92 (17)H13A—C13—H13C109.5
C6—C5—C10119.9 (2)H13B—C13—H13C109.5
C6—C5—H5120.0N1—C14—C16118.69 (19)
C10—C5—H5120.0N1—C14—C15117.8 (2)
C5—C6—C7119.9 (2)C16—C14—C1560.54 (16)
C5—C6—I1119.40 (16)N1—C14—H14116.1
C7—C6—I1120.70 (16)C16—C14—H14116.1
C8—C7—C6120.6 (2)C15—C14—H14116.1
C8—C7—H7119.7C14—C15—C1659.12 (15)
C6—C7—H7119.7C14—C15—H15A117.9
C7—C8—C9120.3 (2)C16—C15—H15A117.9
C7—C8—H8119.9C14—C15—H15B117.9
C9—C8—H8119.9C16—C15—H15B117.9
N1—C9—C10119.44 (18)H15A—C15—H15B115.0
N1—C9—C8121.44 (18)C14—C16—C1560.34 (16)
C10—C9—C8119.11 (19)C14—C16—H16A117.7
C5—C10—C9120.26 (19)C15—C16—H16A117.7
C5—C10—C4118.23 (18)C14—C16—H16B117.7
C9—C10—C4121.52 (19)C15—C16—H16B117.7
O2—C11—O3122.4 (2)H16A—C16—H16B114.9
O2—C11—C3125.2 (2)C2—N1—C9120.43 (17)
O3—C11—C3112.35 (18)C2—N1—C14119.49 (18)
O3—C12—C13108.9 (2)C9—N1—C14120.03 (16)
O3—C12—H12A109.9C11—O3—C12115.32 (18)
N1—C2—C3—C40.5 (3)O1—C4—C10—C9175.0 (2)
N1—C2—C3—C11178.00 (19)C3—C4—C10—C94.1 (3)
C2—C3—C4—O1174.8 (2)C2—C3—C11—O2172.3 (2)
C11—C3—C4—O16.7 (3)C4—C3—C11—O26.2 (3)
C2—C3—C4—C104.2 (3)C2—C3—C11—O36.6 (3)
C11—C3—C4—C10174.19 (17)C4—C3—C11—O3174.98 (19)
C10—C5—C6—C71.4 (3)N1—C14—C15—C16109.0 (2)
C10—C5—C6—I1176.84 (16)N1—C14—C16—C15107.6 (2)
C5—C6—C7—C80.5 (3)C3—C2—N1—C93.9 (3)
I1—C6—C7—C8177.69 (17)C3—C2—N1—C14178.9 (2)
C6—C7—C8—C90.3 (3)C10—C9—N1—C23.9 (3)
C7—C8—C9—N1178.8 (2)C8—C9—N1—C2177.11 (19)
C7—C8—C9—C100.2 (3)C10—C9—N1—C14178.95 (19)
C6—C5—C10—C91.5 (3)C8—C9—N1—C140.0 (3)
C6—C5—C10—C4178.04 (18)C16—C14—N1—C243.7 (3)
N1—C9—C10—C5179.70 (19)C15—C14—N1—C2113.5 (2)
C8—C9—C10—C50.7 (3)C16—C14—N1—C9139.1 (2)
N1—C9—C10—C40.2 (3)C15—C14—N1—C969.3 (3)
C8—C9—C10—C4178.80 (19)O2—C11—O3—C123.6 (3)
O1—C4—C10—C54.5 (3)C3—C11—O3—C12175.24 (19)
C3—C4—C10—C5176.37 (19)C13—C12—O3—C11178.4 (2)
(III) Ethyl 1-(dimethylamino)-6-iodo-4-oxo-1,4-dihydroquinoline-3-carboxylate top
Crystal data top
C14H15IN2O3F(000) = 760
Mr = 386.18Dx = 1.732 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8549 reflections
a = 10.8437 (3) Åθ = 4.0–32.7°
b = 9.9660 (2) ŵ = 2.17 mm1
c = 14.4482 (4) ÅT = 295 K
β = 108.436 (3)°Plate, colourless
V = 1481.26 (7) Å30.60 × 0.50 × 0.15 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
4265 independent reflections
Radiation source: Enhance (Mo) X-ray Source3414 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 16.3426 pixels mm-1θmax = 30.0°, θmin = 4.0°
ω scansh = 1514
Absorption correction: multi-scan
CrysAlis RED (Oxford Diffraction, 2007)
k = 1414
Tmin = 0.296, Tmax = 0.722l = 2020
13165 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: difference Fourier map
wR(F2) = 0.079H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0368P)2 + 0.8397P]
where P = (Fo2 + 2Fc2)/3
4265 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 1.08 e Å3
0 restraintsΔρmin = 0.85 e Å3
Crystal data top
C14H15IN2O3V = 1481.26 (7) Å3
Mr = 386.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8437 (3) ŵ = 2.17 mm1
b = 9.9660 (2) ÅT = 295 K
c = 14.4482 (4) Å0.60 × 0.50 × 0.15 mm
β = 108.436 (3)°
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
4265 independent reflections
Absorption correction: multi-scan
CrysAlis RED (Oxford Diffraction, 2007)
3414 reflections with I > 2σ(I)
Tmin = 0.296, Tmax = 0.722Rint = 0.015
13165 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.09Δρmax = 1.08 e Å3
4265 reflectionsΔρmin = 0.85 e Å3
184 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C21.1119 (2)0.0898 (2)0.40704 (16)0.0307 (4)
H21.19690.05820.42850.037*
C31.0132 (2)0.0029 (2)0.38503 (15)0.0295 (4)
C40.8792 (2)0.0423 (2)0.35534 (16)0.0305 (4)
C50.7382 (2)0.2417 (2)0.30366 (16)0.0331 (4)
H50.66680.18450.28830.040*
C60.7196 (2)0.3776 (2)0.28923 (17)0.0345 (5)
C70.8258 (2)0.4644 (2)0.31387 (18)0.0365 (5)
H70.81240.55630.30500.044*
C80.9498 (2)0.4153 (2)0.35117 (18)0.0361 (5)
H81.02040.47360.36780.043*
C90.9694 (2)0.2768 (2)0.36405 (15)0.0295 (4)
C100.8634 (2)0.1891 (2)0.34122 (15)0.0282 (4)
C111.0467 (2)0.1473 (2)0.39283 (16)0.0329 (4)
C121.2203 (2)0.3041 (2)0.43850 (19)0.0402 (5)
H12A1.19070.34950.37600.048*
H12B1.18700.35180.48410.048*
C131.3662 (3)0.2995 (3)0.4757 (3)0.0575 (7)
H13A1.39780.25220.42990.086*
H13B1.40000.38930.48350.086*
H13C1.39410.25420.53750.086*
C141.2791 (3)0.2989 (3)0.3616 (2)0.0544 (7)
H14A1.31840.21160.37020.082*
H14B1.34570.36630.37670.082*
H14C1.22480.30920.29510.082*
C151.2772 (3)0.2952 (3)0.5288 (2)0.0557 (7)
H15A1.22020.28590.56740.084*
H15B1.33250.37170.55090.084*
H15C1.32960.21590.53520.084*
I10.528239 (16)0.448973 (19)0.232078 (13)0.04868 (7)
N11.09375 (17)0.22254 (19)0.39966 (14)0.0320 (4)
N21.20033 (18)0.3137 (2)0.42655 (15)0.0370 (4)
O10.78397 (17)0.03142 (17)0.34317 (16)0.0456 (4)
O20.97176 (18)0.23885 (18)0.36945 (17)0.0563 (5)
O31.17598 (16)0.16656 (17)0.42855 (14)0.0424 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0228 (9)0.0320 (10)0.0359 (11)0.0017 (8)0.0072 (8)0.0015 (8)
C30.0271 (10)0.0270 (9)0.0331 (10)0.0021 (8)0.0077 (8)0.0000 (8)
C40.0275 (10)0.0294 (10)0.0334 (10)0.0035 (8)0.0080 (8)0.0038 (8)
C50.0256 (10)0.0350 (11)0.0374 (11)0.0035 (8)0.0080 (8)0.0032 (9)
C60.0279 (10)0.0355 (11)0.0378 (11)0.0028 (9)0.0074 (9)0.0000 (9)
C70.0334 (11)0.0316 (11)0.0439 (12)0.0013 (9)0.0114 (10)0.0019 (9)
C80.0302 (11)0.0303 (10)0.0459 (12)0.0048 (8)0.0094 (10)0.0009 (9)
C90.0247 (9)0.0309 (10)0.0326 (10)0.0022 (8)0.0087 (8)0.0000 (8)
C100.0253 (9)0.0283 (9)0.0307 (9)0.0026 (8)0.0084 (8)0.0011 (8)
C110.0316 (11)0.0310 (10)0.0357 (11)0.0021 (9)0.0102 (9)0.0013 (9)
C120.0393 (12)0.0324 (11)0.0491 (13)0.0062 (9)0.0142 (11)0.0067 (10)
C130.0382 (14)0.0560 (17)0.077 (2)0.0130 (13)0.0162 (14)0.0142 (15)
C140.0432 (14)0.0696 (19)0.0528 (15)0.0188 (14)0.0187 (13)0.0054 (14)
C150.0477 (15)0.074 (2)0.0442 (14)0.0267 (15)0.0120 (12)0.0126 (13)
I10.03235 (9)0.04715 (11)0.06022 (12)0.01026 (7)0.00564 (7)0.00032 (8)
N10.0227 (8)0.0298 (9)0.0420 (10)0.0054 (7)0.0079 (7)0.0005 (7)
N20.0228 (8)0.0344 (10)0.0510 (11)0.0079 (7)0.0077 (8)0.0011 (8)
O10.0257 (8)0.0353 (9)0.0721 (12)0.0072 (7)0.0101 (8)0.0016 (8)
O20.0355 (9)0.0306 (9)0.0947 (15)0.0049 (7)0.0088 (10)0.0007 (9)
O30.0308 (8)0.0300 (8)0.0610 (10)0.0014 (7)0.0067 (8)0.0031 (7)
Geometric parameters (Å, º) top
C2—N11.337 (3)C11—O21.197 (3)
C2—C31.372 (3)C11—O31.346 (3)
C2—H20.9300C12—O31.444 (3)
C3—C41.451 (3)C12—C131.502 (4)
C3—C111.480 (3)C12—H12A0.9700
C4—O11.233 (3)C12—H12B0.9700
C4—C101.480 (3)C13—H13A0.9600
C5—C61.376 (3)C13—H13B0.9600
C5—C101.395 (3)C13—H13C0.9600
C5—H50.9300C14—N21.463 (3)
C6—C71.394 (3)C14—H14A0.9600
C6—I12.100 (2)C14—H14B0.9600
C7—C81.372 (3)C14—H14C0.9600
C7—H70.9300C15—N21.460 (3)
C8—C91.400 (3)C15—H15A0.9600
C8—H80.9300C15—H15B0.9600
C9—N11.391 (3)C15—H15C0.9600
C9—C101.398 (3)N1—N21.424 (2)
N1—C2—C3124.3 (2)O3—C12—H12A110.4
N1—C2—H2117.8C13—C12—H12A110.4
C3—C2—H2117.8O3—C12—H12B110.4
C2—C3—C4119.6 (2)C13—C12—H12B110.4
C2—C3—C11118.9 (2)H12A—C12—H12B108.6
C4—C3—C11121.53 (19)C12—C13—H13A109.5
O1—C4—C3124.9 (2)C12—C13—H13B109.5
O1—C4—C10120.9 (2)H13A—C13—H13B109.5
C3—C4—C10114.13 (18)C12—C13—H13C109.5
C6—C5—C10120.5 (2)H13A—C13—H13C109.5
C6—C5—H5119.7H13B—C13—H13C109.5
C10—C5—H5119.7N2—C14—H14A109.5
C5—C6—C7120.2 (2)N2—C14—H14B109.5
C5—C6—I1118.21 (17)H14A—C14—H14B109.5
C7—C6—I1121.62 (17)N2—C14—H14C109.5
C8—C7—C6120.5 (2)H14A—C14—H14C109.5
C8—C7—H7119.8H14B—C14—H14C109.5
C6—C7—H7119.8N2—C15—H15A109.5
C7—C8—C9119.5 (2)N2—C15—H15B109.5
C7—C8—H8120.2H15A—C15—H15B109.5
C9—C8—H8120.2N2—C15—H15C109.5
N1—C9—C10118.22 (19)H15A—C15—H15C109.5
N1—C9—C8121.36 (19)H15B—C15—H15C109.5
C10—C9—C8120.4 (2)C2—N1—C9120.96 (18)
C5—C10—C9118.88 (19)C2—N1—N2121.57 (18)
C5—C10—C4118.77 (19)C9—N1—N2117.46 (17)
C9—C10—C4122.36 (19)N1—N2—C15110.49 (19)
O2—C11—O3122.1 (2)N1—N2—C14110.4 (2)
O2—C11—C3126.2 (2)C15—N2—C14112.0 (2)
O3—C11—C3111.61 (19)C11—O3—C12116.54 (18)
O3—C12—C13106.7 (2)
N1—C2—C3—C42.6 (3)C3—C4—C10—C5173.91 (19)
N1—C2—C3—C11177.7 (2)O1—C4—C10—C9173.2 (2)
C2—C3—C4—O1172.6 (2)C3—C4—C10—C96.0 (3)
C11—C3—C4—O17.1 (3)C2—C3—C11—O2174.3 (2)
C2—C3—C4—C106.6 (3)C4—C3—C11—O26.1 (4)
C11—C3—C4—C10173.73 (19)C2—C3—C11—O34.4 (3)
C10—C5—C6—C71.2 (3)C4—C3—C11—O3175.26 (19)
C10—C5—C6—I1179.83 (15)C3—C2—N1—C92.8 (3)
C5—C6—C7—C81.1 (4)C3—C2—N1—N2178.0 (2)
I1—C6—C7—C8179.95 (18)C10—C9—N1—C23.5 (3)
C6—C7—C8—C90.3 (4)C8—C9—N1—C2176.5 (2)
C7—C8—C9—N1178.6 (2)C10—C9—N1—N2177.33 (18)
C7—C8—C9—C101.4 (3)C8—C9—N1—N22.7 (3)
C6—C5—C10—C90.1 (3)C2—N1—N2—C1559.0 (3)
C6—C5—C10—C4179.8 (2)C9—N1—N2—C15121.8 (2)
N1—C9—C10—C5178.77 (19)C2—N1—N2—C1465.4 (3)
C8—C9—C10—C51.2 (3)C9—N1—N2—C14113.8 (2)
N1—C9—C10—C41.2 (3)O2—C11—O3—C120.7 (3)
C8—C9—C10—C4178.8 (2)C3—C11—O3—C12179.40 (19)
O1—C4—C10—C56.9 (3)C13—C12—O3—C11177.9 (2)

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC14H14INO3C15H14INO3C14H15IN2O3
Mr371.05383.17386.18
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/nMonoclinic, P21/c
Temperature (K)295295295
a, b, c (Å)10.8169 (3), 8.0588 (2), 15.8422 (4)10.8406 (2), 8.2843 (2), 15.9269 (3)10.8437 (3), 9.9660 (2), 14.4482 (4)
β (°) 91.326 (3) 93.127 (2) 108.436 (3)
V3)1380.61 (6)1428.21 (5)1481.26 (7)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)2.322.252.17
Crystal size (mm)0.50 × 0.35 × 0.300.60 × 0.35 × 0.200.60 × 0.50 × 0.15
Data collection
DiffractometerOxford Diffraction Xcalibur CCD
diffractometer
Oxford Diffraction Xcalibur CCD
diffractometer
Oxford Diffraction Xcalibur CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Multi-scan
CrysAlis RED (Oxford Diffraction, 2007)
Tmin, Tmax0.396, 0.4980.313, 0.6380.296, 0.722
No. of measured, independent and
observed [I > 2σ(I)] reflections
21815, 4010, 3045 13158, 4146, 2708 13165, 4265, 3414
Rint0.0150.0170.015
(sin θ/λ)max1)0.7030.7030.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.080, 1.07 0.029, 0.079, 1.01 0.030, 0.079, 1.09
No. of reflections401041464265
No. of parameters175183184
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.690.82, 0.591.08, 0.85

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008) integrated in WinGX (Farrugia, 1999), SHELXL97 (Sheldrick, 2008) integrated in WinGX (Farrugia, 1999), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).

Halogen-bond geometry (Å, °) in (I), (II), and (III) top
O1···Iiθ1(O1···Ii—C6i)θ2(C4O1···Ii)
(I)3.0857 (15)169.86 (7)137.69 (13)
(II)3.1715 (15)171.31 (7)138.69 (13)
(III)3.218 (2)163.07 (6)145.90 (15)
Symmetry code: (i) 1/2 - x, y - 1/2, 1/2 - z for (I) and (II); 1 - x, y - 1/2, 1/2 - z for (III).
C—H···A interactions (Å, °) in (I), (II), and (III) top
Cg2 is the centroid of the benzene ring C5–C10.
D—H···AD—HH···AD···AD—H···A
(I)C15—H15A···O2ii0.962.623.543 (4)160
C12—H12A···Cg2iii0.972.923.677 (3)136
(II)C15—H15A···O1ii0.972.413.236 (3)143
C12—H12A···Cg2iii0.973.053.749 (3)130
(III)C14—H14C···O1iv0.962.533.286 (3)136
C15—H15A···O2v0.962.573.504 (4)166
C5—H5···Ii0.933.114.023 (2)167
C12—H12B···Cg2v0.972.863.675 (3)142
Symmetry codes: (i) 1 - x, y - 1/2, 1/2 - z; (ii) x - 1/2, 1/2 - y, z - 1/2; (iii) 1 - x, -y, -z; (iv) 2 - x, 1/2 + y, 1/2 - z; (v) 2 - x, -y, 1 - z.
ππ interactions in (I) and (II) top
Cg1 and Cg2 are the centroids of the heterocyclic ring N1/C2–C4/C9–C10 (Ring 1) and the benzene ring C5–C10 (Ring 2), respectively. α is the dihedral angle between the mean planes of the two interacting rings.
Ring m···Ring nviCgm···Cgnvi (Å)α (°)Mean plane of Ring m···Cgnvi (Å)Ring offset (Å)
(I)Ring 1···Ring 1vi3.6198 (9)03.4380 (7)ca 1.13
Ring 1···Ring 2vi3.6625 (11)0.63 (9)3.4269 (9)
(II)Ring 1···Ring 1vi3.6883 (11)03.4703 (8)ca 1.25
Ring 1···Ring 2vi3.6373 (12)0.94 (10)3.4341 (9)
Symmetry code: (vi) 1 - x, 1 - y, -z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds