Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Three cyclo­octitol derivatives, in the form of a tetra­acetate, (1S*,2R*,3S*,4S*)-2,3,4-triacetoxy­cyclo­octan-1-ylmethyl ace­tate, C17H26O8, and two regioisomeric acetonide triacetates, (3aS*,4R*,8S*,9S*,9aS*)-8,9-diacet­oxy-2,2-dimethyl­cyclo­octano­[d][1,3]dioxan-4-ymethyl acetate and (3aS,4R,7S,9R,9aS)-7,9-diacet­oxy-2,2-dimethyl­cyclo­octano[d][1,3]dioxan-4-ylmethyl acetate, both C18H28O8, have been studied. The conformation of the cyclo­octane ring in the three compounds is quite close to the boat–chair form of the parent hydro­carbon. Packing is effected through weak C—H...O and van der Waals contacts.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107048664/ga3073sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107048664/ga3073Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107048664/ga3073IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107048664/ga3073IIIsup4.hkl
Contains datablock III

CCDC references: 672548; 672549; 672550

Comment top

Details of the synthesis of the three cyclooctitol derivatives (I)–(III) have been reported previously (Mehta & Pallavi, 2002). The synthetic scheme provided, through moderate regio- and stereocontrol, a convenient access to cyclooctitols – an emerging class of medium ring glycomimics which have been projected to provide better adaptability at the active site of a glycosidase enzyme than cyclohexitols and cyclopentitols (Wang et al., 2000; Paquette & Zhang, 2006). Though interesting in their own right, studies into the solid-state supramolecular assemblies of cyclooctitols or their derivatives have been rarely reported in the literature (Salamci et al., 2006; Kawazoe et al., 2001; Andriuzzi et al., 2005; Wang et al., 2001). We report here details of the conformations of the eight-membered carbocyclic rings in the crystal structures of the three cyclooctitol derivatives (I)–(III) and examine how these molecules pack in the solid state. Preliminary details of the structures of (II) and (III) in CIF form were a minor part of the Mehta & Pallavi (2002) publication.

In the monocyclic cyclooctane tetraacetate (I) (Fig. 1), the puckering parameters (Cremer & Pople, 1975) of the cyclooctane ring [q2 = 1.0294 (18) Å, q3 = 0.5718 (19) Å, q4 = -0.3209 (19) Å, ϕ2 = 5.05 (10)°, ϕ3 = 180.00 (19)° and QT = 1.2206 (19) Å] are in conformity with those of the boat–chair (BC) form (Evans & Boeyens, 1988; Allen et al., 1996), which is the predominant conformer of the cyclooctane molecule as revealed through gas-phase electron diffraction analysis at 300 K and an NMR study in solution at 161.5 K (Rocha et al., 1998). The crystal packing of (I) is realised mainly through van der Waals interactions. The shortest intermolecular contact is between a poorly resolved methyl hydrogen H13A and an adjacent inversion-related carbonyl O atom (O6; Table 1), giving rise to potential dimers [graph-set motif R22(8); Bernstein et al., 1995], as shown in Fig. 2(a). As methyl H atoms are not noted for their acidity and the H-atom positions are not well defined in this room- temperature structure determination, this may be an adventitious contact. Such a motif, though very similar to the archetypical carboxylic acid dimer synthon (Fig. 2b), is not commonly encountered. A Cambridge Structural Database search (CSD; Version 5.28 of November 2006; Allen, 2002) for the centrosymmetric R22(8) C—H···O motif (as shown in Fig. 2a) in organic molecules, whose crystal structures were refined to R < 0.1, with low-temperature data and correctly oriented methyl H atoms, only generated eight hits.

Owing to its fusion with the 1,3-dioxolane ring, the eight-membered ring in bicyclic cyclooctitol triacetate (II) (Fig. 3) distorts slightly from the expected BC conformation, as revealed by its puckering parameters [q2 = 0.8958 (17) Å, q3 = 0.6673 (17) Å, q4 = -0.3004 (17) Å, ϕ2 = 258.18 (11)°, ϕ3 = 123.87 (14)° and QT = 1.1567 (17) Å]. The puckering parameters of the five-membered 1,3-dioxolane ring [q2 = 0.3380 (15) Å and ϕ2 = 158.2 (3)°] best describe a half-chair (T) conformation, twisted at the C12—O2 bond (Cremer & Pople, 1975). As with (I) the crystal packing of (II) involves mainly van der Waals interactions; the shortest contact is between methylene atom H6B (on C6) and carbonyl atom O8 of an adjacent glide-related molecule (Table 2), and gives rise to chains extending along c as shown in Fig. 4.

In the bicyclic cyclooctitol triacetate (III) (Fig. 5), a regioisomer of (II), the eight-membered ring distorts slightly, as with (II), through its fusion with the 1,3-dioxolane ring, from the expected BC conformation [puckering parameters q2 = 0.845 (2) Å, q3 = 0.657 (2) Å, q4 = -0.321 (2) Å, ϕ2 = 81.50 (16)°, ϕ3 = 306.9 (2)° and QT = 1.118 (2) Å]. As in (II), the puckering parameters of the five-membered 1,3-dioxolane ring in (III) [q2 = 0.330 (2) Å and ϕ2 = 348.8 (4)°] best describe a half-chair (T) conformation, twisted at the C12—O2 bond. As with (I), the packing is realised mainly through van der Waals interactions; the shortest intermolecular contact is between the poorly resolved methyl atom H16A and an adjacent inversion-related carbonyl atom O6 (Table 3) at (1 - x, -y, -z), which would give rise to dimers with graph-set motif R22(24) involving the transannular acetate groups at atoms C1 and C4.

To summarize, the present study reports on the conformations and packing of three cyclooctitol acetates. Two types of packing interactions are observed; centrosymmetric dimers and glide-related chains.

Related literature top

For related literature, see: Allen (2002); Allen et al. (1996); Andriuzzi et al. (2005); Bernstein et al. (1995); Cremer & Pople (1975); Evans & Boeyens (1988); Kawazoe et al. (2001); Mehta & Pallavi (2002); Paquette & Zhang (2006); Rocha et al. (1998); Salamci et al. (2006); Wang et al. (2000, 2001).

Experimental top

####The cyclooctitol derivatives (I)–(III) were prepared as previously reported (Mehta & Pallavi, 2002). Crystals of (I)–(III), suitable for single-crystal X-ray diffraction analysis, were grown from their dilute solutions in a 1:2 dichloromethane–petroleum ether mixture by slow solvent evaporation.

Refinement top

All H atoms were initially located in a difference Fourier map. The methine (CH) and methylene (CH2) H atoms were then placed in geometrically idealized positions and allowed to ride on their parent atoms with C—H distances of 0.97 and 0.98 Å and Uiso(H) values of 1.2Ueq(C). The methyl H atoms were not well defined in difference maps and were constrained to an ideal geometry with a C—H distance of 0.96 Å and Uiso(H) values of 1.5Ueq(C). During refinement, each methyl group was allowed to rotate freely about its C—C bond.

Computing details top

For all compounds, data collection: SMART (Bruker, 1998). Cell refinement: SAINT (Bruker, 1998) for (I), (II); SMART (Bruker, 1998) for (III). For all compounds, data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. A view of the tetraacetate (I), with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. (a) The centrosymmetric C—H···O motif employed in the CSD search and seen in (I); (b) its similarity to the carboxylic acid dimer synthon.
[Figure 3] Fig. 3. A view of the triacetate (II), with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 4] Fig. 4. The molecular packing of (II). H atoms that are not involved in hydrogen bonding have been omitted for clarity. Dotted lines indicate hydrogen bonds.
[Figure 5] Fig. 5. A view of the triacetate (III), with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
(I) (1S*,2R*,3S*,4S*)-2,3,4-triacetoxycyclooctan-1-ylmethyl acetate top
Crystal data top
C17H26O8Z = 2
Mr = 358.38F(000) = 384
Triclinic, P1Dx = 1.255 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1632 (9) ÅCell parameters from 3830 reflections
b = 9.2131 (9) Åθ = 2.3–27.2°
c = 11.5904 (11) ŵ = 0.10 mm1
α = 94.709 (2)°T = 291 K
β = 92.486 (2)°Block, colorless
γ = 102.912 (2)°0.35 × 0.31 × 0.28 mm
V = 948.60 (16) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3500 independent reflections
Radiation source: fine-focus sealed tube2880 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.936, Tmax = 0.973k = 1111
9524 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0713P)2 + 0.2015P]
where P = (Fo2 + 2Fc2)/3
3500 reflections(Δ/σ)max < 0.001
230 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C17H26O8γ = 102.912 (2)°
Mr = 358.38V = 948.60 (16) Å3
Triclinic, P1Z = 2
a = 9.1632 (9) ÅMo Kα radiation
b = 9.2131 (9) ŵ = 0.10 mm1
c = 11.5904 (11) ÅT = 291 K
α = 94.709 (2)°0.35 × 0.31 × 0.28 mm
β = 92.486 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3500 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2880 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.973Rint = 0.019
9524 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.06Δρmax = 0.32 e Å3
3500 reflectionsΔρmin = 0.25 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Four outlier reflections (3,5,4; 1,5,4; 3,5,1 & 2,4,0) were omitted from the refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08290 (14)0.27858 (13)0.64446 (11)0.0558 (3)
O20.39354 (12)0.00780 (12)0.71670 (9)0.0431 (3)
O30.21602 (13)0.21760 (13)0.84362 (10)0.0525 (3)
O40.50109 (13)0.29004 (13)0.80950 (11)0.0549 (3)
O50.1437 (2)0.49528 (18)0.59574 (18)0.0971 (6)
O60.32805 (19)0.0823 (2)0.88951 (14)0.0927 (6)
O70.02687 (16)0.1234 (2)0.79527 (15)0.0824 (5)
O80.5895 (2)0.53633 (18)0.83651 (18)0.1099 (7)
C10.18533 (18)0.04200 (18)0.57279 (14)0.0458 (4)
C20.24739 (17)0.02391 (17)0.69560 (14)0.0412 (4)
C30.25241 (18)0.19096 (17)0.72402 (14)0.0434 (4)
C40.39964 (19)0.30473 (18)0.71365 (16)0.0481 (4)
C50.47793 (19)0.2891 (2)0.60217 (16)0.0522 (4)
C60.3929 (2)0.3070 (2)0.49114 (18)0.0594 (5)
C70.2531 (2)0.1873 (2)0.45203 (17)0.0579 (5)
C80.2625 (2)0.0262 (2)0.46816 (15)0.0542 (4)
C90.1765 (2)0.2093 (2)0.55887 (16)0.0541 (4)
C100.0756 (2)0.4235 (2)0.65305 (18)0.0623 (5)
C110.0309 (4)0.4824 (3)0.7399 (3)0.1075 (10)
C120.4205 (2)0.0590 (2)0.81891 (16)0.0554 (5)
C130.5756 (2)0.0812 (3)0.83197 (19)0.0703 (6)
C140.0719 (2)0.1760 (2)0.86732 (19)0.0586 (5)
C150.0541 (3)0.2038 (3)0.9943 (2)0.0897 (8)
C160.5868 (2)0.4139 (2)0.86471 (19)0.0666 (5)
C170.6809 (3)0.3798 (3)0.9613 (2)0.0966 (9)
H10.08170.03030.56590.055*
H20.18090.03040.74950.049*
H30.17510.21680.67380.052*
H40.38020.40530.72290.058*
H5A0.57250.36290.60910.063*
H5B0.50110.19120.59500.063*
H6A0.46140.31220.42930.071*
H6B0.36450.40240.50040.071*
H7A0.22960.19370.37050.069*
H7B0.17030.20910.49430.069*
H8A0.36760.02290.47560.065*
H8B0.21850.03660.39840.065*
H9A0.13480.25080.48170.065*
H9B0.27610.22790.56890.065*
H11A0.06220.58920.72540.161*
H11B0.11690.43940.73420.161*
H11C0.01740.45670.81630.161*
H13A0.61120.06070.91210.105*
H13B0.63980.01460.78640.105*
H13C0.57610.18270.80590.105*
H15A0.05040.17741.00900.134*
H15B0.09400.30771.01910.134*
H15C0.10720.14401.03640.134*
H17A0.72850.47091.00730.145*
H17B0.75610.33260.93050.145*
H17C0.61910.31381.00880.145*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0617 (8)0.0398 (6)0.0653 (8)0.0106 (5)0.0148 (6)0.0012 (5)
O20.0450 (6)0.0440 (6)0.0430 (6)0.0137 (5)0.0056 (5)0.0081 (5)
O30.0532 (7)0.0500 (7)0.0520 (7)0.0093 (5)0.0105 (5)0.0052 (5)
O40.0510 (7)0.0452 (7)0.0640 (8)0.0031 (5)0.0032 (6)0.0052 (6)
O50.1223 (15)0.0640 (10)0.1197 (14)0.0469 (10)0.0361 (12)0.0088 (9)
O60.0842 (11)0.1445 (16)0.0643 (10)0.0401 (11)0.0227 (8)0.0483 (10)
O70.0501 (8)0.1106 (13)0.0809 (11)0.0069 (8)0.0139 (8)0.0030 (9)
O80.1387 (17)0.0506 (10)0.1218 (16)0.0079 (10)0.0423 (13)0.0067 (9)
C10.0423 (9)0.0464 (9)0.0479 (9)0.0099 (7)0.0025 (7)0.0001 (7)
C20.0382 (8)0.0406 (8)0.0453 (9)0.0090 (6)0.0072 (6)0.0045 (7)
C30.0422 (8)0.0421 (9)0.0466 (9)0.0113 (7)0.0062 (7)0.0018 (7)
C40.0473 (9)0.0383 (8)0.0589 (10)0.0096 (7)0.0030 (8)0.0065 (7)
C50.0427 (9)0.0483 (9)0.0656 (11)0.0061 (7)0.0090 (8)0.0142 (8)
C60.0596 (11)0.0597 (11)0.0633 (12)0.0161 (9)0.0128 (9)0.0208 (9)
C70.0546 (10)0.0711 (12)0.0514 (10)0.0172 (9)0.0049 (8)0.0172 (9)
C80.0552 (10)0.0604 (11)0.0453 (9)0.0106 (8)0.0035 (8)0.0018 (8)
C90.0546 (10)0.0495 (10)0.0554 (10)0.0081 (8)0.0091 (8)0.0047 (8)
C100.0779 (13)0.0467 (10)0.0646 (12)0.0206 (9)0.0045 (10)0.0000 (9)
C110.162 (3)0.0584 (14)0.104 (2)0.0189 (16)0.056 (2)0.0150 (13)
C120.0627 (11)0.0609 (11)0.0455 (10)0.0180 (9)0.0052 (8)0.0108 (8)
C130.0724 (13)0.0880 (15)0.0588 (12)0.0345 (11)0.0029 (10)0.0144 (11)
C140.0568 (11)0.0492 (10)0.0701 (12)0.0110 (8)0.0210 (10)0.0021 (9)
C150.1029 (19)0.0821 (16)0.0773 (16)0.0059 (14)0.0417 (14)0.0084 (12)
C160.0660 (12)0.0543 (12)0.0692 (13)0.0071 (9)0.0009 (10)0.0050 (10)
C170.0948 (19)0.0936 (19)0.0832 (17)0.0148 (14)0.0268 (14)0.0185 (14)
Geometric parameters (Å, º) top
O1—C101.334 (2)C6—H6A0.9700
O1—C91.436 (2)C6—H6B0.9700
O2—C121.344 (2)C7—C81.532 (3)
O2—C21.4480 (18)C7—H7A0.9700
O3—C141.338 (2)C7—H7B0.9700
O3—C31.454 (2)C8—H8A0.9700
O4—C161.328 (2)C8—H8B0.9700
O4—C41.452 (2)C9—H9A0.9700
O5—C101.190 (2)C9—H9B0.9700
O6—C121.201 (2)C10—C111.482 (3)
O7—C141.193 (3)C11—H11A0.9600
O8—C161.195 (3)C11—H11B0.9600
C1—C91.520 (2)C11—H11C0.9600
C1—C21.534 (2)C12—C131.483 (3)
C1—C81.538 (2)C13—H13A0.9600
C1—H10.9800C13—H13B0.9600
C2—C31.537 (2)C13—H13C0.9600
C2—H20.9800C14—C151.495 (3)
C3—C41.528 (2)C15—H15A0.9600
C3—H30.9800C15—H15B0.9600
C4—C51.517 (3)C15—H15C0.9600
C4—H40.9800C16—C171.480 (3)
C5—C61.515 (3)C17—H17A0.9600
C5—H5A0.9700C17—H17B0.9600
C5—H5B0.9700C17—H17C0.9600
C6—C71.517 (3)
O1—C9—C1108.74 (13)C6—C5—H5B108.2
O1—C10—C11111.12 (18)C6—C7—H7A108.3
O1—C9—H9A109.9C6—C7—H7B108.3
O1—C9—H9B109.9C7—C8—C1116.02 (15)
O2—C2—C1108.94 (12)C7—C6—H6A108.0
O2—C2—C3111.27 (12)C7—C6—H6B108.0
O2—C12—C13111.79 (16)C7—C8—H8A108.3
O2—C2—H2106.8C7—C8—H8B108.3
O3—C3—C2109.65 (12)C8—C1—H1106.3
O3—C3—C4104.46 (13)C8—C7—H7A108.3
O3—C14—C15110.8 (2)C8—C7—H7B108.3
O3—C3—H3107.9C9—C1—C2110.27 (14)
O4—C4—C3106.89 (13)C9—C1—C8107.91 (14)
O4—C4—C5108.02 (13)C9—C1—H1106.3
O4—C16—C17111.48 (19)C10—O1—C9116.82 (14)
O4—C4—H4108.4C10—C11—H11A109.5
O5—C10—O1123.6 (2)C10—C11—H11B109.5
O5—C10—C11125.2 (2)C10—C11—H11C109.5
O6—C12—O2122.65 (18)C12—O2—C2116.98 (13)
O6—C12—C13125.56 (18)C12—C13—H13A109.5
O7—C14—O3123.40 (19)C12—C13—H13B109.5
O7—C14—C15125.8 (2)C12—C13—H13C109.5
O8—C16—O4123.4 (2)C14—O3—C3117.32 (14)
O8—C16—C17125.1 (2)C14—C15—H15A109.5
C1—C2—C3115.66 (13)C14—C15—H15B109.5
C1—C2—H2106.8C14—C15—H15C109.5
C1—C8—H8A108.3C16—O4—C4118.24 (15)
C1—C8—H8B108.3C16—C17—H17A109.5
C1—C9—H9A109.9C16—C17—H17B109.5
C1—C9—H9B109.9C16—C17—H17C109.5
C2—C1—C8119.04 (14)H5A—C5—H5B107.3
C2—C1—H1106.3H6A—C6—H6B107.2
C2—C3—H3107.9H7A—C7—H7B107.4
C3—C2—H2106.8H8A—C8—H8B107.4
C3—C4—H4108.4H9A—C9—H9B108.3
C4—C3—C2118.71 (13)H11A—C11—H11B109.5
C4—C3—H3107.9H11A—C11—H11C109.5
C4—C5—H5A108.2H11B—C11—H11C109.5
C4—C5—H5B108.2H13A—C13—H13B109.5
C5—C4—C3116.57 (15)H13A—C13—H13C109.5
C5—C6—C7117.39 (15)H13B—C13—H13C109.5
C5—C4—H4108.4H15A—C15—H15B109.5
C5—C6—H6A108.0H15A—C15—H15C109.5
C5—C6—H6B108.0H15B—C15—H15C109.5
C6—C5—C4116.57 (15)H17A—C17—H17B109.5
C6—C7—C8115.85 (15)H17A—C17—H17C109.5
C6—C5—H5A108.2H17B—C17—H17C109.5
O2—C2—C3—O392.05 (14)C4—C5—C6—C767.7 (2)
O2—C2—C3—C427.8 (2)C5—C6—C7—C839.7 (2)
O3—C3—C4—O450.57 (16)C6—C7—C8—C1101.90 (19)
O3—C3—C4—C5171.46 (13)C8—C1—C2—O267.74 (18)
O4—C4—C5—C6177.73 (14)C8—C1—C2—C358.4 (2)
C1—C2—C3—O3142.95 (14)C8—C1—C9—O1170.34 (14)
C1—C2—C3—C497.19 (17)C9—O1—C10—O51.4 (3)
C2—O2—C12—O62.1 (3)C9—O1—C10—C11176.9 (2)
C2—O2—C12—C13177.67 (15)C9—C1—C2—O257.71 (16)
C2—C1—C8—C765.8 (2)C9—C1—C2—C3176.11 (13)
C2—C1—C9—O158.12 (18)C9—C1—C8—C7167.59 (15)
C2—C3—C4—O471.91 (18)C10—O1—C9—C1173.02 (15)
C2—C3—C4—C549.0 (2)C12—O2—C2—C1134.39 (15)
C3—O3—C14—O72.4 (3)C12—O2—C2—C396.94 (16)
C3—O3—C14—C15177.18 (16)C14—O3—C3—C4156.07 (15)
C3—C4—C5—C662.0 (2)C14—O3—C3—C275.70 (17)
C4—O4—C16—O83.3 (3)C16—O4—C4—C594.67 (18)
C4—O4—C16—C17178.76 (19)C16—O4—C4—C3139.15 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O6i0.962.533.439 (3)158
Symmetry code: (i) x+1, y, z+2.
(II) (3aS*,4R*,8S*,9S*,9aS*)-8,9-diacetoxy-2,2-dimethylcyclooctano[d][1,3]dioxan- 4-ylmethyl acetate top
Crystal data top
C18H28O8F(000) = 1600
Mr = 372.40Dx = 1.249 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 6079 reflections
a = 19.206 (12) Åθ = 2.5–23.2°
b = 26.611 (17) ŵ = 0.10 mm1
c = 7.748 (5) ÅT = 291 K
V = 3960 (4) Å3Block, colorless
Z = 80.49 × 0.40 × 0.39 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3822 independent reflections
Radiation source: fine-focus sealed tube2811 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2323
Tmin = 0.905, Tmax = 0.963k = 3231
24680 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.5339P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3822 reflectionsΔρmax = 0.20 e Å3
241 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0070 (7)
Crystal data top
C18H28O8V = 3960 (4) Å3
Mr = 372.40Z = 8
Orthorhombic, PccnMo Kα radiation
a = 19.206 (12) ŵ = 0.10 mm1
b = 26.611 (17) ÅT = 291 K
c = 7.748 (5) Å0.49 × 0.40 × 0.39 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3822 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2811 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.963Rint = 0.053
24680 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
3822 reflectionsΔρmin = 0.14 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36504 (7)0.03567 (4)0.57587 (15)0.0572 (3)
O20.37167 (6)0.16104 (4)0.33097 (14)0.0485 (3)
O30.42318 (6)0.15849 (5)0.06869 (15)0.0573 (3)
O40.55129 (6)0.09492 (4)0.00990 (14)0.0545 (3)
O50.63693 (6)0.15585 (5)0.17851 (18)0.0599 (4)
O60.28183 (10)0.03769 (6)0.7786 (3)0.1044 (6)
O70.56806 (11)0.01831 (6)0.1032 (2)0.0927 (5)
O80.65717 (8)0.21449 (7)0.0215 (3)0.1084 (7)
C10.44384 (9)0.10386 (6)0.5024 (2)0.0466 (4)
C20.40687 (8)0.11323 (6)0.32878 (19)0.0426 (4)
C30.44821 (9)0.11430 (6)0.15464 (19)0.0460 (4)
C40.52782 (9)0.11449 (6)0.1571 (2)0.0459 (4)
C50.56172 (8)0.16590 (6)0.1733 (2)0.0498 (4)
C60.54235 (10)0.19576 (6)0.3339 (2)0.0566 (5)
C70.54956 (10)0.16793 (7)0.5068 (2)0.0605 (5)
C80.48163 (10)0.14897 (7)0.5859 (2)0.0558 (5)
C90.39077 (10)0.08430 (7)0.6343 (2)0.0558 (5)
C100.31114 (11)0.01621 (8)0.6648 (3)0.0657 (5)
C110.29365 (13)0.03550 (8)0.6004 (3)0.0794 (6)
C120.36064 (9)0.17491 (7)0.1549 (2)0.0504 (4)
C130.35623 (12)0.23183 (8)0.1452 (3)0.0775 (6)
C140.29713 (10)0.14911 (9)0.0788 (3)0.0723 (6)
C150.56993 (10)0.04642 (7)0.0192 (3)0.0579 (5)
C160.59024 (13)0.03250 (9)0.2002 (3)0.0849 (7)
C170.67830 (10)0.18315 (7)0.0761 (3)0.0612 (5)
C180.75396 (11)0.16998 (9)0.0991 (3)0.0801 (6)
H10.47840.07730.48410.056*
H20.37090.08730.31720.051*
H30.43330.08520.08660.055*
H40.54460.09260.24980.055*
H50.55090.18590.07050.060*
H6A0.49450.20680.32220.068*
H6B0.57140.22560.33810.068*
H7B0.58030.13940.49010.073*
H7A0.57180.19030.58890.073*
H8A0.44920.17690.58770.067*
H8B0.49120.14020.70510.067*
H9A0.41260.08090.74650.067*
H9B0.35240.10780.64470.067*
H11A0.26350.05190.68150.119*
H11B0.33570.05470.58770.119*
H11C0.27060.03300.49070.119*
H13A0.31490.24300.20310.116*
H13B0.35470.24210.02660.116*
H13C0.39630.24630.20000.116*
H14A0.30300.11330.08510.108*
H14B0.29180.15900.03970.108*
H14C0.25640.15870.14270.108*
H16A0.62480.00650.19700.127*
H16B0.60890.06150.25790.127*
H16C0.55000.02070.26150.127*
H18A0.77920.17860.00370.120*
H18B0.75830.13460.12030.120*
H18C0.77260.18830.19520.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0677 (8)0.0580 (7)0.0459 (7)0.0006 (6)0.0129 (6)0.0107 (5)
O20.0550 (7)0.0517 (6)0.0387 (6)0.0092 (5)0.0003 (5)0.0046 (5)
O30.0481 (7)0.0809 (8)0.0430 (6)0.0048 (6)0.0039 (5)0.0207 (6)
O40.0655 (8)0.0517 (7)0.0463 (6)0.0091 (6)0.0155 (5)0.0031 (5)
O50.0425 (7)0.0692 (8)0.0681 (8)0.0016 (6)0.0030 (6)0.0177 (6)
O60.1149 (14)0.0836 (10)0.1146 (14)0.0059 (9)0.0697 (12)0.0064 (9)
O70.1433 (16)0.0661 (9)0.0687 (9)0.0340 (9)0.0128 (9)0.0078 (7)
O80.0637 (10)0.1253 (14)0.1362 (16)0.0088 (9)0.0157 (10)0.0750 (13)
C10.0494 (9)0.0519 (9)0.0384 (8)0.0086 (7)0.0012 (7)0.0028 (7)
C20.0448 (9)0.0437 (8)0.0393 (8)0.0005 (7)0.0019 (7)0.0031 (6)
C30.0512 (10)0.0517 (9)0.0353 (8)0.0034 (7)0.0013 (7)0.0009 (7)
C40.0506 (9)0.0501 (9)0.0370 (8)0.0029 (7)0.0047 (7)0.0028 (6)
C50.0394 (9)0.0542 (9)0.0557 (10)0.0010 (7)0.0008 (7)0.0070 (7)
C60.0520 (11)0.0512 (9)0.0667 (11)0.0047 (8)0.0028 (8)0.0044 (8)
C70.0563 (11)0.0693 (11)0.0560 (11)0.0020 (9)0.0105 (9)0.0134 (9)
C80.0610 (11)0.0661 (11)0.0404 (9)0.0068 (9)0.0048 (8)0.0060 (8)
C90.0672 (12)0.0595 (10)0.0406 (9)0.0087 (9)0.0088 (8)0.0049 (7)
C100.0676 (13)0.0679 (12)0.0616 (11)0.0091 (10)0.0185 (10)0.0225 (9)
C110.0847 (16)0.0777 (14)0.0758 (14)0.0104 (12)0.0116 (12)0.0168 (11)
C120.0472 (10)0.0636 (10)0.0404 (9)0.0021 (8)0.0010 (7)0.0116 (7)
C130.0831 (15)0.0685 (12)0.0809 (14)0.0069 (11)0.0155 (11)0.0253 (11)
C140.0518 (11)0.1020 (16)0.0631 (12)0.0047 (11)0.0098 (9)0.0054 (11)
C150.0555 (11)0.0578 (10)0.0603 (11)0.0130 (8)0.0002 (9)0.0037 (9)
C160.0927 (17)0.0835 (14)0.0786 (15)0.0155 (13)0.0258 (13)0.0182 (12)
C170.0504 (11)0.0695 (11)0.0636 (11)0.0008 (9)0.0058 (9)0.0098 (9)
C180.0496 (11)0.1068 (16)0.0840 (15)0.0002 (12)0.0068 (11)0.0154 (12)
Geometric parameters (Å, º) top
O1—C101.347 (2)C7—C81.527 (3)
O1—C91.457 (2)C7—H7B0.9700
O2—C121.429 (2)C7—H7A0.9700
O2—C21.441 (2)C8—H8A0.9700
O3—C31.434 (2)C8—H8B0.9700
O3—C121.442 (2)C9—H9A0.9700
O4—C151.341 (2)C9—H9B0.9700
O4—C41.466 (2)C10—C111.502 (3)
O5—C171.338 (2)C11—H11A0.9600
O5—C51.470 (2)C11—H11B0.9600
O6—C101.192 (3)C11—H11C0.9600
O7—C151.208 (2)C12—C141.519 (3)
O8—C171.197 (2)C12—C131.519 (3)
C1—C91.534 (2)C13—H13A0.9600
C1—C21.542 (2)C13—H13B0.9600
C1—C81.545 (2)C13—H13C0.9600
C1—H10.9800C14—H14A0.9600
C2—C31.566 (2)C14—H14B0.9600
C2—H20.9800C14—H14C0.9600
C3—C41.529 (3)C15—C161.502 (3)
C3—H30.9800C16—H16A0.9600
C4—C51.520 (2)C16—H16B0.9600
C4—H40.9800C16—H16C0.9600
C5—C61.523 (3)C17—C181.505 (3)
C5—H50.9800C18—H18A0.9600
C6—C71.537 (3)C18—H18B0.9600
C6—H6A0.9700C18—H18C0.9600
C6—H6B0.9700
O1—C9—C1108.65 (13)C6—C7—H7B108.4
O1—C10—C11110.75 (17)C7—C6—H6A108.3
O1—C9—H9A110.0C7—C6—H6B108.3
O1—C9—H9B110.0C7—C8—C1119.35 (14)
O2—C12—O3103.91 (12)C7—C8—H8A107.5
O2—C2—C1110.41 (12)C7—C8—H8B107.5
O2—C2—C3103.42 (12)C8—C1—H1107.6
O2—C12—C13108.23 (15)C8—C7—C6115.59 (16)
O2—C12—C14111.91 (15)C8—C7—H7A108.4
O2—C2—H2106.9C8—C7—H7B108.4
O3—C3—C2104.18 (12)C9—C1—C2109.27 (15)
O3—C3—C4109.76 (13)C9—C1—C8107.27 (14)
O3—C12—C14110.61 (16)C9—C1—H1107.6
O3—C12—C13109.01 (15)C10—O1—C9116.31 (15)
O3—C3—H3107.5C10—C11—H11A109.5
O4—C4—C3107.19 (12)C10—C11—H11B109.5
O4—C4—C5105.14 (12)C10—C11—H11C109.5
O4—C4—H4109.6C12—O2—C2106.64 (11)
O4—C15—C16110.91 (17)C12—C13—H13A109.5
O5—C5—C4105.04 (13)C12—C13—H13B109.5
O5—C5—C6108.21 (14)C12—C13—H13C109.5
O5—C5—H5109.3C12—C14—H14A109.5
O5—C17—C18112.14 (17)C12—C14—H14B109.5
O6—C10—O1123.8 (2)C12—C14—H14C109.5
O6—C10—C11125.41 (19)C14—C12—C13112.76 (16)
O7—C15—O4123.05 (18)C15—O4—C4118.14 (13)
O7—C15—C16126.01 (18)C15—C16—H16A109.5
O8—C17—O5123.50 (18)C15—C16—H16B109.5
O8—C17—C18124.35 (18)C15—C16—H16C109.5
C1—C2—C3121.43 (14)C17—O5—C5117.96 (14)
C1—C2—H2106.9C17—C18—H18A109.5
C1—C8—H8A107.5C17—C18—H18B109.5
C1—C8—H8B107.5C17—C18—H18C109.5
C1—C9—H9A110.0H6A—C6—H6B107.4
C1—C9—H9B110.0H7B—C7—H7A107.4
C2—C1—C8117.15 (14)H8A—C8—H8B107.0
C2—C1—H1107.6H9A—C9—H9B108.3
C2—C3—H3107.5H11A—C11—H11B109.5
C3—O3—C12108.21 (12)H11A—C11—H11C109.5
C3—C2—H2106.9H11B—C11—H11C109.5
C3—C4—H4109.6H13A—C13—H13B109.5
C4—C3—C2119.77 (13)H13A—C13—H13C109.5
C4—C5—C6115.63 (14)H13B—C13—H13C109.5
C4—C3—H3107.5H14A—C14—H14B109.5
C4—C5—H5109.3H14A—C14—H14C109.5
C5—C4—C3115.60 (14)H14B—C14—H14C109.5
C5—C6—C7116.05 (16)H16A—C16—H16B109.5
C5—C4—H4109.6H16A—C16—H16C109.5
C5—C6—H6A108.3H16B—C16—H16C109.5
C5—C6—H6B108.3H18A—C18—H18B109.5
C6—C5—H5109.3H18A—C18—H18C109.5
C6—C7—H7A108.4H18B—C18—H18C109.5
O2—C2—C3—O38.55 (15)C4—C5—C6—C750.7 (2)
O2—C2—C3—C4114.55 (15)C5—O5—C17—O81.5 (3)
O3—C3—C4—O482.64 (15)C5—O5—C17—C18178.17 (16)
O3—C3—C4—C534.19 (18)C5—C6—C7—C8102.44 (19)
O4—C4—C5—O563.89 (15)C6—C7—C8—C171.9 (2)
O4—C4—C5—C6176.93 (13)C8—C1—C2—O240.97 (19)
O5—C5—C6—C766.71 (19)C8—C1—C9—O1167.84 (14)
C1—C2—C3—O3133.02 (14)C8—C1—C2—C380.19 (19)
C1—C2—C3—C49.9 (2)C9—O1—C10—O64.6 (3)
C2—O2—C12—O338.03 (16)C9—O1—C10—C11175.50 (16)
C2—O2—C12—C1481.35 (18)C9—C1—C2—O281.22 (16)
C2—O2—C12—C13153.80 (15)C9—C1—C2—C3157.62 (14)
C2—C1—C8—C772.5 (2)C9—C1—C8—C7164.33 (16)
C2—C1—C9—O164.22 (17)C10—O1—C9—C1171.44 (15)
C2—C3—C4—O4157.01 (13)C12—O2—C2—C1159.91 (13)
C2—C3—C4—C586.16 (18)C12—O2—C2—C328.56 (15)
C3—O3—C12—O232.26 (16)C12—O3—C3—C214.29 (16)
C3—O3—C12—C1487.99 (17)C12—O3—C3—C4143.70 (13)
C3—O3—C12—C13147.48 (15)C15—O4—C4—C398.44 (17)
C3—C4—C5—O5178.14 (12)C15—O4—C4—C5138.04 (15)
C3—C4—C5—C658.95 (19)C17—O5—C5—C4132.15 (16)
C4—O4—C15—O70.2 (3)C17—O5—C5—C6103.81 (18)
C4—O4—C15—C16178.18 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O8i0.972.543.438 (3)154
Symmetry code: (i) x, y+1/2, z+1/2.
(III) (3aS,4R,7S,9R,9aS)- 7,9-diacetoxy-2,2-dimethylcyclooctano[d][1,3]dioxan-4-ylmethyl acetate top
Crystal data top
C18H28O8Z = 2
Mr = 372.40F(000) = 400
Triclinic, P1Dx = 1.270 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7179 (16) ÅCell parameters from 928 reflections
b = 11.486 (2) Åθ = 2.7–21.5°
c = 11.720 (2) ŵ = 0.10 mm1
α = 76.515 (4)°T = 291 K
β = 74.547 (4)°Block, colorless
γ = 85.394 (4)°0.33 × 0.27 × 0.26 mm
V = 973.6 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4173 independent reflections
Radiation source: fine-focus sealed tube2082 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
ϕ and ω scansθmax = 27.7°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 910
Tmin = 0.925, Tmax = 0.975k = 1415
10725 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0581P)2]
where P = (Fo2 + 2Fc2)/3
4173 reflections(Δ/σ)max < 0.001
240 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C18H28O8γ = 85.394 (4)°
Mr = 372.40V = 973.6 (3) Å3
Triclinic, P1Z = 2
a = 7.7179 (16) ÅMo Kα radiation
b = 11.486 (2) ŵ = 0.10 mm1
c = 11.720 (2) ÅT = 291 K
α = 76.515 (4)°0.33 × 0.27 × 0.26 mm
β = 74.547 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4173 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2082 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.975Rint = 0.080
10725 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 0.89Δρmax = 0.22 e Å3
4173 reflectionsΔρmin = 0.18 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4724 (2)0.31733 (17)0.14187 (14)0.0695 (5)
O20.4013 (2)0.21958 (14)0.25870 (13)0.0613 (5)
O30.55392 (19)0.07209 (14)0.35402 (13)0.0531 (4)
O40.88059 (19)0.03719 (13)0.24337 (13)0.0488 (4)
O50.9688 (2)0.37502 (14)0.20690 (15)0.0571 (5)
O60.2064 (3)0.3310 (2)0.17762 (19)0.1138 (9)
O71.1420 (2)0.01806 (15)0.10044 (15)0.0642 (5)
O80.8464 (3)0.3479 (2)0.40654 (18)0.0887 (7)
C10.5517 (3)0.2329 (2)0.04448 (18)0.0450 (6)
C20.4817 (3)0.1515 (2)0.16985 (19)0.0468 (6)
C30.6105 (3)0.06371 (19)0.23100 (18)0.0419 (5)
C40.8123 (3)0.07878 (18)0.18684 (19)0.0421 (5)
C50.8945 (3)0.17267 (19)0.2264 (2)0.0467 (6)
C60.8333 (3)0.30177 (19)0.19161 (19)0.0453 (6)
C70.8233 (3)0.3468 (2)0.0612 (2)0.0545 (6)
C80.6351 (3)0.3499 (2)0.0414 (2)0.0543 (6)
C90.3969 (3)0.2592 (2)0.01649 (19)0.0606 (7)
C100.3641 (4)0.3475 (2)0.2136 (2)0.0593 (7)
C110.4569 (4)0.4076 (3)0.3385 (2)0.0753 (8)
C120.3919 (3)0.1414 (2)0.3741 (2)0.0511 (6)
C130.3972 (4)0.2129 (3)0.4646 (2)0.0834 (10)
C140.2323 (3)0.0614 (3)0.4150 (2)0.0817 (9)
C151.0460 (3)0.0740 (2)0.1920 (2)0.0495 (6)
C161.0927 (3)0.1914 (2)0.2647 (2)0.0700 (8)
C170.9597 (4)0.3909 (2)0.3175 (3)0.0608 (7)
C181.1072 (4)0.4684 (2)0.3136 (3)0.0817 (9)
H10.64400.18750.00350.054*
H20.38660.10340.16380.056*
H30.58480.01730.22740.050*
H40.85000.09050.09830.051*
H5A1.02380.16880.19370.056*
H5B0.87140.15080.31410.056*
H60.71660.31480.24650.054*
H7A0.90040.29610.01220.065*
H7B0.87080.42700.03210.065*
H8A0.55440.38670.10250.065*
H8B0.63770.40270.03680.065*
H9A0.33980.18550.01170.073*
H9B0.30760.31120.02330.073*
H11A0.37530.41810.38940.113*
H11B0.55830.35940.36910.113*
H11C0.49730.48430.33810.113*
H13A0.50460.25910.43670.125*
H13B0.39630.15980.54130.125*
H13C0.29390.26580.47390.125*
H14A0.12380.10920.42690.123*
H14B0.23600.00660.49000.123*
H14C0.23490.01730.35440.123*
H16A1.00950.25060.26780.105*
H16B1.08620.18380.34560.105*
H16C1.21250.21560.22760.105*
H18A1.09830.47920.39380.123*
H18B1.09760.54490.26070.123*
H18C1.22110.43120.28380.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0469 (10)0.1120 (15)0.0398 (10)0.0031 (9)0.0184 (8)0.0114 (9)
O20.0586 (10)0.0676 (11)0.0379 (9)0.0225 (9)0.0012 (8)0.0066 (8)
O30.0411 (9)0.0721 (11)0.0360 (9)0.0117 (8)0.0082 (7)0.0021 (8)
O40.0436 (9)0.0452 (9)0.0490 (9)0.0105 (7)0.0067 (7)0.0030 (7)
O50.0568 (11)0.0540 (11)0.0604 (11)0.0121 (8)0.0172 (8)0.0061 (8)
O60.0609 (14)0.199 (3)0.0696 (14)0.0107 (15)0.0287 (11)0.0102 (15)
O70.0506 (10)0.0702 (12)0.0619 (12)0.0076 (9)0.0004 (9)0.0142 (10)
O80.0923 (15)0.1126 (17)0.0636 (13)0.0180 (13)0.0116 (12)0.0284 (12)
C10.0360 (12)0.0598 (16)0.0331 (12)0.0024 (11)0.0090 (10)0.0007 (11)
C20.0390 (13)0.0578 (15)0.0404 (13)0.0020 (11)0.0144 (10)0.0005 (11)
C30.0417 (13)0.0410 (13)0.0398 (13)0.0021 (10)0.0114 (10)0.0008 (10)
C40.0420 (13)0.0408 (13)0.0373 (12)0.0060 (10)0.0103 (10)0.0014 (10)
C50.0389 (13)0.0467 (14)0.0517 (14)0.0011 (11)0.0138 (11)0.0026 (11)
C60.0406 (13)0.0448 (14)0.0468 (14)0.0066 (10)0.0097 (10)0.0027 (11)
C70.0533 (15)0.0504 (15)0.0514 (15)0.0097 (12)0.0115 (12)0.0062 (12)
C80.0549 (15)0.0545 (16)0.0443 (14)0.0039 (12)0.0143 (11)0.0074 (11)
C90.0452 (14)0.086 (2)0.0405 (14)0.0034 (13)0.0134 (11)0.0091 (13)
C100.0522 (16)0.0786 (19)0.0463 (15)0.0064 (14)0.0201 (13)0.0059 (13)
C110.080 (2)0.100 (2)0.0435 (16)0.0007 (17)0.0249 (14)0.0008 (15)
C120.0409 (13)0.0624 (16)0.0378 (13)0.0068 (12)0.0071 (10)0.0071 (12)
C130.113 (3)0.079 (2)0.0426 (16)0.0028 (18)0.0004 (16)0.0080 (15)
C140.0495 (16)0.126 (3)0.0546 (17)0.0235 (17)0.0115 (13)0.0154 (16)
C150.0440 (14)0.0527 (15)0.0540 (16)0.0089 (12)0.0144 (12)0.0173 (13)
C160.0662 (18)0.0572 (17)0.080 (2)0.0199 (14)0.0181 (15)0.0113 (15)
C170.0662 (19)0.0533 (17)0.067 (2)0.0050 (14)0.0250 (15)0.0139 (15)
C180.092 (2)0.0627 (19)0.108 (2)0.0067 (16)0.0510 (19)0.0221 (17)
Geometric parameters (Å, º) top
O1—C101.310 (3)C7—C81.528 (3)
O1—C91.447 (2)C7—H7A0.9700
O2—C121.426 (2)C7—H7B0.9700
O2—C21.428 (3)C8—H8A0.9700
O3—C31.415 (2)C8—H8B0.9700
O3—C121.422 (3)C9—H9A0.9700
O4—C151.339 (3)C9—H9B0.9700
O4—C41.467 (2)C10—C111.477 (3)
O5—C171.333 (3)C11—H11A0.9600
O5—C61.465 (3)C11—H11B0.9600
O6—C101.193 (3)C11—H11C0.9600
O7—C151.202 (3)C12—C131.496 (3)
O8—C171.200 (3)C12—C141.501 (3)
C1—C81.524 (3)C13—H13A0.9600
C1—C91.525 (3)C13—H13B0.9600
C1—C21.531 (3)C13—H13C0.9600
C1—H10.9800C14—H14A0.9600
C2—C31.549 (3)C14—H14B0.9600
C2—H20.9800C14—H14C0.9600
C3—C41.515 (3)C15—C161.492 (3)
C3—H30.9800C16—H16A0.9600
C4—C51.510 (3)C16—H16B0.9600
C4—H40.9800C16—H16C0.9600
C5—C61.516 (3)C17—C181.486 (4)
C5—H5A0.9700C18—H18A0.9600
C5—H5B0.9700C18—H18B0.9600
C6—C71.516 (3)C18—H18C0.9600
C6—H60.9800
O1—C9—C1107.10 (17)C6—C7—C8115.03 (18)
O1—C10—C11113.0 (2)C6—C7—H7A108.5
O1—C9—H9A110.3C6—C7—H7B108.5
O1—C9—H9B110.3C7—C6—H6109.5
O2—C2—C1111.31 (18)C7—C8—H8A107.5
O2—C2—C3103.14 (16)C7—C8—H8B107.5
O2—C2—H2107.0C8—C1—C2116.44 (19)
O2—C12—C13109.7 (2)C8—C1—C9109.8 (2)
O2—C12—C14112.3 (2)C8—C1—H1107.5
O3—C3—C2103.74 (16)C8—C7—H7A108.5
O3—C3—C4109.03 (17)C8—C7—H7B108.5
O3—C3—H3107.5C9—C1—C2107.85 (17)
O3—C12—O2103.51 (16)C9—C1—H1107.5
O3—C12—C13108.2 (2)C10—O1—C9118.31 (18)
O3—C12—C14110.2 (2)C10—C11—H11A109.5
O4—C4—C3102.42 (15)C10—C11—H11B109.5
O4—C4—C5106.16 (17)C10—C11—H11C109.5
O4—C4—H4109.9C12—O2—C2106.45 (16)
O4—C15—C16110.6 (2)C12—C13—H13A109.5
O5—C6—C5106.17 (17)C12—C13—H13B109.5
O5—C6—C7105.38 (16)C12—C13—H13C109.5
O5—C6—H6109.5C12—C14—H14A109.5
O5—C17—C18110.6 (3)C12—C14—H14B109.5
O6—C10—O1121.9 (2)C12—C14—H14C109.5
O6—C10—C11125.0 (2)C13—C12—C14112.5 (2)
O7—C15—O4123.7 (2)C15—O4—C4118.76 (17)
O7—C15—C16125.7 (2)C15—C16—H16A109.5
O8—C17—O5123.7 (3)C15—C16—H16B109.5
O8—C17—C18125.7 (3)C15—C16—H16C109.5
C1—C2—C3120.74 (17)C17—O5—C6118.87 (19)
C1—C8—C7119.1 (2)C17—C18—H18A109.5
C1—C2—H2107.0C17—C18—H18B109.5
C1—C8—H8A107.5C17—C18—H18C109.5
C1—C9—H9A110.3H5A—C5—H5B107.1
C1—C9—H9B110.3H7A—C7—H7B107.5
C1—C8—H8B107.5H8A—C8—H8B107.0
C2—C1—H1107.5H9A—C9—H9B108.6
C2—C3—H3107.5H11A—C11—H11B109.5
C3—O3—C12110.06 (15)H11A—C11—H11C109.5
C3—C2—H2107.0H11B—C11—H11C109.5
C3—C4—H4109.9H13A—C13—H13B109.5
C4—C3—C2120.79 (17)H13A—C13—H13C109.5
C4—C3—H3107.5H13B—C13—H13C109.5
C4—C5—C6118.00 (18)H14A—C14—H14B109.5
C4—C5—H5A107.8H14A—C14—H14C109.5
C4—C5—H5B107.8H14B—C14—H14C109.5
C5—C4—C3117.95 (18)H16A—C16—H16B109.5
C5—C4—H4109.9H16A—C16—H16C109.5
C5—C6—C7116.38 (19)H16B—C16—H16C109.5
C5—C6—H6109.5H18A—C18—H18B109.5
C6—C5—H5A107.8H18A—C18—H18C109.5
C6—C5—H5B107.8H18B—C18—H18C109.5
O2—C2—C3—O314.3 (2)C4—C5—C6—C746.1 (3)
O2—C2—C3—C4108.1 (2)C5—C6—C7—C8100.1 (2)
O3—C3—C4—O475.32 (19)C6—O5—C17—O80.3 (4)
O3—C3—C4—C540.7 (2)C6—O5—C17—C18179.44 (19)
O4—C4—C5—C6174.07 (17)C6—C7—C8—C175.8 (3)
O5—C6—C7—C8142.6 (2)C8—C1—C2—O237.3 (3)
C1—C2—C3—O3139.3 (2)C8—C1—C9—O162.4 (2)
C1—C2—C3—C416.8 (3)C8—C1—C2—C383.7 (3)
C2—O2—C12—O337.1 (2)C9—O1—C10—O61.9 (4)
C2—O2—C12—C13152.4 (2)C9—O1—C10—C11179.1 (2)
C2—O2—C12—C1481.7 (2)C9—C1—C2—O286.6 (2)
C2—C1—C8—C775.4 (3)C9—C1—C2—C3152.4 (2)
C2—C1—C9—O1169.73 (19)C9—C1—C8—C7161.68 (18)
C2—C3—C4—O4164.81 (18)C10—O1—C9—C1179.1 (2)
C2—C3—C4—C579.1 (3)C12—O3—C3—C4138.10 (18)
C3—O3—C12—O227.7 (2)C12—O3—C3—C28.2 (2)
C3—O3—C12—C13144.03 (19)C12—O2—C2—C1162.57 (17)
C3—O3—C12—C1492.6 (2)C12—O2—C2—C331.7 (2)
C3—C4—C5—C660.0 (3)C15—O4—C4—C3155.64 (18)
C4—O4—C15—O71.1 (3)C15—O4—C4—C580.1 (2)
C4—O4—C15—C16178.2 (2)C17—O5—C6—C582.0 (2)
C4—C5—C6—O5163.02 (17)C17—O5—C6—C7154.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O6i0.962.533.399 (3)151
Symmetry code: (i) x+1, y, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC17H26O8C18H28O8C18H28O8
Mr358.38372.40372.40
Crystal system, space groupTriclinic, P1Orthorhombic, PccnTriclinic, P1
Temperature (K)291291291
a, b, c (Å)9.1632 (9), 9.2131 (9), 11.5904 (11)19.206 (12), 26.611 (17), 7.748 (5)7.7179 (16), 11.486 (2), 11.720 (2)
α, β, γ (°)94.709 (2), 92.486 (2), 102.912 (2)90, 90, 9076.515 (4), 74.547 (4), 85.394 (4)
V3)948.60 (16)3960 (4)973.6 (3)
Z282
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.100.100.10
Crystal size (mm)0.35 × 0.31 × 0.280.49 × 0.40 × 0.390.33 × 0.27 × 0.26
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.936, 0.9730.905, 0.9630.925, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
9524, 3500, 2880 24680, 3822, 2811 10725, 4173, 2082
Rint0.0190.0530.080
(sin θ/λ)max1)0.6050.6170.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.136, 1.06 0.042, 0.111, 1.04 0.055, 0.132, 0.89
No. of reflections350038224173
No. of parameters230241240
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.250.20, 0.140.22, 0.18

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O6i0.962.533.439 (3)158
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O8i0.972.543.438 (3)154
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O6i0.962.533.399 (3)151
Symmetry code: (i) x+1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds