Download citation
Download citation
link to html
The structure of the title compound, alternatively called bis­(μ-tetra­methyl­distibinediyl)bis­(tetra­carbonyl­chromium), [Cr2Sb4(CH3)8(CO)8], consists of two Me4Sb2 bridging units between Cr(CO)4 complex fragments. The centre of the mol­ecule is located on a special position of 2/m symmetry. This is the first characterized Sb4Cr2 heterocycle.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107049943/ga3072sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107049943/ga3072Isup2.hkl
Contains datablock I

CCDC reference: 672395

Comment top

Distibines act as donor ligands through the lone pairs of the antimony atoms to one or two transition metal complex fragments (Breunig & Fichtner, 1979, 1981; Breunig & Knobloch, 1980; von Seyerl & Huttner, 1980; Breunig et al., 1981, 2003; Bernal et al., 1984; Weber, Huttner et al., 1985; Weber, Zsolnai et al., 1985; Dickson et al., 1993; Breunig & Pawlik, 1995; Sharma et al., 1995; Balázs et al., 2003; Lorenz et al., 2005). From the reaction of [Cr(CO)4(nbd)] [nbd = norbornadiene (C7H8)] and tetramethyldistibine, a polymeric complex [Cr(CO)4(µ-Sb2Me4)]n with a trans arrangement of the distibine ligands was obtained (Breunig & Knobloch, 1980). We report here the structure of {[Cr(CO)4]2(µ-Sb2Me4)2} (I), the first complex featuring two bridging distibine ligands between transition metal complex fragments. (I) is a cyclic isomer of the polymer [Cr(CO)4(µ-Sb2Me4)]n (Breunig & Knobloch, 1980).

A thermal ellipsoid representation of the crystal structure of (I) is shown in Fig. 1. The centre of the molecule is located on a special position of 2/m symmetry. The Sb—Sb bond lengths in (I) are in the range of values found in the analogous complexes {[Cr(CO)5]2(µ-Sb2Me4)} [2.8097 (9) Å] (Breunig et al., 2003) and {[Cr(CO)5]2(µ-Sb2Ph4)} [2.865 (4) Å] (von Seyerl & Huttner, 1980). In addition, the Sb—Cr bond lengths are of the same magnitude as other reported values: 2.621 (8) and 2.629 (9) Å in {[Cr(CO)5]2(µ-Sb2Me4)} (Breunig et al., 2003) and 2.626 (1) Å in {[Cr(CO)5]2(µ-Sb2Ph4)} (von Seyerl & Huttner, 1980).

The geometries of the Cr(CO)4 fragments are normal, the bond angles being close to the ideal value of 90°. The C—Sb—Sb, C—Sb—C bond angles are larger than in the uncoordinated distibine Me4Sb2 [mean C—Sb—Sb 93.6 (6), mean C—Sb—C 93.5 (15)°] (Ashe et al., 1984), and are in the range of values found for the corresponding angles in {[Cr(CO)5]2(µ-Sb2Me4)} [C—Sb—Sb 96.41 (11)—102.44 (11); C—Sb—C 99.20 (18)–100.34 (16)°] (Breunig et al., 2003). The geometrical parameters of antimony are consistent with the known transition from being close to a p3 configuration to an sp3 hybridization of the coordinating atoms in pnicogen ligands by complexation.

The distibine fragments in (I) adopt a synclinal conformation, with a torsion angle Cr—Sb—Sb—Cr of 66.88 (4)° [cf. ideal antiperiplanar conformation with Cr—Sb—Sb—Cr 180° in {[Cr(CO)5]2(µ-Sb2Me4)} (Breunig et al., 2003) and {[Cr(CO)5]2(µ-Sb2tBu2Cl2)} (Weber, Zsolnai et al., 1985); anticlinal conformation with Cr—Sb—Sb—Cr 130.98 (36)° in {[Cr(CO)5]3(Sb2tBu2)} (Weber, Huttner et al., 1985)]. The antimony and chromium atoms form a six-membered heterocycle in a chair conformation. There are transannular contacts [3.7133 (9) Å] between the antimony atoms of the parallel distibine units shorter than the sum of the van der Waals radii [ΣrvdW(Sb,Sb) = 4.0 Å] (Bondi, 1964).

The crystals consist of stacks of molecules of (I), which are directed along the a axis, each stack being surrounded by six neighbouring stacks. There are contacts of 2.73 and 2.74 Å between the carbonyl oxygen atoms and the hydrogen atoms of the methyl groups of neighbouring molecules, both inside and between stacks.

Related literature top

(type here to add)

For related literature, see: Ashe, Ludwig, Oleksyszyn & Huffman (1984); Balázs et al. (2003); Bernal et al. (1984); Bondi (1964); Breunig & Fichtner (1979, 1981); Breunig & Knobloch (1980); Breunig & Pawlik (1995); Breunig et al. (2003); Breunig, Fichtner & Knobloch (1981); Bruker (1998); Dickson et al. (1993); Lorenz et al. (2005); Seyerl & Huttner (1980); Sharma et al. (1995); Weber, Huttner, Scheidsteger & Zsolnai (1985); Weber, Zsolnai & Huttner (1985).

Experimental top

Crystals of (I) were obtained from a solution of 2,6-Mes2C6H3Sb(SbMe2)2 (Mes = 2,4,6-Me3C6H2) and [Cr(CO)4(nbd)] in a 1:1 molar ratio in benzene, in a sealed NMR tube at ambient temperature. The synthesis has not been reproduced in preparative scale.

Refinement top

During the space-group determination using XPREP (Bruker, 1998), the reflections -2,0,3; 0,0,3 and -2,0,1 were removed. The hydrogen atoms were placed in calculated positions (C—H = 0.98 Å) using a riding model with thermal parameters set at 1.5 times those of the carbon atoms directly attached, Uiso(H)=1.5Ueq(C). The methyl groups were allowed to rotate. The largest residual electron density is located 1.22 Å from the hydrogen atom H4C and the deepest hole is located at 0.88 Å from the antimony atom Sb1.

Computing details top

Data collection: Stoe IPDS1 (Stoe, 1999); cell refinement: Stoe IPDS1 (Stoe, 1999); data reduction: Stoe IPDS1 (Stoe, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. Graphical representation of the molecular structure of (I). Hydrogen atoms are omitted for clarity. Displacement ellipsoids are drawn at 50% probability. Symmetry codes: (i) -x + 1, y, -z + 1; (ii) x, -y + 1, z; (iii) -x + 1, -y + 1, -z + 1.
1,1,1,1,4,4,4,4-Octacarbonyl-2,2,3,3,5,5,6,6-octamethyl-cyclo-2,3,5,6- tetraantimony-1,4-dichromium top
Crystal data top
[Cr2Sb4(CH3)8(CO)8]F(000) = 872
Mr = 935.35Dx = 2.32 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 4362 reflections
a = 13.125 (3) Åθ = 1.7–26.1°
b = 11.332 (2) ŵ = 4.80 mm1
c = 10.185 (2) ÅT = 173 K
β = 117.91 (3)°Prism, orange
V = 1338.6 (6) Å30.2 × 0.2 × 0.1 mm
Z = 2
Data collection top
Stoe IPDS-1
diffractometer
1367 independent reflections
Radiation source: fine-focus sealed tube1173 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ scansθmax = 26.0°, θmin = 2.3°
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
h = 1616
Tmin = 0.447, Tmax = 0.646k = 1313
4676 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0352P)2]
where P = (Fo2 + 2Fc2)/3
1367 reflections(Δ/σ)max = 0.001
78 parametersΔρmax = 1.07 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Cr2Sb4(CH3)8(CO)8]V = 1338.6 (6) Å3
Mr = 935.35Z = 2
Monoclinic, C2/mMo Kα radiation
a = 13.125 (3) ŵ = 4.80 mm1
b = 11.332 (2) ÅT = 173 K
c = 10.185 (2) Å0.2 × 0.2 × 0.1 mm
β = 117.91 (3)°
Data collection top
Stoe IPDS-1
diffractometer
1367 independent reflections
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
1173 reflections with I > 2σ(I)
Tmin = 0.447, Tmax = 0.646Rint = 0.036
4676 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 0.99Δρmax = 1.07 e Å3
1367 reflectionsΔρmin = 0.55 e Å3
78 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6517 (5)0.50.9467 (6)0.0303 (12)
C20.8118 (4)0.6170 (5)0.9177 (5)0.0398 (11)
C30.7730 (5)0.50.6748 (7)0.0348 (13)
C40.6187 (5)0.8432 (4)0.6852 (6)0.0438 (11)
H4A0.68980.85050.77950.066*
H4B0.55960.89540.68630.066*
H4C0.6340.86540.60310.066*
C50.4114 (4)0.6845 (4)0.6924 (6)0.0387 (10)
H5A0.4370.69540.79870.058*
H5B0.36290.61380.65740.058*
H5C0.3670.75360.63760.058*
Sb10.55915 (2)0.66384 (2)0.65639 (3)0.02674 (10)
Cr10.70963 (7)0.50.80719 (9)0.0272 (2)
O10.6229 (4)0.51.0357 (5)0.0463 (11)
O20.8752 (3)0.6908 (4)0.9881 (4)0.0592 (10)
O30.8167 (5)0.50.5997 (6)0.0500 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.023 (3)0.030 (3)0.032 (3)00.009 (2)0
C20.034 (2)0.057 (3)0.032 (2)0.008 (2)0.0182 (19)0.003 (2)
C30.035 (3)0.032 (3)0.035 (3)00.014 (3)0
C40.051 (3)0.029 (2)0.051 (3)0.008 (2)0.024 (2)0.005 (2)
C50.037 (2)0.042 (3)0.045 (3)0.000 (2)0.025 (2)0.0007 (19)
Sb10.02856 (15)0.02384 (14)0.02756 (15)0.00119 (12)0.01291 (11)0.00108 (10)
Cr10.0252 (4)0.0311 (5)0.0246 (4)00.0111 (4)0
O10.047 (3)0.059 (3)0.040 (3)00.027 (2)0
O20.053 (2)0.077 (3)0.044 (2)0.034 (2)0.0202 (18)0.0204 (19)
O30.061 (3)0.052 (3)0.055 (3)00.042 (3)0
Geometric parameters (Å, º) top
C1—O11.134 (8)C4—H4C0.98
C1—Cr11.900 (6)C5—Sb12.148 (4)
C2—O21.161 (6)C5—H5A0.98
C2—Cr11.846 (5)C5—H5B0.98
C3—O31.151 (8)C5—H5C0.98
C3—Cr11.887 (7)Sb1—Cr12.6205 (9)
C4—Sb12.148 (4)Sb1—Sb1i2.8157 (11)
C4—H4A0.98Cr1—C2ii1.846 (5)
C4—H4B0.98Cr1—Sb1ii2.6205 (9)
O1—C1—Cr1176.4 (5)C4—Sb1—Sb1i97.32 (14)
O2—C2—Cr1179.1 (4)C5—Sb1—Sb1i97.44 (14)
O3—C3—Cr1176.8 (6)Cr1—Sb1—Sb1i121.89 (3)
Sb1—C4—H4A109.5C2—Cr1—C2ii91.8 (3)
Sb1—C4—H4B109.5C2—Cr1—C389.91 (19)
H4A—C4—H4B109.5C2ii—Cr1—C389.91 (19)
Sb1—C4—H4C109.5C2—Cr1—C188.55 (18)
H4A—C4—H4C109.5C2ii—Cr1—C188.55 (18)
H4B—C4—H4C109.5C3—Cr1—C1177.8 (3)
Sb1—C5—H5A109.5C2—Cr1—Sb1ii177.44 (14)
Sb1—C5—H5B109.5C2ii—Cr1—Sb1ii88.94 (16)
H5A—C5—H5B109.5C3—Cr1—Sb1ii92.55 (14)
Sb1—C5—H5C109.5C1—Cr1—Sb1ii89.01 (12)
H5A—C5—H5C109.5C2—Cr1—Sb188.94 (16)
H5B—C5—H5C109.5C2ii—Cr1—Sb1177.44 (14)
C4—Sb1—C5100.00 (19)C3—Cr1—Sb192.55 (13)
C4—Sb1—Cr1117.64 (15)C1—Cr1—Sb189.01 (12)
C5—Sb1—Cr1118.02 (13)Sb1ii—Cr1—Sb190.23 (4)
C4—Sb1—Cr1—C211.4 (2)C4—Sb1—Cr1—C1100.0 (2)
C5—Sb1—Cr1—C2108.7 (2)C5—Sb1—Cr1—C120.08 (19)
Sb1i—Sb1—Cr1—C2131.09 (13)Sb1i—Sb1—Cr1—C1140.34 (12)
C4—Sb1—Cr1—C378.5 (2)C4—Sb1—Cr1—Sb1ii171.03 (16)
C5—Sb1—Cr1—C3161.5 (2)C5—Sb1—Cr1—Sb1ii68.92 (15)
Sb1i—Sb1—Cr1—C341.22 (14)Sb1i—Sb1—Cr1—Sb1ii51.34 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cr2Sb4(CH3)8(CO)8]
Mr935.35
Crystal system, space groupMonoclinic, C2/m
Temperature (K)173
a, b, c (Å)13.125 (3), 11.332 (2), 10.185 (2)
β (°) 117.91 (3)
V3)1338.6 (6)
Z2
Radiation typeMo Kα
µ (mm1)4.80
Crystal size (mm)0.2 × 0.2 × 0.1
Data collection
DiffractometerStoe IPDS1
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(Walker & Stuart, 1983)
Tmin, Tmax0.447, 0.646
No. of measured, independent and
observed [I > 2σ(I)] reflections
4676, 1367, 1173
Rint0.036
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.056, 0.99
No. of reflections1367
No. of parameters78
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.07, 0.55

Computer programs: Stoe IPDS1 (Stoe, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg & Putz, 2006), WinGX (Farrugia, 1999) and publCIF (Westrip, 2007).

Selected geometric parameters (Å, º) top
C1—O11.134 (8)C3—Cr11.887 (7)
C1—Cr11.900 (6)C4—Sb12.148 (4)
C2—O21.161 (6)C5—Sb12.148 (4)
C2—Cr11.846 (5)Sb1—Cr12.6205 (9)
C3—O31.151 (8)Sb1—Sb1i2.8157 (11)
C4—Sb1—C5100.00 (19)Cr1—Sb1—Sb1i121.89 (3)
C4—Sb1—Sb1i97.32 (14)Sb1ii—Cr1—Sb190.23 (4)
C5—Sb1—Sb1i97.44 (14)
Sb1i—Sb1—Cr1—Sb1ii51.34 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds