Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title complex, {[La2(C5H6O4)3(H2O)4]·H2O}n, the La atoms are connected by bridging O atoms from carboxyl­ate groups to build, through centres of inversion, two-dimensional layers parallel to the ac plane containing deca­nuclear 20-membered rings. The coordinated water mol­ecules are involved in intra­layer hydrogen-bond inter­actions. Adjacent layers are linked via hydrogen bonding to the solvent water mol­ecules. This work represents the first example of a new substituted malonate–lanthanide complex.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109012931/ga3119sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109012931/ga3119Isup2.hkl
Contains datablock I

CCDC reference: 735108

Comment top

Recently, the design and preparation of novel lanthanide dicarboxylate metal–organic frameworks have received considerable attention because of the interesting properties that they exhibit, such as porosity, luminescence, magnetism and catalytic activity (Shi et al., 2008; Luo et al., 2008; Ghosh & Bharadwaj, 2005; Mahata & Natarajan, 2007; Wang et al., 2007). Of these, malonate has been used as the ligand of choice for the design of such metal–organic frameworks/molecular assemblies because of its manifold coordination modes and the variety of the resulting architectures (Hansson, 1973a,b; Canadillas-Delgado et al., 2006). Two complexes with lanthanum have been reported to date, one containing the malonate dianion (Marrot & Trombe, 1993; Benmerad et al., 2000) and the other both the malonate dianion and the hydrogen malonate anion as ligands (Marrot & Trombe, 1994). However, in spite of this wealth of possibilities, no complexes of a lanthanide with dimethylmalonate have been reported to date. Using the 2,2-dimethylmalonate dianion as a ligand, we have obtained the title novel ten-coordinate dimethylmalonate–La complex, (I), which is described here.

The asymmetric unit in the structure of (I) contains two independent ten-coordinate La atoms, three independent dimethylmalonate dianions, L1, L2 and L3 (containing O atoms O1–O4, O5–O8 and O9–O12, respectively), four coordinated water molecules and one solvent water molecule. Selected geometric parameters are given in Table 1. Fig. 1 shows a symmetry-expanded view, which displays the full coordination of the two La atoms and the details of the symmetry codes used below.

All the symmetry-related La atoms of (I) are related by inversion centres. Thus, the L1 dianion is coordinated to centrosymmetrically related atoms La1 and La1i via bis-bidentate 1,2-chelating and six-membered ring modes. The L2 dianion binds to atoms La1, La2 and La2iii, with the two carboxylate groups using two bis-bidentate 1,2-chelating modes and one six-membered ring mode. The L3 ligand also adopts two bis-bidentate 1,2-chelating and one six-membered chelating mode to connect to atoms La2, La1ii and La2ii, but it differs from the L2 ligand with the bond angle at C12 being smaller than the normal value (Table 1), indicating that there is greater distortion in this six-membered ring. This smaller angle had been observed in polymeric tetraaquatris(malonato)dilanthanum(III) monohydrate complexes (Benmerad et al., 2000).

The La—O distances in (I) (Table 1) are comparable with the values reported for polymeric tetraaquatris(malonato)dilanthanum(III) monohydrate (Benmerad et al., 2000), but with three La—O bonds being considerably longer. These longer distances seem to be rather typical of the chelating carboxylate group (Hansson, 1973a,b). The La geometries do not approximate to an idealized polyhedron, a bicapped square antiprism or a bicapped dodecahedron. This is not surprising in view of the steric requirements of the dimethylmalonate ligands in the structure and the large distortions imposed by the bite angles, which are considerably smaller (Table 1) (see Benmerad et al., 2000). Through the centres of inversion, each group of six La2 atoms and four La1 atoms builds up a decanuclear 20-membered ring. These decanuclear rings are further joined into a two-dimensional layer structure parallel to the ac plane (Fig. 2).

Within these layers, strong intra- and intermolecular hydrogen-bond interactions (entries 6 and 7 in Table 2; Brown, 1976) are responsible for the formation of two six-membered hydrogen-bonded S(6) and R11(6) ring graph sets (Bernstein et al., 1995). The two coordinated water molecules O13 and O14 are involved in a hydrogen bond (entry 9 in Table 2) which crosslinks two La1 atoms together within the decanuclear 20-membered ring via an R22(8) motif (Fig. 2), thus enhancing the stability of the decanuclear 20-membered ring. These two-dimensional dianionic (dimethylmalonate)lanthanum metal–organic layers occur near y = 0 and y = 1/2 by way of the crystallographic twofold screw axis. The solvent water molecule (O17), acting as both proton donor and acceptor, provides strong interlayer binding along the b axis through further hydrogen bonds (entries 1–3 and 10 in Table 2; Fig. 3).

A comparison with the two previously reported lanthanum malonate compounds (Marrot & Trombe, 1993; Benmerad et al., 2000) reveals that all these structures contain the same number of water molecules. However, the two crystallographically independent La atoms of the former are nine- and eight-coordinate, respectively, while in the latter there is only one crystallographically independent La atom and two independent malonate dianions. The present work therefore represents a new example of the substituted malonate series of lanthanide complexes.

Experimental top

La2O3 (0.4 g, 1.2 mmol) was dissolved in dilute hydrochloric acid and the solvent evaporated to dryness. The resulting LnCl3.nH2O was dissolved in distilled water (20 ml) at room temperature, and then dimethylmalonic acid (0.3 g, 2.3 mmol) and sodium dimethylmalonate (0.6 g, 3.4 mmol) were added under continuous stirring. After filtration, slow evaporation over a period of two weeks at room temperature provided colourless needle crystals of (I).

Refinement top

The H atoms of the water molecules were found in a difference Fourier map. However, during refinement, they were fixed at O—H = 0.85 Å and their Uiso values were set at 1.2Ueq(O). The H atoms of the C—H groups were treated as riding, with C—H = 0.96 Å, and with Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC 2005); cell refinement: CrystalClear (Rigaku/MSC 2005); data reduction: CrystalClear (Rigaku/MSC 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of part of the structure of (I), showing the atom-numbering scheme and the coordination for atoms La1 and La2. Displacement ellipsoids are drawn at the 30% probability level. The H atoms of the methyl groups have been omitted for clarity, the remaining H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) -x + 2, -y + 2, -z + 2; (ii) -x + 2, -y + 2, -z + 1; (iii) -x + 1, -y + 2, -z + 1.]
[Figure 2] Fig. 2. A partial packing diagram for (I), showing the two-dimensional polymeric layer and hydrogen-bonding interactions (as dashed lines) in the direction of the ac plane, viewed down the b axis. The H atoms of the methyl groups have been omitted for clarity.
[Figure 3] Fig. 3. A partial packing diagram for (I), showing the connection between neighbouring layers generated by the twofold screw axis. Interlayer hydrogen-bonding interactions are shown as dashed lines. The H atoms of the methyl groups have been omitted for clarity.
Poly[[tetraaquatris(µ3-2,2-dimethylmalonato)dilanthanum(III)] monohydrate] top
Crystal data top
[La2(C5H6O4)3(H2O)4]·H2OF(000) = 1472
Mr = 758.19Dx = 2.109 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5452 reflections
a = 8.3835 (17) Åθ = 1.8–27.1°
b = 20.229 (4) ŵ = 3.61 mm1
c = 14.101 (3) ÅT = 133 K
β = 92.989 (3)°Needle, colourless
V = 2388.2 (8) Å30.12 × 0.08 × 0.06 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
4177 independent reflections
Radiation source: rotating anode3140 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.061
Detector resolution: 27.073 pixels mm-1θmax = 25.0°, θmin = 1.8°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 2424
Tmin = 0.715, Tmax = 0.802l = 167
13664 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0327P)2]
where P = (Fo2 + 2Fc2)/3
4177 reflections(Δ/σ)max = 0.001
313 parametersΔρmax = 1.04 e Å3
0 restraintsΔρmin = 0.81 e Å3
Crystal data top
[La2(C5H6O4)3(H2O)4]·H2OV = 2388.2 (8) Å3
Mr = 758.19Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.3835 (17) ŵ = 3.61 mm1
b = 20.229 (4) ÅT = 133 K
c = 14.101 (3) Å0.12 × 0.08 × 0.06 mm
β = 92.989 (3)°
Data collection top
Rigaku Saturn
diffractometer
4177 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
3140 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 0.802Rint = 0.061
13664 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 0.94Δρmax = 1.04 e Å3
4177 reflectionsΔρmin = 0.81 e Å3
313 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.81569 (4)1.002992 (14)0.88348 (2)0.03176 (11)
La20.75181 (4)1.005917 (15)0.56747 (2)0.03202 (11)
O11.0018 (4)0.93672 (17)0.9889 (3)0.0359 (9)
O21.0984 (5)0.86669 (18)1.0936 (3)0.0396 (9)
O30.8677 (5)0.89259 (18)0.8264 (3)0.0387 (9)
O40.9551 (5)0.79494 (18)0.7896 (3)0.0414 (9)
O50.6403 (4)0.97806 (18)0.7306 (3)0.0357 (8)
O60.5372 (4)0.94219 (18)0.8598 (3)0.0372 (9)
O70.4754 (4)0.95383 (17)0.5639 (3)0.0362 (9)
O80.2278 (5)0.92818 (18)0.5901 (3)0.0385 (9)
O90.7094 (4)0.91792 (18)0.4367 (3)0.0376 (9)
O100.9611 (4)0.94825 (18)0.4478 (3)0.0366 (8)
O110.9108 (5)0.96806 (19)0.1881 (3)0.0407 (9)
O121.1207 (4)0.94045 (17)0.2776 (3)0.0344 (8)
C11.0255 (6)0.8777 (3)1.0154 (4)0.0347 (12)
C20.9614 (7)0.8207 (3)0.9552 (4)0.0385 (13)
C30.9278 (6)0.8372 (3)0.8485 (4)0.0352 (12)
C41.0788 (8)0.7636 (3)0.9665 (4)0.0464 (15)
H4A1.17850.77610.94110.070*
H4B1.03630.72570.93290.070*
H4C1.09580.75311.03260.070*
C50.7968 (7)0.8015 (3)0.9923 (4)0.0481 (15)
H5A0.80940.78981.05830.072*
H5B0.75400.76450.95670.072*
H5C0.72500.83830.98500.072*
C60.5384 (6)0.9426 (3)0.7711 (4)0.0346 (12)
C70.4301 (6)0.8972 (2)0.7105 (4)0.0341 (12)
C80.3736 (7)0.9283 (2)0.6169 (4)0.0359 (13)
C90.5339 (7)0.8375 (3)0.6875 (4)0.0394 (13)
H9A0.46920.80470.65470.059*
H9B0.57990.81910.74540.059*
H9C0.61750.85130.64790.059*
C100.2891 (7)0.8750 (3)0.7684 (4)0.0431 (14)
H10A0.22450.91270.78210.065*
H10B0.32900.85520.82670.065*
H10C0.22570.84340.73240.065*
C110.8475 (6)0.9196 (3)0.4040 (4)0.0343 (12)
C120.8748 (6)0.8863 (3)0.3095 (4)0.0340 (12)
C130.9736 (7)0.9345 (3)0.2548 (4)0.0347 (12)
C140.9731 (7)0.8240 (3)0.3312 (4)0.0435 (14)
H14D0.99270.80150.27300.065*
H14E0.91530.79530.37150.065*
H14C1.07310.83600.36290.065*
C150.7184 (7)0.8694 (3)0.2532 (4)0.0419 (13)
H15D0.65370.90850.24630.063*
H15E0.66170.83620.28660.063*
H15C0.74200.85310.19160.063*
O130.5899 (5)1.08407 (18)0.9111 (3)0.0421 (9)
H13A0.58001.11230.86660.051*
H13B0.50301.06290.91460.051*
O140.6889 (4)0.98693 (18)1.0483 (3)0.0380 (9)
H14A0.63681.02141.06190.046*
H14B0.76230.97991.09120.046*
O150.9136 (4)0.91582 (18)0.6406 (3)0.0391 (9)
H15A0.87660.90540.69370.047*
H15B1.01230.90760.63770.047*
O160.6087 (4)1.10859 (17)0.6128 (3)0.0380 (9)
H16A0.51341.11370.59080.046*
H16B0.63221.12640.66600.046*
O170.8488 (5)0.67992 (18)0.7160 (3)0.0417 (9)
H17A0.75710.68090.68720.050*
H17B0.88140.71810.73340.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.0309 (2)0.03390 (17)0.03033 (18)0.00053 (12)0.00013 (14)0.00012 (13)
La20.02979 (19)0.03602 (17)0.03013 (18)0.00045 (12)0.00034 (13)0.00007 (13)
O10.035 (2)0.0317 (19)0.040 (2)0.0038 (15)0.0055 (17)0.0003 (16)
O20.043 (2)0.0381 (19)0.037 (2)0.0010 (17)0.0030 (18)0.0002 (17)
O30.042 (2)0.041 (2)0.032 (2)0.0026 (17)0.0033 (17)0.0019 (17)
O40.047 (2)0.0373 (19)0.040 (2)0.0012 (17)0.0033 (18)0.0053 (18)
O50.035 (2)0.0388 (19)0.0326 (19)0.0034 (16)0.0027 (17)0.0021 (16)
O60.035 (2)0.0398 (19)0.037 (2)0.0033 (16)0.0023 (17)0.0008 (17)
O70.035 (2)0.0385 (19)0.035 (2)0.0029 (16)0.0007 (17)0.0014 (17)
O80.035 (2)0.044 (2)0.037 (2)0.0025 (16)0.0004 (18)0.0035 (17)
O90.029 (2)0.045 (2)0.039 (2)0.0003 (16)0.0008 (17)0.0032 (17)
O100.032 (2)0.0428 (19)0.034 (2)0.0020 (16)0.0023 (17)0.0015 (17)
O110.037 (2)0.048 (2)0.038 (2)0.0012 (17)0.0010 (18)0.0029 (19)
O120.030 (2)0.0372 (19)0.036 (2)0.0003 (15)0.0015 (16)0.0004 (16)
C10.031 (3)0.035 (3)0.039 (3)0.001 (2)0.007 (3)0.001 (2)
C20.044 (3)0.034 (3)0.038 (3)0.000 (2)0.002 (3)0.002 (2)
C30.027 (3)0.036 (3)0.042 (3)0.005 (2)0.001 (2)0.000 (2)
C40.065 (4)0.037 (3)0.036 (3)0.005 (3)0.003 (3)0.002 (3)
C50.050 (4)0.052 (3)0.042 (3)0.017 (3)0.005 (3)0.005 (3)
C60.033 (3)0.035 (3)0.036 (3)0.003 (2)0.004 (2)0.002 (2)
C70.031 (3)0.035 (3)0.036 (3)0.003 (2)0.003 (2)0.000 (2)
C80.039 (3)0.030 (2)0.038 (3)0.000 (2)0.004 (3)0.001 (2)
C90.039 (3)0.032 (3)0.045 (3)0.001 (2)0.008 (3)0.002 (3)
C100.041 (4)0.046 (3)0.042 (3)0.004 (3)0.002 (3)0.004 (3)
C110.032 (3)0.032 (2)0.038 (3)0.001 (2)0.002 (2)0.004 (2)
C120.031 (3)0.038 (3)0.033 (3)0.001 (2)0.000 (2)0.001 (2)
C130.035 (3)0.037 (3)0.031 (3)0.002 (2)0.001 (2)0.006 (2)
C140.046 (4)0.036 (3)0.050 (4)0.002 (2)0.008 (3)0.002 (3)
C150.039 (3)0.050 (3)0.036 (3)0.010 (3)0.001 (3)0.006 (3)
O130.043 (2)0.0379 (19)0.046 (2)0.0009 (17)0.0052 (19)0.0037 (18)
O140.036 (2)0.044 (2)0.033 (2)0.0044 (17)0.0012 (17)0.0005 (17)
O150.036 (2)0.047 (2)0.034 (2)0.0049 (17)0.0049 (17)0.0078 (17)
O160.031 (2)0.0412 (19)0.041 (2)0.0013 (16)0.0072 (17)0.0009 (17)
O170.041 (2)0.0366 (19)0.047 (2)0.0023 (17)0.0057 (18)0.0014 (18)
Geometric parameters (Å, º) top
La1—O32.421 (4)C4—H4A0.9600
La1—O12.490 (4)C4—H4B0.9600
La1—O132.550 (4)C4—H4C0.9600
La1—O52.594 (4)C5—H5A0.9600
La1—O1i2.604 (4)C5—H5B0.9600
La1—O11ii2.620 (4)C5—H5C0.9600
La1—O12ii2.623 (4)C6—C71.523 (8)
La1—O142.625 (4)C7—C81.515 (8)
La1—O62.645 (4)C7—C91.532 (7)
La1—O2i2.747 (4)C7—C101.538 (7)
La2—O152.466 (4)C9—H9A0.9600
La2—O162.498 (4)C9—H9B0.9600
La2—O72.544 (4)C9—H9C0.9600
La2—O92.574 (4)C10—H10A0.9600
La2—O52.590 (3)C10—H10B0.9600
La2—O10ii2.599 (4)C10—H10C0.9600
La2—O8iii2.604 (4)C11—C121.522 (7)
La2—O12ii2.617 (4)C12—C131.517 (7)
La2—O7iii2.712 (4)C12—C141.528 (7)
La2—O102.756 (4)C12—C151.535 (8)
O1—C11.264 (6)C14—H14D0.9600
O2—C11.254 (7)C14—H14E0.9600
O3—C31.260 (6)C14—H14C0.9600
O4—C31.222 (6)C15—H15D0.9600
O5—C61.273 (6)C15—H15E0.9600
O6—C61.251 (7)C15—H15C0.9600
O7—C81.273 (6)O13—H13A0.8500
O8—C81.260 (7)O13—H13B0.8497
O9—C111.269 (6)O14—H14A0.8499
O10—C111.250 (7)O14—H14B0.8523
O11—C131.253 (7)O15—H15A0.8509
O12—C131.264 (6)O15—H15B0.8472
C1—C21.513 (8)O16—H16A0.8480
C2—C41.520 (8)O16—H16B0.8469
C2—C51.551 (8)O17—H17A0.8510
C2—C31.552 (8)O17—H17B0.8516
O3—La1—O165.38 (13)O8iii—La2—C8iii24.04 (12)
O3—La1—O13142.38 (13)O12ii—La2—C8iii129.53 (13)
O1—La1—O13134.63 (13)O7iii—La2—C8iii24.57 (12)
O3—La1—O569.44 (12)O10—La2—C8iii82.27 (12)
O1—La1—O5134.55 (12)C11—La2—C8iii72.40 (14)
O13—La1—O581.88 (13)C1—O1—La1140.3 (4)
O3—La1—O1i123.52 (12)C1—O1—La1i99.2 (3)
O1—La1—O1i60.81 (14)La1—O1—La1i119.19 (14)
O13—La1—O1i90.42 (12)C1—O2—La1i92.6 (3)
O5—La1—O1i162.25 (11)C3—O3—La1144.5 (4)
O3—La1—O11ii84.36 (12)C6—O5—La2143.4 (4)
O1—La1—O11ii79.43 (12)C6—O5—La195.8 (3)
O13—La1—O11ii125.92 (12)La2—O5—La1118.72 (13)
O5—La1—O11ii101.11 (12)C6—O6—La194.0 (3)
O1i—La1—O11ii70.56 (12)C8—O7—La2142.6 (4)
O3—La1—O12ii93.81 (11)C8—O7—La2iii93.1 (3)
O1—La1—O12ii127.03 (11)La2—O7—La2iii119.73 (13)
O13—La1—O12ii92.16 (12)C8—O8—La2iii98.6 (3)
O5—La1—O12ii59.83 (11)C11—O9—La298.5 (3)
O1i—La1—O12ii104.81 (11)C11—O10—La2ii144.0 (3)
O11ii—La1—O12ii49.23 (12)C11—O10—La290.3 (3)
O3—La1—O14105.55 (12)La2ii—O10—La2121.45 (14)
O1—La1—O1471.04 (12)C13—O11—La1ii93.9 (3)
O13—La1—O1466.83 (12)C13—O12—La2ii127.1 (3)
O5—La1—O14118.24 (12)C13—O12—La1ii93.5 (3)
O1i—La1—O1472.33 (11)La2ii—O12—La1ii116.70 (13)
O11ii—La1—O14140.51 (13)O2—C1—O1119.3 (5)
O12ii—La1—O14158.52 (11)O2—C1—C2120.1 (5)
O3—La1—O672.67 (12)O1—C1—C2120.6 (5)
O1—La1—O6110.28 (12)O2—C1—La1i63.3 (3)
O13—La1—O670.18 (12)O1—C1—La1i56.8 (3)
O5—La1—O649.18 (11)C2—C1—La1i172.6 (3)
O1i—La1—O6142.01 (11)C1—C2—C4108.1 (5)
O11ii—La1—O6147.15 (12)C1—C2—C5107.3 (4)
O12ii—La1—O6108.16 (12)C4—C2—C5110.9 (5)
O14—La1—O670.04 (12)C1—C2—C3114.8 (4)
O3—La1—O2i150.88 (12)C4—C2—C3110.4 (4)
O1—La1—O2i107.12 (12)C5—C2—C3105.2 (5)
O13—La1—O2i63.70 (12)O4—C3—O3122.8 (5)
O5—La1—O2i114.69 (11)O4—C3—C2118.4 (5)
O1i—La1—O2i47.82 (12)O3—C3—C2118.7 (5)
O11ii—La1—O2i66.52 (11)C2—C4—H4A109.5
O12ii—La1—O2i67.62 (11)C2—C4—H4B109.5
O14—La1—O2i97.50 (11)H4A—C4—H4B109.5
O6—La1—O2i133.26 (11)C2—C4—H4C109.5
O3—La1—C13ii92.92 (13)H4A—C4—H4C109.5
O1—La1—C13ii104.16 (14)H4B—C4—H4C109.5
O13—La1—C13ii107.28 (13)C2—C5—H5A109.5
O5—La1—C13ii82.45 (13)C2—C5—H5B109.5
O1i—La1—C13ii84.64 (14)H5A—C5—H5B109.5
O11ii—La1—C13ii24.80 (13)C2—C5—H5C109.5
O12ii—La1—C13ii25.04 (13)H5A—C5—H5C109.5
O14—La1—C13ii155.90 (13)H5B—C5—H5C109.5
O6—La1—C13ii131.63 (14)O6—C6—O5119.5 (5)
O2i—La1—C13ii60.60 (12)O6—C6—C7121.4 (5)
O3—La1—C666.28 (14)O5—C6—C7118.8 (5)
O1—La1—C6122.67 (13)O6—C6—La161.4 (3)
O13—La1—C677.39 (14)O5—C6—La159.2 (3)
O5—La1—C624.93 (12)C7—C6—La1164.5 (4)
O1i—La1—C6164.95 (12)C8—C7—C6112.8 (4)
O11ii—La1—C6123.81 (13)C8—C7—C9107.3 (4)
O12ii—La1—C684.68 (13)C6—C7—C9105.5 (4)
O14—La1—C694.51 (13)C8—C7—C10111.6 (5)
O6—La1—C624.56 (12)C6—C7—C10109.3 (4)
O2i—La1—C6130.00 (13)C9—C7—C10110.1 (4)
C13ii—La1—C6107.23 (15)O8—C8—O7119.6 (5)
O15—La2—O16140.22 (13)O8—C8—C7121.0 (4)
O15—La2—O7100.53 (12)O7—C8—C7119.4 (5)
O16—La2—O784.27 (11)O8—C8—La2iii57.3 (3)
O15—La2—O980.85 (13)O7—C8—La2iii62.3 (3)
O16—La2—O9135.06 (13)C7—C8—La2iii177.5 (4)
O7—La2—O966.91 (11)C7—C9—H9A109.5
O15—La2—O571.55 (12)C7—C9—H9B109.5
O16—La2—O575.72 (12)H9A—C9—H9B109.5
O7—La2—O563.71 (12)C7—C9—H9C109.5
O9—La2—O5116.30 (11)H9A—C9—H9C109.5
O15—La2—O10ii78.86 (12)H9B—C9—H9C109.5
O16—La2—O10ii100.60 (12)C7—C10—H10A109.5
O7—La2—O10ii173.15 (11)C7—C10—H10B109.5
O9—La2—O10ii106.33 (11)H10A—C10—H10B109.5
O5—La2—O10ii122.00 (12)C7—C10—H10C109.5
O15—La2—O8iii132.56 (12)H10A—C10—H10C109.5
O16—La2—O8iii81.15 (12)H10B—C10—H10C109.5
O7—La2—O8iii107.17 (12)O10—C11—O9121.2 (5)
O9—La2—O8iii75.86 (12)O10—C11—C12119.5 (5)
O5—La2—O8iii155.76 (12)O9—C11—C12119.2 (5)
O10ii—La2—O8iii69.17 (12)O10—C11—La265.3 (3)
O15—La2—O12ii76.43 (12)O9—C11—La257.1 (3)
O16—La2—O12ii67.83 (12)C12—C11—La2168.1 (4)
O7—La2—O12ii121.36 (11)C13—C12—C11105.7 (4)
O9—La2—O12ii156.88 (12)C13—C12—C14109.2 (4)
O5—La2—O12ii59.95 (11)C11—C12—C14107.1 (5)
O10ii—La2—O12ii65.26 (11)C13—C12—C15110.7 (5)
O8iii—La2—O12ii117.24 (12)C11—C12—C15112.8 (4)
O15—La2—O7iii149.22 (12)C14—C12—C15111.0 (5)
O16—La2—O7iii66.13 (12)O11—C13—O12120.4 (5)
O7—La2—O7iii60.27 (13)O11—C13—C12120.7 (5)
O9—La2—O7iii69.68 (12)O12—C13—C12118.9 (5)
O5—La2—O7iii113.51 (11)O11—C13—La1ii61.3 (3)
O10ii—La2—O7iii117.18 (11)O12—C13—La1ii61.5 (3)
O8iii—La2—O7iii48.59 (11)C12—C13—La1ii164.5 (3)
O12ii—La2—O7iii133.43 (11)C12—C14—H14D109.5
O15—La2—O1065.76 (12)C12—C14—H14E109.5
O16—La2—O10146.94 (11)H14D—C14—H14E109.5
O7—La2—O10114.89 (12)C12—C14—H14C109.5
O9—La2—O1048.49 (11)H14D—C14—H14C109.5
O5—La2—O10136.26 (11)H14E—C14—H14C109.5
O10ii—La2—O1058.55 (14)C12—C15—H15D109.5
O8iii—La2—O1067.81 (11)C12—C15—H15E109.5
O12ii—La2—O10116.18 (11)H15D—C15—H15E109.5
O7iii—La2—O1098.97 (11)C12—C15—H15C109.5
O15—La2—C1174.38 (14)H15D—C15—H15C109.5
O16—La2—C11145.36 (14)H15E—C15—H15C109.5
O7—La2—C1191.33 (13)La1—O13—H13A111.4
O9—La2—C1124.44 (12)La1—O13—H13B109.3
O5—La2—C11132.20 (13)H13A—O13—H13B109.4
O10ii—La2—C1181.93 (13)La1—O14—H14A109.6
O8iii—La2—C1167.35 (13)La1—O14—H14B109.8
O12ii—La2—C11139.49 (14)H14A—O14—H14B109.7
O7iii—La2—C1181.85 (13)La2—O15—H15A109.5
O10—La2—C1124.34 (12)La2—O15—H15B130.0
O15—La2—C8iii146.59 (13)H15A—O15—H15B113.3
O16—La2—C8iii72.96 (13)La2—O16—H16A117.7
O7—La2—C8iii83.74 (13)La2—O16—H16B119.2
O9—La2—C8iii70.35 (13)H16A—O16—H16B116.3
O5—La2—C8iii136.54 (13)H17A—O17—H17B112.6
O10ii—La2—C8iii93.04 (13)
O3—La1—O1—C134.1 (5)La1—O1—C1—C222.5 (8)
O13—La1—O1—C1106.4 (5)La1i—O1—C1—C2171.8 (4)
O5—La1—O1—C127.4 (6)La1—O1—C1—La1i165.7 (5)
O1i—La1—O1—C1163.8 (6)O2—C1—C2—C435.9 (6)
O11ii—La1—O1—C1122.7 (5)O1—C1—C2—C4146.4 (5)
O12ii—La1—O1—C1109.3 (5)O2—C1—C2—C583.8 (6)
O14—La1—O1—C183.9 (5)O1—C1—C2—C593.9 (6)
O6—La1—O1—C124.7 (5)O2—C1—C2—C3159.7 (5)
O2i—La1—O1—C1176.1 (5)O1—C1—C2—C322.6 (7)
C13ii—La1—O1—C1120.8 (5)La1—O3—C3—O4166.3 (4)
C6—La1—O1—C10.9 (5)La1—O3—C3—C216.6 (9)
O3—La1—O1—La1i162.13 (19)C1—C2—C3—O4143.4 (5)
O13—La1—O1—La1i57.3 (2)C4—C2—C3—O420.9 (7)
O5—La1—O1—La1i168.78 (12)C5—C2—C3—O498.9 (6)
O1i—La1—O1—La1i0.0C1—C2—C3—O339.4 (7)
O11ii—La1—O1—La1i73.53 (15)C4—C2—C3—O3161.9 (5)
O12ii—La1—O1—La1i86.86 (18)C5—C2—C3—O378.3 (6)
O14—La1—O1—La1i79.88 (16)La1—O6—C6—O512.2 (5)
O6—La1—O1—La1i139.11 (13)La1—O6—C6—C7162.4 (4)
O2i—La1—O1—La1i12.33 (18)La2—O5—C6—O6173.7 (3)
C13ii—La1—O1—La1i75.45 (17)La1—O5—C6—O612.4 (5)
C6—La1—O1—La1i162.91 (14)La2—O5—C6—C71.0 (8)
O1—La1—O3—C311.7 (6)La1—O5—C6—C7162.3 (4)
O13—La1—O3—C3120.4 (6)La2—O5—C6—La1161.3 (6)
O5—La1—O3—C3163.2 (6)O3—La1—C6—O6100.3 (3)
O1i—La1—O3—C330.5 (6)O1—La1—C6—O665.6 (3)
O11ii—La1—O3—C392.7 (6)O13—La1—C6—O669.7 (3)
O12ii—La1—O3—C3141.0 (6)O5—La1—C6—O6167.7 (5)
O14—La1—O3—C348.4 (6)O1i—La1—C6—O633.2 (7)
O6—La1—O3—C3111.1 (6)O11ii—La1—C6—O6165.2 (3)
O2i—La1—O3—C392.7 (6)O12ii—La1—C6—O6163.2 (3)
C13ii—La1—O3—C3116.0 (6)O14—La1—C6—O64.7 (3)
C6—La1—O3—C3136.5 (6)O2i—La1—C6—O6108.4 (3)
O15—La2—O5—C691.8 (6)C13ii—La1—C6—O6174.2 (3)
O16—La2—O5—C6111.1 (6)O3—La1—C6—O592.0 (3)
O7—La2—O5—C620.5 (5)O1—La1—C6—O5126.7 (3)
O9—La2—O5—C622.4 (6)O13—La1—C6—O597.9 (3)
O10ii—La2—O5—C6155.1 (5)O1i—La1—C6—O5134.5 (4)
O8iii—La2—O5—C693.3 (6)O11ii—La1—C6—O527.1 (3)
O12ii—La2—O5—C6176.5 (6)O12ii—La1—C6—O54.5 (3)
O7iii—La2—O5—C655.6 (6)O14—La1—C6—O5163.0 (3)
O10—La2—O5—C678.8 (6)O6—La1—C6—O5167.7 (5)
C11—La2—O5—C645.1 (6)O2i—La1—C6—O559.2 (3)
C8iii—La2—O5—C666.2 (6)C13ii—La1—C6—O56.5 (3)
O15—La2—O5—La166.83 (16)O3—La1—C6—C74.6 (13)
O16—La2—O5—La190.24 (16)O1—La1—C6—C739.3 (14)
O7—La2—O5—La1179.14 (19)O13—La1—C6—C7174.7 (13)
O9—La2—O5—La1136.22 (14)O5—La1—C6—C787.4 (13)
O10ii—La2—O5—La13.5 (2)O1i—La1—C6—C7138.1 (12)
O8iii—La2—O5—La1108.0 (3)O11ii—La1—C6—C760.3 (14)
O12ii—La2—O5—La117.84 (13)O12ii—La1—C6—C791.9 (13)
O7iii—La2—O5—La1145.76 (14)O14—La1—C6—C7109.6 (13)
O10—La2—O5—La179.8 (2)O6—La1—C6—C7104.9 (14)
C11—La2—O5—La1113.54 (19)O2i—La1—C6—C7146.6 (13)
C8iii—La2—O5—La1135.14 (17)C13ii—La1—C6—C780.9 (13)
O3—La1—O5—C677.7 (3)O6—C6—C7—C8146.1 (5)
O1—La1—O5—C671.3 (3)O5—C6—C7—C839.3 (7)
O13—La1—O5—C677.5 (3)La1—C6—C7—C8117.8 (12)
O1i—La1—O5—C6142.6 (4)O6—C6—C7—C997.1 (6)
O11ii—La1—O5—C6157.3 (3)O5—C6—C7—C977.5 (6)
O12ii—La1—O5—C6174.8 (3)La1—C6—C7—C91.0 (15)
O14—La1—O5—C619.4 (3)O6—C6—C7—C1021.3 (7)
O6—La1—O5—C66.7 (3)O5—C6—C7—C10164.1 (5)
O2i—La1—O5—C6133.6 (3)La1—C6—C7—C10117.3 (12)
C13ii—La1—O5—C6173.7 (3)La2iii—O8—C8—O73.4 (5)
O3—La1—O5—La289.64 (16)La2iii—O8—C8—C7177.8 (4)
O1—La1—O5—La296.09 (18)La2—O7—C8—O8156.0 (4)
O13—La1—O5—La2115.12 (17)La2iii—O7—C8—O83.2 (5)
O1i—La1—O5—La250.1 (4)La2—O7—C8—C725.2 (8)
O11ii—La1—O5—La210.04 (17)La2iii—O7—C8—C7178.0 (4)
O12ii—La1—O5—La217.83 (13)La2—O7—C8—La2iii152.8 (5)
O14—La1—O5—La2173.27 (12)C6—C7—C8—O8130.1 (5)
O6—La1—O5—La2174.1 (2)C9—C7—C8—O8114.1 (5)
O2i—La1—O5—La259.06 (18)C10—C7—C8—O86.6 (7)
C13ii—La1—O5—La26.36 (16)C6—C7—C8—O751.1 (6)
C6—La1—O5—La2167.4 (4)C9—C7—C8—O764.7 (6)
O3—La1—O6—C670.7 (3)C10—C7—C8—O7174.6 (4)
O1—La1—O6—C6125.2 (3)La2ii—O10—C11—O9165.6 (4)
O13—La1—O6—C6103.3 (3)La2—O10—C11—O911.9 (5)
O5—La1—O6—C66.8 (3)La2ii—O10—C11—C1214.1 (9)
O1i—La1—O6—C6166.6 (3)La2—O10—C11—C12167.8 (4)
O11ii—La1—O6—C623.0 (4)La2ii—O10—C11—La2153.7 (6)
O12ii—La1—O6—C617.7 (3)La2—O9—C11—O1012.9 (5)
O14—La1—O6—C6175.0 (3)La2—O9—C11—C12166.8 (4)
O2i—La1—O6—C693.7 (3)O15—La2—C11—O1065.4 (3)
C13ii—La1—O6—C67.5 (4)O16—La2—C11—O10112.2 (3)
O15—La2—O7—C857.6 (5)O7—La2—C11—O10166.0 (3)
O16—La2—O7—C882.5 (5)O9—La2—C11—O10167.9 (5)
O9—La2—O7—C8132.8 (5)O5—La2—C11—O10111.2 (3)
O5—La2—O7—C85.6 (5)O10ii—La2—C11—O1015.2 (3)
O8iii—La2—O7—C8161.4 (5)O8iii—La2—C11—O1086.0 (3)
O12ii—La2—O7—C822.9 (6)O12ii—La2—C11—O1020.0 (4)
O7iii—La2—O7—C8148.2 (6)O7iii—La2—C11—O10134.3 (3)
O10—La2—O7—C8125.6 (5)C8iii—La2—C11—O10111.0 (3)
C11—La2—O7—C8131.9 (5)O15—La2—C11—O9102.5 (3)
C8iii—La2—O7—C8155.9 (5)O16—La2—C11—O979.9 (4)
O15—La2—O7—La2iii154.19 (15)O7—La2—C11—O91.9 (3)
O16—La2—O7—La2iii65.73 (16)O5—La2—C11—O956.7 (4)
O9—La2—O7—La2iii78.97 (16)O10ii—La2—C11—O9176.9 (3)
O5—La2—O7—La2iii142.61 (19)O8iii—La2—C11—O9106.2 (3)
O8iii—La2—O7—La2iii13.16 (18)O12ii—La2—C11—O9147.9 (3)
O12ii—La2—O7—La2iii125.39 (15)O7iii—La2—C11—O957.8 (3)
O7iii—La2—O7—La2iii0.0O10—La2—C11—O9167.9 (5)
O10—La2—O7—La2iii86.15 (17)C8iii—La2—C11—O981.1 (3)
C11—La2—O7—La2iii79.83 (17)O15—La2—C11—C12177.8 (17)
C8iii—La2—O7—La2iii7.70 (15)O16—La2—C11—C124.6 (18)
O15—La2—O9—C1172.3 (3)O7—La2—C11—C1277.3 (17)
O16—La2—O9—C11127.6 (3)O9—La2—C11—C1275.3 (17)
O7—La2—O9—C11177.9 (4)O5—La2—C11—C12132.0 (17)
O5—La2—O9—C11136.3 (3)O10ii—La2—C11—C12101.6 (17)
O10ii—La2—O9—C113.2 (3)O8iii—La2—C11—C1230.8 (17)
O8iii—La2—O9—C1166.1 (3)O12ii—La2—C11—C12136.8 (17)
O12ii—La2—O9—C1161.7 (4)O7iii—La2—C11—C1217.5 (17)
O7iii—La2—O9—C11116.7 (3)O10—La2—C11—C12116.8 (18)
O10—La2—O9—C116.6 (3)C8iii—La2—C11—C125.8 (17)
C8iii—La2—O9—C1190.6 (3)O10—C11—C12—C1343.9 (6)
O15—La2—O10—C11106.2 (3)O9—C11—C12—C13135.8 (5)
O16—La2—O10—C11105.2 (3)La2—C11—C12—C1367.3 (18)
O7—La2—O10—C1115.5 (3)O10—C11—C12—C1472.5 (6)
O9—La2—O10—C116.7 (3)O9—C11—C12—C14107.8 (5)
O5—La2—O10—C1192.7 (3)La2—C11—C12—C14176.3 (15)
O10ii—La2—O10—C11162.3 (4)O10—C11—C12—C15165.1 (5)
O8iii—La2—O10—C1183.8 (3)O9—C11—C12—C1514.6 (7)
O12ii—La2—O10—C11165.6 (3)La2—C11—C12—C1553.9 (19)
O7iii—La2—O10—C1145.8 (3)La1ii—O11—C13—O1217.7 (5)
C8iii—La2—O10—C1163.9 (3)La1ii—O11—C13—C12162.3 (4)
O15—La2—O10—La2ii91.55 (18)La2ii—O12—C13—O11109.9 (5)
O16—La2—O10—La2ii57.0 (3)La1ii—O12—C13—O1117.7 (5)
O7—La2—O10—La2ii177.76 (14)La2ii—O12—C13—C1270.0 (5)
O9—La2—O10—La2ii168.9 (2)La1ii—O12—C13—C12162.4 (4)
O5—La2—O10—La2ii105.03 (18)La2ii—O12—C13—La1ii127.6 (3)
O10ii—La2—O10—La2ii0.0C11—C12—C13—O11104.2 (6)
O8iii—La2—O10—La2ii78.43 (17)C14—C12—C13—O11140.9 (5)
O12ii—La2—O10—La2ii32.1 (2)C15—C12—C13—O1118.4 (7)
O7iii—La2—O10—La2ii116.46 (16)C11—C12—C13—O1275.8 (6)
C11—La2—O10—La2ii162.3 (4)C14—C12—C13—O1239.2 (6)
C8iii—La2—O10—La2ii98.38 (18)C15—C12—C13—O12161.7 (5)
La1i—O2—C1—O19.7 (5)C11—C12—C13—La1ii162.9 (13)
La1i—O2—C1—C2172.5 (4)C14—C12—C13—La1ii47.9 (16)
La1—O1—C1—O2155.3 (4)C15—C12—C13—La1ii74.6 (15)
La1i—O1—C1—O210.4 (5)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+2, y+2, z+1; (iii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H17B···O40.851.842.681 (5)171
O17—H17A···O2iv0.852.062.810 (6)146
O16—H16B···O17v0.851.982.819 (5)169
O16—H16A···O9iii0.851.992.773 (5)153
O15—H15B···O8vi0.852.002.777 (5)151
O15—H15A···O30.851.902.709 (5)160
O14—H14B···O11vii0.851.822.667 (6)176
O14—H14A···O6viii0.852.012.754 (5)145
O13—H13B···O14viii0.851.992.828 (5)168
O13—H13A···O17v0.851.912.707 (5)155
Symmetry codes: (iii) x+1, y+2, z+1; (iv) x1/2, y+3/2, z1/2; (v) x+3/2, y+1/2, z+3/2; (vi) x+1, y, z; (vii) x, y, z+1; (viii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formula[La2(C5H6O4)3(H2O)4]·H2O
Mr758.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)133
a, b, c (Å)8.3835 (17), 20.229 (4), 14.101 (3)
β (°) 92.989 (3)
V3)2388.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)3.61
Crystal size (mm)0.12 × 0.08 × 0.06
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.715, 0.802
No. of measured, independent and
observed [I > 2σ(I)] reflections
13664, 4177, 3140
Rint0.061
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.088, 0.94
No. of reflections4177
No. of parameters313
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.04, 0.81

Computer programs: CrystalClear (Rigaku/MSC 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
La1—O32.421 (4)La2—O72.544 (4)
La1—O12.490 (4)La2—O92.574 (4)
La1—O132.550 (4)La2—O52.590 (3)
La1—O52.594 (4)La2—O10ii2.599 (4)
La1—O1i2.604 (4)La2—O8iii2.604 (4)
La1—O11ii2.620 (4)La2—O12ii2.617 (4)
La1—O12ii2.623 (4)La2—O7iii2.712 (4)
La1—O142.625 (4)La2—O102.756 (4)
La1—O62.645 (4)O3—C31.260 (6)
La1—O2i2.747 (4)O4—C31.222 (6)
La2—O152.466 (4)O6—C61.251 (7)
La2—O162.498 (4)O7—C81.273 (6)
O11ii—La1—O12ii49.23 (12)O9—La2—O1048.49 (11)
O13—La1—O1466.83 (12)C1—C2—C3114.8 (4)
O5—La1—O649.18 (11)C8—C7—C6112.8 (4)
O15—La2—O16140.22 (13)C13—C12—C11105.7 (4)
O8iii—La2—O7iii48.59 (11)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+2, y+2, z+1; (iii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H17B···O40.851.842.681 (5)171
O17—H17A···O2iv0.852.062.810 (6)146
O16—H16B···O17v0.851.982.819 (5)169
O16—H16A···O9iii0.851.992.773 (5)153
O15—H15B···O8vi0.852.002.777 (5)151
O15—H15A···O30.851.902.709 (5)160
O14—H14B···O11vii0.851.822.667 (6)176
O14—H14A···O6viii0.852.012.754 (5)145
O13—H13B···O14viii0.851.992.828 (5)168
O13—H13A···O17v0.851.912.707 (5)155
Symmetry codes: (iii) x+1, y+2, z+1; (iv) x1/2, y+3/2, z1/2; (v) x+3/2, y+1/2, z+3/2; (vi) x+1, y, z; (vii) x, y, z+1; (viii) x+1, y+2, z+2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds