Download citation
Download citation
link to html
The title compound, [2,6-bis­(di-tert-butyl­phosphino)phenyl-1κ3P,C1,P′]di-μ-chlorido-1:2κ4Cl:Cl-(2η4-cyclo­octa-2,5-diene)hydrido-1κH-diiridium(I,III) hexane hemisolvate, [Ir2(C8H12)(C24H43P2)Cl2H]·0.5C6H14 or [(tBuPCP)IrH(μ2-Cl)2Ir(COD)][tBuPCP is κ3-2,6-(tBu2PCH2)2C6H3 and COD is η4-2,5-cyclo­octa­diene], is an IrIII/IrI dimer bridged by two chloride ions. The Ir2Cl2 framework is nearly planar, with a dihedral angle of 13.04 (4)° between the two Ir centers. The compound was isolated as a hexane hemisolvate. A list of distances found in Ir(PCP) compounds is given.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107022378/ga3042sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107022378/ga3042Isup2.hkl
Contains datablock I

CCDC reference: 655493

Comment top

There has been great interest in recent years in the development of pincer complexes (Albrecht & van Koten, 2001; Singleton, 2003; Van der Boom & Milstein, 2003), i.e. complexes of tridentate meridionally bound ligands (Moulton & Shaw, 1976). Derivatives of the pincer complex (tBuPCP)IrH2 [tBuPCP is κ3-2,6-(tBu2PCH2)2C6H3] (Gupta et al., 1996) have proven highly effective as catalysts for the dehydrogenation of alkanes (Gupta et al., 1996, 1997; Xu et al., 1997; Liu et al., 1999; Zhu et al., 2004; Goldman et al., 2006). The synthetic precursor to (tBuPCP)IrH2 (Gupta et al., 1996) is (tBuPCP)IrHCl (Moulton & Shaw, 1976). We have previously reported the hexanuclear iridium η4-2,5-cyclooctadiene complex [(COD)Ir]2{η6-[κ4-C6H2(CH2PtBu2)2] Ir2H2Cl3}2 (COD is 1,5-cyclooctadiene), which has been observed as a by-product of the synthesis of the (tBuPCP)IrHCl complex (Zhang, Emge et al., 2004). Here, we report another such by-product, an orange–red material that has been identified as (tBuPCP)IrH(µ2Cl)2Ir(COD), which was isolated as the hexane hemisolvate, (I).

Complex (I) (Fig. 1) is best viewed as the di(chloride-bridged) mixed-valence addition product of (PCP)IrHCl (Moulton & Shaw, 1976) and `(COD)IrCl'. The latter can be viewed as a monomeric unit of the dimer [Ir(COD)Cl]2, which has been crystallographically characterized previously (Cotton et al., 1986). The hydride was found in this complex using electron difference maps. The Ir—H distance, which is known from neutron diffraction measurements to be 1.60 Å (Eckert et al., 1995; Bau et al., 1993, 1984; Garlaschelli et al., 1985) and found on difference Fourier maps here at 1.60 Å, refines to a much shorter distance (~1.37 Å), but still along the difference Fourier map Ir—H vector, because of the close proximity to the metal atom (Z = 77). In such cases, it is preferable to restrain the distance to 1.60 Å, as was done here, using the SHELXL97 command `DFIX 1.60. 01' (Sheldrick, 1997).

The pincer-bound atom Ir1 is best considered as being formally in the +3 oxidation state. The Ir1—C1 distance (Table 1) is similar to the Ir—C distance found in other PCP complexes of either IrI or IrIII (Table 2). The Ir—P bond lengths (average 2.327 Å; Table 1) are consistent with the Ir—P bond lengths in reported PCP complexes of IrIII (Table 2), but somewhat outside the range reported for PCP complexes of IrI (2.27–2.30 Å; Table 2). As in other (PCP)Ir complexes, the P—Ir—P angle is decidedly not linear (Gupta et al., 1997; Zhang et al., 2005, 2006; Ghosh et al., 2007). Both P atoms are bent away from the Cl ligand cis to the PCP aryl C—Ir bond, as seen by the corresponding P1—Ir1—Cl2 and P2—Ir1—Cl2 angles given in Table 1. The COD-bound atom Ir2 is formally in the +1 oxidation state and can be viewed as approximately square planar if one considers the centers of the coordinating C—C double bonds as single coordination points.

The Ir(COD)Cl2 portion of (I) has a geometry consistent with either Ir(COD)Cl2 part of [Ir(COD)Cl]2. However, presumably due to the steric bulk of the tBuPCP ligand, the considerable folding about the Cl···Cl vector observed in [Ir(COD)Cl]2 is not present in compound (I). The dihedral angle between the Cl2—Ir1 and Cl2— Ir2 portions of the central Ir2Cl2 group is only 13.04 (4)°, compared with the 86° dihedral angle in [Ir(COD)Cl]2 (Cotton et al., 1986). This gives rise to a significantly greater Ir···Ir distance: in [Ir(COD)Cl]2 this distance is 2.910 (1) Å, while in complex (I) the value is 3.6754 (2) Å.

The Ir—Cl bond lengths for the trivalent atom Ir1 are noticeably longer (average 2.55 Å) than those for the monovalent atom Ir2 (average 2.40 Å) or those found in the [Ir(COD)Cl]2 dimer (average 2.40 Å) (Cotton et al., 1986). As seen in Table 1, the specific values of the Ir2—Cl distances are fairly similar. The two Ir1—Cl distances, however, are substantially different, with the bond to the Cl atom trans to the strong trans-influence hydride ligand being substantially longer than that trans to the PCP aryl C atom. Not surprisingly, the Ir1—Cl distances in (I) are longer than the Ir—Cl distances in (PCP)Ir complexes with terminal chloride ligands (Table 2).

The geometries of both weaker and significant C—H···Cl interactions are described in Table 3, where it is shown that the intramolecular Cl···H distances are as short as 2.66 Å from atom Cl2 to the PCP methyl atom H16A and as short as 2.79 Å from atom Cl1 to the COD methylenyl atom H26. There are two weak intermolecular (COD) C—H···Cl2 interactions (last two entries in Table 3). The hexane solvate molecule lies across the inversion center at y = 1/2 in a channel that propagates along the crystallographic b axis. As a result, each solvate molecule is surrounded by the methyl and methylenyl groups of six Ir2 dimer complexes. The packing of the Ir dimer complexes and the hexane solvate molecules yields only long C—H···H—C contacts (>2.54 Å) and the nearest Cl atom to any H atom on the hexane solvent is quite remote (>5 Å).

Related literature top

For related literature, see: Albrecht & van Koten (2001); Bau et al. (1984, 1993); Cotton et al. (1986); Eckert et al. (1995); Garlaschelli et al. (1985); Ghosh et al. (2007); Goldman et al. (2006); Gupta et al. (1996, 1997); Liu et al. (1999); Moulton & Shaw (1976); Sheldrick (1997); Singleton (2003); Van der Boom & Milstein (2003); Xu et al. (1997); Zhang et al. (2005, 2006); Zhang, Emge & Goldman (2004); Zhu et al. (2004).

Experimental top

The synthesis was performed under an argon atmosphere using standard Schlenk and glovebox techniques. tBuPCP-H was synthesized according to the method of Moulton & Shaw (1976). tBuPCP-H (2.000 g, 5.068 mmol) was dissolved in toluene (100 ml) to which [Ir(COD)Cl]2 (1.660 g, 2.472 mmol) was added, and the resulting solution was refluxed under argon for 2 d. The solution was cooled to room temperature and the solvent was removed by vacuum, followed by addition of hexane (50 ml) to the resulting solid. The red solution was pipetted away from the yellow insoluble material and filtered through glass wool before being placed in the freezer for one week. The resulting solid material (0.4299 g) contained large red crystals of complex (I), as well as a significant amount of microcrystalline (tBuPCP)IrHCl. Further details and 31P{1H} NMR data are given in the archived CIF.

Refinement top

The hydrido H atom was refined with a restrained Ir—H distance of 1.60 (1) Å and Uiso(H) = 1.5Ueq(Ir1), then with a fixed position for the last cycle of refinement. All other non-methyl H atoms were constrained to their respective idealized sp2 or sp3 geometries of 0.95 and 0.99 Å, respectively [Please check added text], and given Uiso(H) values of 1.2 times Ueq of the atom to which they are bonded. The methyl H atoms were given Uiso(H) values of 1.5 times Ueq of the C atom to which they are bonded (C—H = 0.98 Å [Please check added text]) and allowed to rotate as a rigid group to the angle that maximized the sum of the electron density at the three calculated H-atom positions.

Structure description top

There has been great interest in recent years in the development of pincer complexes (Albrecht & van Koten, 2001; Singleton, 2003; Van der Boom & Milstein, 2003), i.e. complexes of tridentate meridionally bound ligands (Moulton & Shaw, 1976). Derivatives of the pincer complex (tBuPCP)IrH2 [tBuPCP is κ3-2,6-(tBu2PCH2)2C6H3] (Gupta et al., 1996) have proven highly effective as catalysts for the dehydrogenation of alkanes (Gupta et al., 1996, 1997; Xu et al., 1997; Liu et al., 1999; Zhu et al., 2004; Goldman et al., 2006). The synthetic precursor to (tBuPCP)IrH2 (Gupta et al., 1996) is (tBuPCP)IrHCl (Moulton & Shaw, 1976). We have previously reported the hexanuclear iridium η4-2,5-cyclooctadiene complex [(COD)Ir]2{η6-[κ4-C6H2(CH2PtBu2)2] Ir2H2Cl3}2 (COD is 1,5-cyclooctadiene), which has been observed as a by-product of the synthesis of the (tBuPCP)IrHCl complex (Zhang, Emge et al., 2004). Here, we report another such by-product, an orange–red material that has been identified as (tBuPCP)IrH(µ2Cl)2Ir(COD), which was isolated as the hexane hemisolvate, (I).

Complex (I) (Fig. 1) is best viewed as the di(chloride-bridged) mixed-valence addition product of (PCP)IrHCl (Moulton & Shaw, 1976) and `(COD)IrCl'. The latter can be viewed as a monomeric unit of the dimer [Ir(COD)Cl]2, which has been crystallographically characterized previously (Cotton et al., 1986). The hydride was found in this complex using electron difference maps. The Ir—H distance, which is known from neutron diffraction measurements to be 1.60 Å (Eckert et al., 1995; Bau et al., 1993, 1984; Garlaschelli et al., 1985) and found on difference Fourier maps here at 1.60 Å, refines to a much shorter distance (~1.37 Å), but still along the difference Fourier map Ir—H vector, because of the close proximity to the metal atom (Z = 77). In such cases, it is preferable to restrain the distance to 1.60 Å, as was done here, using the SHELXL97 command `DFIX 1.60. 01' (Sheldrick, 1997).

The pincer-bound atom Ir1 is best considered as being formally in the +3 oxidation state. The Ir1—C1 distance (Table 1) is similar to the Ir—C distance found in other PCP complexes of either IrI or IrIII (Table 2). The Ir—P bond lengths (average 2.327 Å; Table 1) are consistent with the Ir—P bond lengths in reported PCP complexes of IrIII (Table 2), but somewhat outside the range reported for PCP complexes of IrI (2.27–2.30 Å; Table 2). As in other (PCP)Ir complexes, the P—Ir—P angle is decidedly not linear (Gupta et al., 1997; Zhang et al., 2005, 2006; Ghosh et al., 2007). Both P atoms are bent away from the Cl ligand cis to the PCP aryl C—Ir bond, as seen by the corresponding P1—Ir1—Cl2 and P2—Ir1—Cl2 angles given in Table 1. The COD-bound atom Ir2 is formally in the +1 oxidation state and can be viewed as approximately square planar if one considers the centers of the coordinating C—C double bonds as single coordination points.

The Ir(COD)Cl2 portion of (I) has a geometry consistent with either Ir(COD)Cl2 part of [Ir(COD)Cl]2. However, presumably due to the steric bulk of the tBuPCP ligand, the considerable folding about the Cl···Cl vector observed in [Ir(COD)Cl]2 is not present in compound (I). The dihedral angle between the Cl2—Ir1 and Cl2— Ir2 portions of the central Ir2Cl2 group is only 13.04 (4)°, compared with the 86° dihedral angle in [Ir(COD)Cl]2 (Cotton et al., 1986). This gives rise to a significantly greater Ir···Ir distance: in [Ir(COD)Cl]2 this distance is 2.910 (1) Å, while in complex (I) the value is 3.6754 (2) Å.

The Ir—Cl bond lengths for the trivalent atom Ir1 are noticeably longer (average 2.55 Å) than those for the monovalent atom Ir2 (average 2.40 Å) or those found in the [Ir(COD)Cl]2 dimer (average 2.40 Å) (Cotton et al., 1986). As seen in Table 1, the specific values of the Ir2—Cl distances are fairly similar. The two Ir1—Cl distances, however, are substantially different, with the bond to the Cl atom trans to the strong trans-influence hydride ligand being substantially longer than that trans to the PCP aryl C atom. Not surprisingly, the Ir1—Cl distances in (I) are longer than the Ir—Cl distances in (PCP)Ir complexes with terminal chloride ligands (Table 2).

The geometries of both weaker and significant C—H···Cl interactions are described in Table 3, where it is shown that the intramolecular Cl···H distances are as short as 2.66 Å from atom Cl2 to the PCP methyl atom H16A and as short as 2.79 Å from atom Cl1 to the COD methylenyl atom H26. There are two weak intermolecular (COD) C—H···Cl2 interactions (last two entries in Table 3). The hexane solvate molecule lies across the inversion center at y = 1/2 in a channel that propagates along the crystallographic b axis. As a result, each solvate molecule is surrounded by the methyl and methylenyl groups of six Ir2 dimer complexes. The packing of the Ir dimer complexes and the hexane solvate molecules yields only long C—H···H—C contacts (>2.54 Å) and the nearest Cl atom to any H atom on the hexane solvent is quite remote (>5 Å).

For related literature, see: Albrecht & van Koten (2001); Bau et al. (1984, 1993); Cotton et al. (1986); Eckert et al. (1995); Garlaschelli et al. (1985); Ghosh et al. (2007); Goldman et al. (2006); Gupta et al. (1996, 1997); Liu et al. (1999); Moulton & Shaw (1976); Sheldrick (1997); Singleton (2003); Van der Boom & Milstein (2003); Xu et al. (1997); Zhang et al. (2005, 2006); Zhang, Emge & Goldman (2004); Zhu et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SMART; data reduction: SAINT-Plus (Bruker,2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2003); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms, with the exception of the iridium hydride, have been omitted for clarity.
[2,6-bis(di-tert-butylphosphino)phenyl-1κ3P,C1,P']di-µ-chlorido- 1:2κ4Cl:Cl-(2η4-cycloocta-2,5-diene)diiridium(I,III) hexane hemisolvate top
Crystal data top
[Ir2(C8H12)(C24H44P2)Cl2]·0.5C6H14F(000) = 1964
Mr = 1001.09Dx = 1.764 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8331 reflections
a = 14.8424 (7) Åθ = 2.6–30.6°
b = 11.6735 (5) ŵ = 7.30 mm1
c = 22.0589 (10) ÅT = 100 K
β = 99.416 (1)°Lath, orange
V = 3770.5 (3) Å30.19 × 0.12 × 0.08 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
11498 independent reflections
Radiation source: fine-focus sealed tube10259 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 30.6°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS in SAINT-Plus; Bruker, 2003)
h = 2121
Tmin = 0.361, Tmax = 0.558k = 1616
42778 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.03P)2 + 7.5P]
where P = (Fo2 + 2Fc2)/3
11498 reflections(Δ/σ)max = 0.003
383 parametersΔρmax = 2.04 e Å3
0 restraintsΔρmin = 1.03 e Å3
Crystal data top
[Ir2(C8H12)(C24H44P2)Cl2]·0.5C6H14V = 3770.5 (3) Å3
Mr = 1001.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.8424 (7) ŵ = 7.30 mm1
b = 11.6735 (5) ÅT = 100 K
c = 22.0589 (10) Å0.19 × 0.12 × 0.08 mm
β = 99.416 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
11498 independent reflections
Absorption correction: multi-scan
(SADABS in SAINT-Plus; Bruker, 2003)
10259 reflections with I > 2σ(I)
Tmin = 0.361, Tmax = 0.558Rint = 0.033
42778 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.00Δρmax = 2.04 e Å3
11498 reflectionsΔρmin = 1.03 e Å3
383 parameters
Special details top

Experimental. All solvents were purchased as anhydrous from Aldrich and degassed before use. NMR spectra were recorded on a Varian 400-MHz NMR spectrometer; 1H NMR signals are referenced to the residual proton peaks of the deuterated solvent and 31P{1H} NMR signals are referenced to PMe3 dissolved in p-xylene-d10, in a capillary. 31P{1H} (400 MHz, toluene-d8, δ, p.p.m.): 54.89 (d, J = 13 Hz); 1H (400 MHz, toluene-d8, δ, p.p.m.): 3.95 (d, J = 17 Hz, 4H, COD), 3.29 (dt, JH—H = 17 Hz, JP—H = 3 Hz, 2H, CH2), 2.86 (dt, JH—H = 15 Hz, JP—H = 4 Hz, 2H, CH2), 1.73 (t, J = 6 Hz, 18H, tBu), 1.22 (t, J = 6 Hz, 18H, tBu), -25.73 (t, J = 16 Hz, 1H, Ir—H).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.680138 (8)0.126447 (9)0.159875 (5)0.00922 (3)
H10.68900.03070.11010.020*
Ir20.838754 (8)0.322798 (10)0.254009 (6)0.01107 (3)
P10.66778 (5)0.23654 (7)0.07101 (4)0.01129 (14)
P20.65536 (5)0.02464 (7)0.22407 (4)0.01062 (14)
Cl10.84815 (5)0.15376 (6)0.19479 (4)0.01398 (14)
Cl20.67694 (5)0.28732 (6)0.24043 (3)0.01297 (13)
C10.5440 (2)0.1114 (3)0.13518 (15)0.0125 (6)
C20.4993 (2)0.1449 (3)0.07595 (15)0.0132 (6)
C30.4046 (2)0.1378 (3)0.06018 (15)0.0163 (6)
H30.37560.16400.02100.020*
C40.3521 (2)0.0926 (3)0.10132 (16)0.0168 (6)
H40.28750.08960.09090.020*
C50.3954 (2)0.0518 (3)0.15791 (15)0.0150 (6)
H50.36020.01780.18540.018*
C60.4896 (2)0.0604 (3)0.17462 (15)0.0133 (6)
C70.5583 (2)0.1817 (3)0.02973 (15)0.0147 (6)
H7A0.52680.24220.00280.018*
H7B0.56930.11570.00370.018*
C80.5373 (2)0.0084 (3)0.23435 (15)0.0140 (6)
H8A0.50550.06230.24390.017*
H8B0.53730.06320.26860.017*
C90.7517 (2)0.2027 (3)0.01761 (15)0.0152 (6)
C100.7097 (3)0.2189 (3)0.05021 (16)0.0220 (7)
H10A0.75750.21140.07580.033*
H10B0.68200.29520.05600.033*
H10C0.66270.16050.06210.033*
C110.8374 (2)0.2786 (3)0.03346 (18)0.0223 (7)
H11A0.88520.25060.01140.033*
H11B0.85950.27550.07780.033*
H11C0.82200.35790.02130.033*
C120.7828 (2)0.0779 (3)0.02649 (16)0.0194 (7)
H12A0.72940.02730.01870.029*
H12B0.81420.06690.06870.029*
H12C0.82450.05960.00230.029*
C130.6481 (2)0.3965 (3)0.07266 (15)0.0155 (6)
C140.6308 (3)0.4552 (3)0.00934 (16)0.0206 (7)
H14A0.61240.53490.01410.031*
H14B0.58200.41460.01760.031*
H14C0.68680.45330.00880.031*
C150.7286 (2)0.4570 (3)0.11265 (16)0.0185 (7)
H15A0.71040.53470.12230.028*
H15B0.78040.46100.09030.028*
H15C0.74650.41390.15090.028*
C160.5621 (2)0.4128 (3)0.10254 (16)0.0192 (7)
H16A0.57080.37470.14270.029*
H16B0.50920.37930.07600.029*
H16C0.55150.49480.10800.029*
C170.6489 (2)0.1668 (3)0.18208 (15)0.0150 (6)
C180.6285 (3)0.2683 (3)0.22221 (16)0.0203 (7)
H18A0.62150.33830.19740.030*
H18B0.57190.25330.23840.030*
H18C0.67910.27780.25650.030*
C190.7398 (2)0.1883 (3)0.15836 (16)0.0185 (7)
H19A0.73670.26170.13660.028*
H19B0.79010.19030.19320.028*
H19C0.75040.12650.13030.028*
C200.5725 (3)0.1644 (3)0.12607 (16)0.0194 (7)
H20A0.58290.10080.09910.029*
H20B0.51350.15410.13980.029*
H20C0.57220.23680.10350.029*
C210.7184 (2)0.0469 (3)0.30485 (14)0.0147 (6)
C220.6597 (3)0.1087 (3)0.34640 (16)0.0191 (7)
H22A0.69530.11820.38760.029*
H22B0.64160.18410.32900.029*
H22C0.60510.06310.34890.029*
C230.8089 (2)0.1112 (3)0.30518 (17)0.0205 (7)
H23A0.84300.07530.27580.031*
H23B0.79610.19130.29350.031*
H23C0.84520.10800.34640.031*
C240.7421 (2)0.0709 (3)0.33318 (15)0.0190 (7)
H24A0.76950.06190.37640.029*
H24B0.68650.11710.33030.029*
H24C0.78560.10920.31100.029*
C250.9804 (2)0.3312 (3)0.28602 (16)0.0163 (6)
H251.00850.26340.28090.020*
C260.9592 (2)0.3831 (3)0.22771 (16)0.0156 (6)
H260.97020.33610.19520.020*
C270.9541 (2)0.5107 (3)0.21596 (16)0.0161 (6)
H27A0.92530.52460.17290.019*
H27B1.01680.54240.22150.019*
C280.8996 (2)0.5730 (3)0.25895 (17)0.0182 (6)
H28A0.94130.59650.29660.022*
H28B0.87210.64310.23850.022*
C290.8246 (2)0.4972 (3)0.27637 (16)0.0151 (6)
H290.76390.52010.25880.020*
C300.8350 (2)0.4293 (3)0.33026 (16)0.0160 (6)
H300.78490.41000.34350.020*
C310.9225 (2)0.4216 (3)0.37679 (16)0.0204 (7)
H31A0.91660.35910.40620.024*
H31B0.93150.49420.40020.024*
C321.0064 (2)0.3990 (3)0.34575 (16)0.0186 (7)
H32A1.03410.47290.33670.022*
H32B1.05250.35540.37420.022*
C330.9658 (4)0.5435 (6)0.0152 (2)0.071 (2)
H33A0.91080.50230.03560.085*
H33B0.99250.58380.04750.085*
C340.9364 (5)0.6329 (7)0.0284 (3)0.080 (3)
H34A0.99170.67180.05010.096*
H34B0.90720.59290.05970.096*
C350.8698 (6)0.7245 (9)0.0031 (3)0.105 (3)
H35A0.89740.76370.03480.157*
H35B0.85680.78020.02760.157*
H35C0.81270.68760.02210.157*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.00906 (5)0.00824 (5)0.01056 (5)0.00065 (4)0.00222 (4)0.00001 (4)
Ir20.00963 (6)0.00950 (5)0.01433 (6)0.00023 (4)0.00268 (4)0.00050 (4)
P10.0123 (4)0.0105 (3)0.0112 (3)0.0007 (3)0.0025 (3)0.0007 (3)
P20.0120 (3)0.0092 (3)0.0109 (3)0.0002 (3)0.0027 (3)0.0005 (3)
Cl10.0100 (3)0.0126 (3)0.0192 (4)0.0004 (2)0.0020 (3)0.0027 (3)
Cl20.0116 (3)0.0121 (3)0.0157 (3)0.0001 (3)0.0034 (3)0.0012 (3)
C10.0124 (14)0.0095 (12)0.0151 (14)0.0011 (10)0.0003 (11)0.0023 (11)
C20.0146 (15)0.0118 (13)0.0135 (14)0.0018 (11)0.0030 (11)0.0001 (11)
C30.0155 (15)0.0176 (15)0.0147 (15)0.0023 (12)0.0005 (12)0.0013 (12)
C40.0091 (14)0.0189 (15)0.0224 (16)0.0024 (11)0.0025 (12)0.0049 (13)
C50.0125 (14)0.0148 (14)0.0188 (15)0.0025 (11)0.0059 (12)0.0034 (12)
C60.0136 (14)0.0122 (13)0.0148 (14)0.0006 (11)0.0039 (11)0.0018 (11)
C70.0135 (14)0.0188 (15)0.0114 (14)0.0025 (12)0.0005 (11)0.0043 (12)
C80.0158 (15)0.0140 (14)0.0134 (14)0.0011 (11)0.0060 (12)0.0010 (11)
C90.0183 (15)0.0154 (14)0.0136 (14)0.0017 (12)0.0077 (12)0.0004 (11)
C100.0304 (19)0.0240 (17)0.0135 (15)0.0004 (15)0.0094 (14)0.0008 (13)
C110.0188 (16)0.0225 (17)0.0281 (19)0.0054 (14)0.0109 (14)0.0001 (14)
C120.0246 (17)0.0173 (15)0.0177 (16)0.0003 (13)0.0081 (13)0.0027 (13)
C130.0179 (16)0.0126 (14)0.0159 (15)0.0013 (11)0.0027 (12)0.0007 (11)
C140.0264 (18)0.0158 (15)0.0195 (16)0.0026 (13)0.0027 (14)0.0063 (13)
C150.0236 (17)0.0114 (14)0.0210 (16)0.0011 (12)0.0058 (13)0.0005 (12)
C160.0212 (17)0.0167 (15)0.0200 (16)0.0031 (13)0.0048 (13)0.0003 (13)
C170.0211 (16)0.0099 (13)0.0144 (15)0.0009 (12)0.0043 (12)0.0007 (11)
C180.0273 (18)0.0124 (14)0.0219 (17)0.0036 (13)0.0059 (14)0.0007 (13)
C190.0227 (17)0.0133 (14)0.0205 (16)0.0037 (12)0.0067 (13)0.0005 (12)
C200.0245 (18)0.0138 (14)0.0193 (16)0.0012 (13)0.0014 (13)0.0037 (12)
C210.0183 (15)0.0152 (14)0.0108 (14)0.0012 (12)0.0037 (12)0.0018 (11)
C220.0236 (17)0.0215 (16)0.0127 (15)0.0020 (13)0.0041 (13)0.0039 (12)
C230.0202 (17)0.0229 (17)0.0179 (16)0.0034 (13)0.0019 (13)0.0010 (13)
C240.0258 (18)0.0168 (15)0.0130 (15)0.0016 (13)0.0013 (13)0.0006 (12)
C250.0116 (14)0.0138 (14)0.0235 (17)0.0003 (11)0.0033 (12)0.0020 (12)
C260.0124 (14)0.0158 (14)0.0198 (16)0.0038 (11)0.0056 (12)0.0048 (12)
C270.0135 (15)0.0163 (15)0.0187 (15)0.0040 (12)0.0029 (12)0.0026 (12)
C280.0197 (16)0.0108 (13)0.0249 (17)0.0025 (12)0.0055 (13)0.0016 (13)
C290.0143 (15)0.0115 (13)0.0199 (16)0.0008 (11)0.0037 (12)0.0011 (12)
C300.0139 (14)0.0146 (14)0.0202 (16)0.0002 (12)0.0047 (12)0.0015 (12)
C310.0176 (16)0.0254 (17)0.0178 (16)0.0033 (14)0.0016 (13)0.0035 (14)
C320.0135 (15)0.0197 (16)0.0212 (17)0.0010 (12)0.0014 (12)0.0011 (13)
C330.079 (4)0.103 (5)0.025 (2)0.073 (4)0.010 (2)0.016 (3)
C340.085 (5)0.124 (6)0.027 (3)0.078 (5)0.005 (3)0.008 (3)
C350.107 (7)0.138 (8)0.055 (4)0.040 (6)0.030 (4)0.007 (5)
Geometric parameters (Å, º) top
Ir1—C12.012 (3)C16—H16C0.9800
Ir1—P12.326 (1)C17—C201.535 (5)
Ir1—P22.328 (1)C17—C181.538 (5)
Ir1—Cl12.507 (1)C17—C191.546 (5)
Ir1—Cl22.591 (1)C18—H18A0.9800
Ir1—H11.59C18—H18B0.9800
Ir2—C262.090 (3)C18—H18C0.9800
Ir2—C302.100 (3)C19—H19A0.9800
Ir2—C252.108 (3)C19—H19B0.9800
Ir2—C292.113 (3)C19—H19C0.9800
Ir2—Cl12.383 (1)C20—H20A0.9800
Ir2—Cl22.407 (1)C20—H20B0.9800
P1—C71.843 (3)C20—H20C0.9800
P1—C91.891 (3)C21—C241.528 (5)
P1—C131.891 (3)C21—C231.537 (5)
P2—C81.845 (3)C21—C221.543 (5)
P2—C211.891 (3)C22—H22A0.9800
P2—C171.896 (3)C22—H22B0.9800
C1—C61.412 (4)C22—H22C0.9800
C1—C21.420 (4)C23—H23A0.9800
C2—C31.394 (5)C23—H23B0.9800
C2—C71.511 (4)C23—H23C0.9800
C3—C41.393 (5)C24—H24A0.9800
C3—H30.9500C24—H24B0.9800
C4—C51.391 (5)C24—H24C0.9800
C4—H40.9500C25—C261.410 (5)
C5—C61.390 (4)C25—C321.531 (5)
C5—H50.9500C25—H250.910
C6—C81.516 (4)C26—C271.512 (5)
C7—H7A0.9900C26—H260.938
C7—H7B0.9900C27—C281.528 (5)
C8—H8A0.9900C27—H27A0.9900
C8—H8B0.9900C27—H27B0.9900
C9—C121.531 (5)C28—C291.520 (4)
C9—C101.536 (5)C28—H28A0.9900
C9—C111.542 (5)C28—H28B0.9900
C10—H10A0.9800C29—C301.416 (5)
C10—H10B0.9800C29—H290.959
C10—H10C0.9800C30—C311.520 (5)
C11—H11A0.9800C30—H300.871
C11—H11B0.9800C31—C321.540 (5)
C11—H11C0.9800C31—H31A0.9900
C12—H12A0.9800C31—H31B0.9900
C12—H12B0.9800C32—H32A0.9900
C12—H12C0.9800C32—H32B0.9900
C13—C151.537 (5)C33—C33i1.514 (14)
C13—C141.539 (5)C33—C341.529 (11)
C13—C161.542 (5)C33—H33A0.9900
C14—H14A0.9800C33—H33B0.9900
C14—H14B0.9800C34—C351.543 (12)
C14—H14C0.9800C34—H34A0.9900
C15—H15A0.9800C34—H34B0.9900
C15—H15B0.9800C35—H35A0.9800
C15—H15C0.9800C35—H35B0.9800
C16—H16A0.9800C35—H35C0.9800
C16—H16B0.9800
C1—Ir1—P183.27 (9)H16A—C16—H16B109.5
C1—Ir1—P281.21 (9)C13—C16—H16C109.5
P1—Ir1—P2158.83 (3)H16A—C16—H16C109.5
C1—Ir1—Cl1176.79 (9)H16B—C16—H16C109.5
P1—Ir1—Cl197.23 (3)C20—C17—C18106.8 (3)
P2—Ir1—Cl199.07 (3)C20—C17—C19107.6 (3)
C1—Ir1—Cl296.80 (9)C18—C17—C19109.6 (3)
P1—Ir1—Cl299.77 (3)C20—C17—P2110.4 (2)
P2—Ir1—Cl296.29 (3)C18—C17—P2113.1 (2)
Cl1—Ir1—Cl279.98 (2)C19—C17—P2109.3 (2)
C1—Ir1—H187C17—C18—H18A109.5
P1—Ir1—H179C17—C18—H18B109.5
P2—Ir1—H186H18A—C18—H18B109.5
Cl1—Ir1—H196C17—C18—H18C109.5
Cl2—Ir1—H1176H18A—C18—H18C109.5
C26—Ir2—C3099.14 (13)H18B—C18—H18C109.5
C26—Ir2—C2539.25 (13)C17—C19—H19A109.5
C30—Ir2—C2581.93 (13)C17—C19—H19B109.5
C26—Ir2—C2982.09 (12)H19A—C19—H19B109.5
C30—Ir2—C2939.27 (13)C17—C19—H19C109.5
C25—Ir2—C2990.49 (12)H19A—C19—H19C109.5
C26—Ir2—Cl189.84 (9)H19B—C19—H19C109.5
C30—Ir2—Cl1160.23 (9)C17—C20—H20A109.5
C25—Ir2—Cl194.45 (9)C17—C20—H20B109.5
C29—Ir2—Cl1160.48 (9)H20A—C20—H20B109.5
C26—Ir2—Cl2154.80 (10)C17—C20—H20C109.5
C30—Ir2—Cl292.58 (9)H20A—C20—H20C109.5
C25—Ir2—Cl2165.92 (10)H20B—C20—H20C109.5
C29—Ir2—Cl293.42 (9)C24—C21—C23107.2 (3)
Cl1—Ir2—Cl286.33 (3)C24—C21—C22107.0 (3)
C7—P1—C9103.74 (15)C23—C21—C22110.3 (3)
C7—P1—C13103.07 (15)C24—C21—P2107.9 (2)
C9—P1—C13109.73 (15)C23—C21—P2111.7 (2)
C7—P1—Ir199.55 (10)C22—C21—P2112.6 (2)
C9—P1—Ir1116.13 (11)C21—C22—H22A109.5
C13—P1—Ir1121.36 (11)C21—C22—H22B109.5
C8—P2—C21104.29 (14)H22A—C22—H22B109.5
C8—P2—C17105.67 (15)C21—C22—H22C109.5
C21—P2—C17108.52 (15)H22A—C22—H22C109.5
C8—P2—Ir199.45 (10)H22B—C22—H22C109.5
C21—P2—Ir1125.06 (11)C21—C23—H23A109.5
C17—P2—Ir1111.51 (10)C21—C23—H23B109.5
Ir2—Cl1—Ir197.43 (3)H23A—C23—H23B109.5
Ir2—Cl2—Ir194.60 (2)C21—C23—H23C109.5
C6—C1—C2117.0 (3)H23A—C23—H23C109.5
C6—C1—Ir1121.3 (2)H23B—C23—H23C109.5
C2—C1—Ir1121.5 (2)C21—C24—H24A109.5
C3—C2—C1120.9 (3)C21—C24—H24B109.5
C3—C2—C7121.4 (3)H24A—C24—H24B109.5
C1—C2—C7117.6 (3)C21—C24—H24C109.5
C4—C3—C2120.6 (3)H24A—C24—H24C109.5
C4—C3—H3119.7H24B—C24—H24C109.5
C2—C3—H3119.7C26—C25—C32123.4 (3)
C5—C4—C3119.3 (3)C26—C25—Ir269.71 (19)
C5—C4—H4120.4C32—C25—Ir2114.2 (2)
C3—C4—H4120.4C26—C25—H25107
C6—C5—C4120.7 (3)C32—C25—H25120
C6—C5—H5119.7Ir2—C25—H25111
C4—C5—H5119.7C25—C26—C27125.2 (3)
C5—C6—C1121.2 (3)C25—C26—Ir271.04 (19)
C5—C6—C8120.5 (3)C27—C26—Ir2111.0 (2)
C1—C6—C8118.1 (3)C25—C26—H26113
C2—C7—P1109.1 (2)C27—C26—H26117
C2—C7—H7A109.9Ir2—C26—H26106
P1—C7—H7A109.9C26—C27—C28112.4 (3)
C2—C7—H7B109.9C26—C27—H27A109.1
P1—C7—H7B109.9C28—C27—H27A109.1
H7A—C7—H7B108.3C26—C27—H27B109.1
C6—C8—P2107.1 (2)C28—C27—H27B109.1
C6—C8—H8A110.3H27A—C27—H27B107.9
P2—C8—H8A110.3C29—C28—C27111.3 (3)
C6—C8—H8B110.3C29—C28—H28A109.4
P2—C8—H8B110.3C27—C28—H28A109.4
H8A—C8—H8B108.5C29—C28—H28B109.4
C12—C9—C10107.9 (3)C27—C28—H28B109.4
C12—C9—C11107.3 (3)H28A—C28—H28B108.0
C10—C9—C11109.8 (3)C30—C29—C28123.7 (3)
C12—C9—P1109.5 (2)C30—C29—Ir269.85 (18)
C10—C9—P1112.2 (2)C28—C29—Ir2113.4 (2)
C11—C9—P1110.0 (2)C30—C29—H29117
C9—C10—H10A109.5C28—C29—H29114
C9—C10—H10B109.5Ir2—C29—H29107
H10A—C10—H10B109.5C29—C30—C31124.3 (3)
C9—C10—H10C109.5C29—C30—Ir270.88 (19)
H10A—C10—H10C109.5C31—C30—Ir2112.0 (2)
H10B—C10—H10C109.5C29—C30—H30116
C9—C11—H11A109.5C31—C30—H30116
C9—C11—H11B109.5Ir2—C30—H30104
H11A—C11—H11B109.5C30—C31—C32112.0 (3)
C9—C11—H11C109.5C30—C31—H31A109.2
H11A—C11—H11C109.5C32—C31—H31A109.2
H11B—C11—H11C109.5C30—C31—H31B109.2
C9—C12—H12A109.5C32—C31—H31B109.2
C9—C12—H12B109.5H31A—C31—H31B107.9
H12A—C12—H12B109.5C25—C32—C31111.3 (3)
C9—C12—H12C109.5C25—C32—H32A109.4
H12A—C12—H12C109.5C31—C32—H32A109.4
H12B—C12—H12C109.5C25—C32—H32B109.4
C15—C13—C14108.4 (3)C31—C32—H32B109.4
C15—C13—C16108.6 (3)H32A—C32—H32B108.0
C14—C13—C16107.8 (3)C33i—C33—C34114.8 (6)
C15—C13—P1110.9 (2)C33i—C33—H33A108.6
C14—C13—P1115.2 (2)C34—C33—H33A108.6
C16—C13—P1105.8 (2)C33i—C33—H33B108.6
C13—C14—H14A109.5C34—C33—H33B108.6
C13—C14—H14B109.5H33A—C33—H33B107.5
H14A—C14—H14B109.5C33—C34—C35114.7 (5)
C13—C14—H14C109.5C33—C34—H34A108.6
H14A—C14—H14C109.5C35—C34—H34A108.6
H14B—C14—H14C109.5C33—C34—H34B108.6
C13—C15—H15A109.5C35—C34—H34B108.6
C13—C15—H15B109.5H34A—C34—H34B107.6
H15A—C15—H15B109.5C34—C35—H35A109.5
C13—C15—H15C109.5C34—C35—H35B109.5
H15A—C15—H15C109.5H35A—C35—H35B109.5
H15B—C15—H15C109.5C34—C35—H35C109.5
C13—C16—H16A109.5H35A—C35—H35C109.5
C13—C16—H16B109.5H35B—C35—H35C109.5
C1—Ir1—P1—C721.72 (14)C7—P1—C13—C15172.9 (2)
P2—Ir1—P1—C721.31 (14)C9—P1—C13—C1577.1 (3)
Cl1—Ir1—P1—C7161.47 (11)Ir1—P1—C13—C1563.0 (3)
Cl2—Ir1—P1—C7117.50 (11)C7—P1—C13—C1463.5 (3)
C1—Ir1—P1—C9132.26 (15)C9—P1—C13—C1446.5 (3)
P2—Ir1—P1—C989.23 (14)Ir1—P1—C13—C14173.5 (2)
Cl1—Ir1—P1—C950.94 (12)C7—P1—C13—C1655.4 (2)
Cl2—Ir1—P1—C9131.96 (12)C9—P1—C13—C16165.4 (2)
C1—Ir1—P1—C1390.06 (15)Ir1—P1—C13—C1654.5 (2)
P2—Ir1—P1—C13133.09 (14)C8—P2—C17—C2049.1 (3)
Cl1—Ir1—P1—C1386.74 (13)C21—P2—C17—C20160.4 (2)
Cl2—Ir1—P1—C135.72 (13)Ir1—P2—C17—C2058.0 (2)
C1—Ir1—P2—C828.64 (14)C8—P2—C17—C1870.5 (3)
P1—Ir1—P2—C871.93 (13)C21—P2—C17—C1840.9 (3)
Cl1—Ir1—P2—C8148.12 (11)Ir1—P2—C17—C18177.6 (2)
Cl2—Ir1—P2—C867.31 (11)C8—P2—C17—C19167.2 (2)
C1—Ir1—P2—C21143.63 (16)C21—P2—C17—C1981.4 (2)
P1—Ir1—P2—C21173.07 (13)Ir1—P2—C17—C1960.1 (2)
Cl1—Ir1—P2—C2133.13 (13)C8—P2—C21—C2480.4 (2)
Cl2—Ir1—P2—C2147.69 (13)C17—P2—C21—C24167.4 (2)
C1—Ir1—P2—C1782.46 (15)Ir1—P2—C21—C2432.3 (3)
P1—Ir1—P2—C1739.16 (15)C8—P2—C21—C23162.1 (2)
Cl1—Ir1—P2—C17100.78 (12)C17—P2—C21—C2349.9 (3)
Cl2—Ir1—P2—C17178.40 (12)Ir1—P2—C21—C2385.2 (2)
C26—Ir2—Cl1—Ir1144.88 (10)C8—P2—C21—C2237.5 (3)
C30—Ir2—Cl1—Ir197.6 (3)C17—P2—C21—C2274.8 (3)
C25—Ir2—Cl1—Ir1176.11 (10)Ir1—P2—C21—C22150.15 (19)
C29—Ir2—Cl1—Ir179.7 (3)C30—Ir2—C25—C26115.3 (2)
Cl2—Ir2—Cl1—Ir110.20 (3)C29—Ir2—C25—C2676.8 (2)
P1—Ir1—Cl1—Ir289.10 (3)Cl1—Ir2—C25—C2684.27 (18)
P2—Ir1—Cl1—Ir2104.44 (3)Cl2—Ir2—C25—C26176.9 (3)
Cl2—Ir1—Cl1—Ir29.60 (3)C26—Ir2—C25—C32118.5 (3)
C26—Ir2—Cl2—Ir172.0 (2)C30—Ir2—C25—C323.2 (2)
C30—Ir2—Cl2—Ir1170.05 (9)C29—Ir2—C25—C3241.7 (2)
C25—Ir2—Cl2—Ir1103.5 (4)Cl1—Ir2—C25—C32157.2 (2)
C29—Ir2—Cl2—Ir1150.63 (9)Cl2—Ir2—C25—C3264.6 (5)
Cl1—Ir2—Cl2—Ir19.82 (3)C32—C25—C26—C273.5 (5)
C1—Ir1—Cl2—Ir2170.55 (9)Ir2—C25—C26—C27102.8 (3)
P1—Ir1—Cl2—Ir286.25 (3)C32—C25—C26—Ir2106.2 (3)
P2—Ir1—Cl2—Ir2107.59 (3)C30—Ir2—C26—C2565.1 (2)
Cl1—Ir1—Cl2—Ir29.45 (2)C29—Ir2—C26—C25100.6 (2)
P1—Ir1—C1—C6171.6 (3)Cl1—Ir2—C26—C2597.25 (18)
P2—Ir1—C1—C622.8 (2)Cl2—Ir2—C26—C25178.25 (16)
Cl2—Ir1—C1—C672.5 (2)C30—Ir2—C26—C2756.4 (3)
P1—Ir1—C1—C212.5 (2)C25—Ir2—C26—C27121.4 (3)
P2—Ir1—C1—C2153.1 (3)C29—Ir2—C26—C2720.9 (2)
Cl2—Ir1—C1—C2111.6 (2)Cl1—Ir2—C26—C27141.3 (2)
C6—C1—C2—C36.2 (4)Cl2—Ir2—C26—C2760.3 (3)
Ir1—C1—C2—C3177.7 (2)C25—C26—C27—C2846.6 (4)
C6—C1—C2—C7170.3 (3)Ir2—C26—C27—C2834.5 (3)
Ir1—C1—C2—C75.7 (4)C26—C27—C28—C2931.2 (4)
C1—C2—C3—C43.0 (5)C27—C28—C29—C3094.2 (4)
C7—C2—C3—C4173.4 (3)C27—C28—C29—Ir213.6 (4)
C2—C3—C4—C51.6 (5)C26—Ir2—C29—C30115.0 (2)
C3—C4—C5—C62.8 (5)C25—Ir2—C29—C3076.6 (2)
C4—C5—C6—C10.6 (5)Cl1—Ir2—C29—C30178.6 (2)
C4—C5—C6—C8175.7 (3)Cl2—Ir2—C29—C3089.89 (18)
C2—C1—C6—C55.0 (4)C26—Ir2—C29—C284.0 (2)
Ir1—C1—C6—C5178.9 (2)C30—Ir2—C29—C28119.0 (3)
C2—C1—C6—C8171.4 (3)C25—Ir2—C29—C2842.4 (3)
Ir1—C1—C6—C84.7 (4)Cl1—Ir2—C29—C2862.4 (4)
C3—C2—C7—P1157.5 (3)Cl2—Ir2—C29—C28151.1 (2)
C1—C2—C7—P126.0 (4)C28—C29—C30—C311.3 (5)
C9—P1—C7—C2150.2 (2)Ir2—C29—C30—C31104.1 (3)
C13—P1—C7—C295.3 (2)C28—C29—C30—Ir2105.3 (3)
Ir1—P1—C7—C230.2 (2)C26—Ir2—C30—C2965.4 (2)
C5—C6—C8—P2153.6 (3)C25—Ir2—C30—C29100.8 (2)
C1—C6—C8—P222.8 (3)Cl1—Ir2—C30—C29178.6 (2)
C21—P2—C8—C6164.0 (2)Cl2—Ir2—C30—C2992.26 (18)
C17—P2—C8—C681.7 (2)C26—Ir2—C30—C3154.9 (3)
Ir1—P2—C8—C633.9 (2)C25—Ir2—C30—C3119.5 (2)
C7—P1—C9—C1282.2 (3)C29—Ir2—C30—C31120.2 (3)
C13—P1—C9—C12168.2 (2)Cl1—Ir2—C30—C3161.2 (4)
Ir1—P1—C9—C1225.9 (3)Cl2—Ir2—C30—C31147.5 (2)
C7—P1—C9—C1037.6 (3)C29—C30—C31—C3249.0 (5)
C13—P1—C9—C1072.0 (3)Ir2—C30—C31—C3232.3 (4)
Ir1—P1—C9—C10145.6 (2)C26—C25—C32—C3194.2 (4)
C7—P1—C9—C11160.1 (2)Ir2—C25—C32—C3113.3 (4)
C13—P1—C9—C1150.5 (3)C30—C31—C32—C2529.3 (4)
Ir1—P1—C9—C1191.9 (2)C33i—C33—C34—C35177.6 (6)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···Cl10.982.933.785 (4)147
C15—H15C···Cl20.982.803.628 (4)143
C16—H16A···Cl20.982.663.551 (4)152
C24—H24B···Cl20.982.793.295 (3)113
C24—H24C···Cl10.982.913.782 (3)149
C24—H24B···Cl20.982.793.295 (3)113
C26—H26···Cl10.942.793.165 (3)104.7
C27—H27B···Cl1ii0.992.813.659 (3)144
C30—H30···Cl20.872.933.264 (3)104.7
C32—H32A···Cl1ii0.992.903.865 (3)166
Symmetry code: (ii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ir2(C8H12)(C24H44P2)Cl2]·0.5C6H14
Mr1001.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.8424 (7), 11.6735 (5), 22.0589 (10)
β (°) 99.416 (1)
V3)3770.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)7.30
Crystal size (mm)0.19 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS in SAINT-Plus; Bruker, 2003)
Tmin, Tmax0.361, 0.558
No. of measured, independent and
observed [I > 2σ(I)] reflections
42778, 11498, 10259
Rint0.033
(sin θ/λ)max1)0.716
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.062, 1.00
No. of reflections11498
No. of parameters383
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.04, 1.03

Computer programs: SMART (Bruker, 2005), SMART, SAINT-Plus (Bruker,2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2003), SHELXTL.

Selected geometric parameters (Å, º) top
Ir1—C12.012 (3)Ir2—C262.090 (3)
Ir1—P12.326 (1)Ir2—C302.100 (3)
Ir1—P22.328 (1)Ir2—C252.108 (3)
Ir1—Cl12.507 (1)Ir2—C292.113 (3)
Ir1—Cl22.591 (1)Ir2—Cl12.383 (1)
Ir1—H11.59Ir2—Cl22.407 (1)
C1—Ir1—P183.27 (9)P2—Ir1—Cl296.29 (3)
C1—Ir1—P281.21 (9)Cl1—Ir1—Cl279.98 (2)
P1—Ir1—P2158.83 (3)C1—Ir1—H187
C1—Ir1—Cl1176.79 (9)P1—Ir1—H179
P1—Ir1—Cl197.23 (3)P2—Ir1—H186
P2—Ir1—Cl199.07 (3)Cl1—Ir1—H196
C1—Ir1—Cl296.80 (9)Cl2—Ir1—H1176
P1—Ir1—Cl299.77 (3)Cl1—Ir2—Cl286.33 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···Cl10.982.933.785 (4)147.1
C15—H15C···Cl20.982.803.628 (4)143.1
C16—H16A···Cl20.982.663.551 (4)151.6
C24—H24B···Cl20.982.793.295 (3)112.5
C24—H24C···Cl10.982.913.782 (3)148.5
C24—H24B···Cl20.982.793.295 (3)112.5
C26—H26···Cl10.942.793.165 (3)104.7
C27—H27B···Cl1i0.992.813.659 (3)143.9
C30—H30···Cl20.872.933.264 (3)104.7
C32—H32A···Cl1i0.992.903.865 (3)166.0
Symmetry code: (i) x+2, y+1/2, z+1/2.
Selected bond distances (Å) of (tBuPCP)IrI and (tBuPCP)IrIII complexes top
(tBuPCP)Ir complexIr—C(aryl)Ir—P1Ir—P2Ir—Cl
IrI complexes
(PCP)Ir(NH3)a2.013 (4)2.2737 (14)2.2610 (13)
(PCP)Ir(CO)b2.102 (8)2.298 (2)2.291 (2)
(PCP)IrNNIr(PCP)c2.0534 (18)2.2989 (5)2.3028 (5)
2.0511 (18)2.29855)2.3001 (5)
(PCP)IrN2c2.04452.28912.2921
IrIII complexes
(PCP)Ir(H)(NHPh)a2.049 (2)2.2917 (14)2.3429 (11)
(PCP)Ir(H)(NHPh)(CO)a2.077 (2)2.3422 (6)2.3338 (5)
(PCP)Ir(H)(NH2)(CNtBu)a2.077 (4)2.3075 (11)2.3111 (12)
(PCP)Ir(H)(κ2-O2COH)d2.04 (2)2.321 (5)2.331 (5)
(PCP)Ir(H)[C(O)OH]d2.07 (2)2.323 (5)2.291 (6)
(PCP)Ir(HgPh)Cle2.027 (3)2.3238 (8)2.3068 (8)2.4599 (7)
(PCP)Ir(H)(κ2-O,C-nitrophenyl)f2.0282.32662.3307
(PCP)Ir(H)(κ2-O,C-acetylphenyl)f2.0261 (17)2.3209 (5)2.3079 (5)
(PCP)Ir(H)(κ2-O,O-NO2CH2)g2.0283 (17)2.3117 (5)2.3185 (5)
(PCP)Ir(H)(κ1-O-ONOCH2)g2.042 (6)2.3325 (16)2.3349 (16)
(PCP)Ir(H)(CO)(CH2NO2)g2.091 (3)2.3447 (9)2.3499 (9)
(PCP)Ir(H)(CH2NO2)(CNC6H11)g2.090 (2)2.3374 (5)2.3399 (5)
(PCP)IrH2h2.124 (13)2.308 (2)2.308 (2)
(PCP)Ir(H)(OH)i2.01 (2)2.304 (4)2.303 (4)
(PCP)IrI[C(O)CH3]j2.076 (11)2.354 (3)2.370 (3)
trans-(PCP)Ir(H)(CH3)(CO)j2.095 (3)2.3215 (9)2.3246 (9)
cis-(PCP)Ir(H)(CH3)(CO)j2.095 (5)2.3256 (12)2.3316 (11)
cis-(PCP)Ir(H)(CH2CH2CH3)(CO)j2.121 (2)2.3403 (6)2.3403 (6)
(PCP)Ir(η2-PhCCCHCHPh)k2.072 (2)2.3054 (6)2.3272 (7)
(PCP)Ir(H)(CCPh)k2.0622.2942.293
(PCP)Ir(CCPh)(PHCCH2)(CO)k2.0901 (18)2.3876 (5)2.4317 (5)
(PCP)Ir[C(H)C(H)Ph]Clk2.0303 (18)2.3405 (5)2.3361 (5)2.4628 (4)
(PCP)Ir[C(H)C(H)Ph](CO)Clk2.0478 (15)2.4115 (4)2.3817 (4)2.4812 (4)
(PCP)Ir[C(H)C(H)PH](CCC6H4CH3)(CO)k2.090 (4)2.3878 (11)2.3683 (11)
(PCP)Ir(CCPh)[C(Me)C(H)Ph]k2.068 (9)2.344 (2)2.328 (2)
(PCP)Ir(CCPh)[PhC(H)CC(H)C(H)Ph](CO)k2.092 (3)2.4194 (7)2.4136 (7)
trans-(PCP)Ir(H)(CH3)(CNC6H11)l2.0782.30352.3075
trans-(PCP)Ir(H)(CH3)(CNtBu)l2.081 (2)2.3065 (6)2.3067 (6)
cis-(PCP)Ir(H)(CH3)(CNC2H5)l2.0962 (19)2.3062 (5)2.3064 (5)
para-NO2-(PCP)IrHClm2.015 (3)2.3138 (12)2.3111 (12)2.4395 (9)
References and notes: (a) Kanzelberger et al. (2003); (b) Morales-Morales, Redon et al. (2001); (c) Ghosh et al. (2006). The asymmetric unit cell of (PCP)IrN2 consisted of four individual molecules. The values shown here are averaged and standard deviations have been omitted. (d) Lee et al. (2003); (e) Zhang et al. (2001); (f) Zhang, Kanzelberger et al. (2004). The unit cell of (PCP)Ir(H)(κ2-O,C-nitrophenyl) consisted of two inequivalent molecules. The values shown here are averaged and standard deviations have been omitted. (g) Zhang et al. (2006); (h) Gupta et al. (1997); (i) Morales-Morales, Lee et al. (2001); (j) Kanzelberger (2004); (k) Ghosh et al. (2007). The unit cell of (PCP)Ir(H)(CCPh) contained two inequivalent molecules. The values shown here are averaged and standard deviations have been omitted. (l) Zhang et al. (2005). trans-(PCP)Ir(H)(CH3)(CNC6H11) was found for two different phases. The values shown here are averaged and standard deviations have been omitted. (m) Grimm et al. (2000).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds