Download citation
Download citation
link to html
Donepezil, a cholinesterase inhibitor with good central nervous system penetration, has been crystallized as a tertiary amine salt with a disordered oxalate anion to give the title compound, (R,S)-1-benzyl-4-[(5,6-dimethoxy-1-oxoindan-2-yl)methyl]piperidinium hydrogen oxalate trihydrate, C24H30NO3+·C2HO4·3H2O. The indanone and piperidine ring planes are inclined at an angle of 33.4 (1)°. A comparison is made with the piperidinium cation bound in acetyl­cholinesterase in the solid state. The methyl­ene units bridging the indanone–piperidine–benzyl groups determine the mol­ecular shape and conformational features. The structure is stabilized mainly by O—H...O and N—H...O hydrogen bonds, with water mol­ecules mediating inter­actions between oxalate anions and donepezilium cations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106041187/ga3028sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106041187/ga3028Isup2.hkl
Contains datablock I

CCDC reference: 632939

Comment top

Alzheimer's disease (AD) is a progressive degenerative disorder that ultimately produces the symptoms of senile dementia. A hallmark of AD is the decrease in number and function of basal forebrain cholinergic neurons (BFCN) (Davies & Maloney, 1976). Studies of AD in animal models also suggest impairment of functional neuronal interactions of BFCN (Villa et al., 2000). This evidence sustains the hypothesis that changes in the cholinergic system are the main cause of AD (Perry, 1986). One promising therapeutic strategy for activating central cholinergic functions has been the use of inhibitors of acetylcholinesterase (AChE).

Donepezil is a potent specific piperidine-based non-competitive and reversible inhibitor of AChE. It acts to inhibit the enzymes which break down unused acetylcholine, thus prolonging the existing acetylcholine and making it more effective. The Eisai Company Limited, Japan, developed the compound as donepezil hydrochloride, and widespread clinical testing began in 1990 for its potential role in AD therapeutics (Kawakami et al., 1996). It is also referred to as E2020 in pharmacological literature. Amongst the class of AChE inhibitors, donepezil has a long half-life, few clinically problematic drug interactions and generally good safety and tolerance. It was approved in 1996 by the US Food and Drug Administration for treatment of mild to moderate AD under the brand name Aricept, with subsequent registrations in Europe and Asia. The enantiomers of donepezil exhibit near identical pharmacological profiles, including inhibitory effects, and consequently it is being developed as a racemic mixture. In continuation of our ongoing programmes on structure elucidation of drug molecules, and to gain further insight into structure–activity relationships, the crystal structure of donepezilim oxalate trihydrate, (I), has been determined and is reported here (Fig. 1 and Table 1).

From an overall perspective, the bond lengths and angles in (I) are comparable with those in similar closely related structures. The composite framework of the molecule in terms of structural features may be viewed in four parts, viz. an indanone moiety, a linking group (methylene), a piperidine moiety and a benzyl moiety. The donepezil cation is in an extended conformation, with the two benzene rings separated by a centroid-to-centroid distance of 12.018 Å. In the oxalate anion, atoms C26, O6 and O7 are disordered over two interpenetrating? [Original text was not clear] sites, with occupancies of 0.604 (4) and 0.396 (4).

The crystal structure of E2020 (Cardozo et al., 1995) has no coordinates availablein the Cambridge Structural Database (CSD, Version?; Allen, 2002) for comparison. However, the crystal structure of the complex E2020–AChE is available [Kryger et al., 1999; Protein Data Bank (Berman et al., 2000) entry 1EVE] and the extracted ligand structure is used here for comparison. It has been reported that the methoxy groups at the C1 and C2 positions of the indanone moiety show dramatically increased activity compared with those substituted elsewhere in the indanone moiety (Sugimoto et al., 1995). Both these methoxy groups in (I) are coplanar with the indanone moiety, as also seen in the E2020–AChE complex structure, and we believe this contributes to the extension in the planar hydrophobic area at the binding site. Interestingly, both methoxy groups are cis-oriented in the title compound [C6—C1—O2—C23 = −0.3 (3)° and C3—C2—O3—C24 = −0.0 (2)°], while they are cis- and trans-oriented (torsion angles 3.3 and 179.3°, respectively) in E2020–AChE (Fig. 2).

A significant difference between the structures of (I) and E2020–AChE is in the orientation of the benzylpiperidine fragment. The orientation differs principally by a rotation of the benzylpiperidine ring about the C10–C11 bond (Fig 2.), defined by the torsion angles C8—C10—C11—C12 and C8—C10—C11—C15 (Table 1). The corresponding angles observed in E2020–AChE are −71.4 and 56.8°, respectively. The position of the N atom on the benzylpiperidine moiety and its distance from the carbonyl group are critical for anti-AChE activity (Sugimoto et al., 2002). This N1···O1 distance is 7.211 (2) Å in (I), with the corresponding distance in the E2020–AChE structure being 6.713 Å. Similarly, the distance between the N atom and the centroid of the benzyl ring (C17–C22) is 3.746 Å in (I) and 3.751 Å in E2020–AChE. The displacement of the piperidine ring (the only H-atom donating site towards binding at the receptor) with respect to the indanone and benzyl ring moieties is illustrated in Fig. 3. The piperidine ring hangs outside these planes; atom N1 is displaced by −1.327 (1) and 1.631 (1) Å from the benzyl and indanone planes, respectively (1.602 and 0.652 Å, respectively, in E2020–AChE). The dihedral angle between the benzyl and indanone planes is 67.6 (1)° (87.2° in E2020–AChE).

Different modes of hydrogen-bonding interactions, viz. cation–anion, water–anion, water–cation and water–water, stabilize the crystal structure of (I) (Fig. 4). Water molecules play an important role in the cohesion and stability of the crystal structure; two of them (O1W and O2W) are involved in seven hydrogen bonds connecting one oxalate anion and two donepezilium cations as donor, with the third water molecule (O3W) as acceptor (Table 2). In addition, the third molecule (O3W) links the other two water molecules as donor and an oxalate anion as acceptor. The centrosymmetrically related indanone ring systems tend to stack and facilitate a significant C8—H8···π interaction (Cg1 is the centroid of the C1–C6 ring in Table 2; interaction not shown in Fig. 4).

In the E2020–AChE structure, donepezil makes no direct hydrogen bonds to the amino acid residues of the binding pocket and only water-bridged hydrogen bonds have been detected. Interestingly, compound (I) also crystallized with three water molecules that similarly mediate the hydrogen bonding.

Experimental top

To obtain crystals suitable for X-ray studies, donepezil oxalate (USV Ltd., Mumbai) was dissolved in methanol–water solution (60:40 v/v) and the solvents were allowed to evaporate slowly.

Refinement top

The site-occupation factors of the disordered oxalate molecule were refined to 0.604 (4) and 0.396 (4). The H atoms of the water molecule and all N– and O-bound H atoms of the donepezil were located in a difference density map and refined isotropically. All other H atoms were positioned geometrically and treated as riding on their parent C atoms, with C—H distances of 0.93–0.98 Å and an O—H distance of 0.82 Å, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C, O). The methyl groups were allowed to rotate but not to tip.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The hydrogen bond is shown as a dashed line. The disordered atoms of the minor component (C261, O61 and O71) have been omitted for clarity.
[Figure 2] Fig. 2. An overlay of E2020–AChE (labelled 1) with the title compound (labelled 2) (r.m.s deviation 0.053 Å), superimposing the indanone moieties. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. Orthogonal orientations of the two aromatic ring planes. H atoms have been omitted for clarity. Selected atoms are labelled for ring identification.
[Figure 4] Fig. 4. Part of the crystal structure of (I), viewed down the a axis, showing the networks of hydrogen bonding (dashed lines). A representative set of O atoms are labelled as in Table 2. The minor disordered oxalate component (C261, O61 and O71) and other H atoms attached to C atoms have been omitted for clarity. [Symmetry codes: (i) x, y, z − 1; (ii) 2 − x, 1 − y, 1 − z; (iii) 1 − x, 1/2 + y, 1/2 − z; (iv) x, 3/2 − y, 1/2 + z.]
(R,S)-1-benzyl-4[(5,6-dimethoxy-1-oxo-2,3-dihydro-1H-inden-2-yl)methyl] piperidinium hydrogen oxalate trihydrate top
Crystal data top
C24H30NO3+·C2HO4·3H2OF(000) = 1120
Mr = 523.57Dx = 1.286 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9309 reflections
a = 8.5002 (5) Åθ = 2.3–27.2°
b = 17.6318 (10) ŵ = 0.10 mm1
c = 18.2158 (10) ÅT = 294 K
β = 97.744 (1)°Block, colourless
V = 2705.2 (3) Å30.23 × 0.12 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4003 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 25.0°, θmin = 1.6°
ω scansh = 1010
25718 measured reflectionsk = 2020
4754 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0612P)2 + 0.8458P]
where P = (Fo2 + 2Fc2)/3
4754 reflections(Δ/σ)max < 0.001
394 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C24H30NO3+·C2HO4·3H2OV = 2705.2 (3) Å3
Mr = 523.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5002 (5) ŵ = 0.10 mm1
b = 17.6318 (10) ÅT = 294 K
c = 18.2158 (10) Å0.23 × 0.12 × 0.09 mm
β = 97.744 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4003 reflections with I > 2σ(I)
25718 measured reflectionsRint = 0.023
4754 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.40 e Å3
4754 reflectionsΔρmin = 0.20 e Å3
394 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.8911 (2)0.44992 (10)0.59049 (9)0.0454 (4)
C20.90724 (19)0.53028 (10)0.58928 (9)0.0457 (4)
C30.8241 (2)0.57287 (10)0.53377 (9)0.0462 (4)
H30.83390.62540.53350.055*
C40.72559 (19)0.53591 (9)0.47822 (9)0.0439 (4)
C50.71080 (18)0.45798 (9)0.47910 (9)0.0431 (4)
C60.79357 (19)0.41371 (10)0.53567 (9)0.0451 (4)
H60.78240.36120.53580.054*
C70.6044 (2)0.43317 (10)0.41435 (9)0.0472 (4)
C80.5430 (2)0.50277 (9)0.37002 (9)0.0479 (4)
H80.42910.50740.37270.058*
C90.6277 (2)0.57040 (10)0.41146 (10)0.0508 (4)
H9A0.69490.59640.38050.061*
H9B0.55120.60620.42630.061*
C100.5654 (2)0.49422 (10)0.28910 (10)0.0524 (4)
H10A0.55440.44100.27590.063*
H10B0.67290.50930.28360.063*
C110.4496 (2)0.54024 (9)0.23408 (9)0.0476 (4)
H110.34140.52430.23980.057*
C120.4766 (2)0.52315 (10)0.15519 (9)0.0530 (4)
H12A0.58590.53480.14970.064*
H12B0.46010.46940.14570.064*
C130.3676 (2)0.56782 (9)0.09831 (9)0.0481 (4)
H13A0.39270.55640.04910.058*
H13B0.25840.55300.10040.058*
C140.3533 (2)0.67000 (10)0.18939 (8)0.0449 (4)
H14A0.24340.65850.19380.054*
H14B0.36960.72390.19830.054*
C150.4609 (2)0.62547 (9)0.24723 (9)0.0461 (4)
H15A0.43240.63670.29590.055*
H15B0.56980.64160.24660.055*
C160.28026 (19)0.69832 (10)0.05737 (9)0.0441 (4)
H16A0.17080.68300.05800.053*
H16B0.28940.75120.07220.053*
C170.32028 (18)0.69091 (9)0.02005 (8)0.0401 (4)
C180.2275 (2)0.64753 (11)0.07228 (10)0.0536 (4)
H180.13950.62200.05930.064*
C190.2644 (3)0.64186 (12)0.14359 (10)0.0631 (5)
H190.20160.61260.17850.076*
C200.3943 (3)0.67958 (11)0.16275 (10)0.0600 (5)
H200.41880.67610.21090.072*
C210.4879 (2)0.72234 (10)0.11144 (10)0.0548 (5)
H210.57650.74710.12460.066*
C220.4508 (2)0.72867 (9)0.04025 (9)0.0462 (4)
H220.51360.75840.00570.055*
C230.9683 (3)0.33462 (12)0.65410 (12)0.0709 (6)
H23A0.85950.32030.65470.106*
H23B1.03100.31750.69880.106*
H23C1.00710.31190.61210.106*
C241.0328 (3)0.63899 (11)0.64834 (11)0.0635 (5)
H24A1.06750.65560.60300.095*
H24B1.11190.65160.68920.095*
H24C0.93470.66370.65440.095*
N10.38583 (16)0.65127 (7)0.11266 (7)0.0377 (3)
H1N0.489 (2)0.6633 (10)0.1105 (9)0.047 (5)*
O10.56777 (17)0.36806 (7)0.39698 (8)0.0662 (4)
O20.97918 (16)0.41530 (7)0.64921 (7)0.0595 (3)
O31.00949 (15)0.55892 (7)0.64598 (7)0.0583 (3)
C250.8246 (2)0.66591 (10)0.10047 (10)0.0493 (4)
O40.70269 (15)0.68997 (9)0.12309 (7)0.0649 (4)
O50.95164 (16)0.64930 (10)0.13661 (8)0.0750 (4)
C260.8335 (4)0.6778 (3)0.0168 (3)0.0472 (9)0.604 (4)
O60.8012 (5)0.61519 (18)0.0208 (2)0.0711 (9)0.604 (4)
H6A0.80820.62290.06460.107*0.604 (4)
O70.8669 (3)0.73696 (15)0.00972 (14)0.0685 (9)0.604 (4)
C2610.7870 (7)0.6287 (5)0.0247 (5)0.0574 (15)0.396 (4)
O610.8572 (6)0.6683 (5)0.0229 (4)0.080 (2)0.396 (4)
H610.83790.64920.06420.120*0.396 (4)
O710.7009 (7)0.5755 (3)0.0084 (3)0.105 (2)0.396 (4)
O1W0.9973 (3)0.50532 (11)0.20202 (11)0.0860 (5)
H1W0.982 (4)0.5495 (19)0.1808 (17)0.110 (11)*
H2W1.002 (4)0.5139 (18)0.2439 (19)0.111 (11)*
O2W0.6710 (2)0.81085 (12)0.21527 (9)0.0762 (4)
H3W0.696 (3)0.7712 (16)0.1938 (15)0.088 (9)*
H4W0.601 (4)0.8355 (18)0.1797 (18)0.122 (11)*
O3W1.1696 (2)0.38293 (14)0.16047 (9)0.0910 (6)
H5W1.123 (3)0.4201 (15)0.1737 (14)0.086 (9)*
H6W1.225 (4)0.3627 (17)0.2011 (18)0.112 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0472 (9)0.0492 (9)0.0397 (9)0.0035 (7)0.0052 (7)0.0040 (7)
C20.0450 (9)0.0518 (10)0.0404 (9)0.0036 (7)0.0059 (7)0.0019 (7)
C30.0512 (9)0.0407 (9)0.0467 (9)0.0039 (7)0.0062 (7)0.0003 (7)
C40.0453 (9)0.0439 (9)0.0430 (9)0.0010 (7)0.0069 (7)0.0031 (7)
C50.0426 (9)0.0434 (9)0.0433 (9)0.0001 (7)0.0054 (7)0.0020 (7)
C60.0494 (9)0.0407 (9)0.0450 (9)0.0014 (7)0.0060 (7)0.0036 (7)
C70.0490 (9)0.0437 (10)0.0476 (9)0.0033 (7)0.0021 (7)0.0036 (7)
C80.0498 (9)0.0472 (10)0.0452 (9)0.0019 (7)0.0005 (7)0.0037 (7)
C90.0578 (10)0.0441 (9)0.0488 (10)0.0009 (8)0.0008 (8)0.0042 (7)
C100.0601 (11)0.0489 (10)0.0485 (10)0.0062 (8)0.0092 (8)0.0029 (8)
C110.0570 (10)0.0454 (9)0.0394 (9)0.0042 (8)0.0029 (7)0.0013 (7)
C120.0757 (12)0.0397 (9)0.0420 (9)0.0048 (8)0.0020 (8)0.0010 (7)
C130.0640 (11)0.0417 (9)0.0372 (8)0.0015 (8)0.0016 (7)0.0032 (7)
C140.0506 (9)0.0474 (9)0.0365 (8)0.0030 (7)0.0056 (7)0.0050 (7)
C150.0553 (10)0.0478 (9)0.0341 (8)0.0008 (8)0.0020 (7)0.0032 (7)
C160.0410 (8)0.0492 (9)0.0416 (9)0.0086 (7)0.0042 (7)0.0040 (7)
C170.0417 (8)0.0393 (8)0.0384 (8)0.0074 (7)0.0021 (6)0.0046 (6)
C180.0509 (10)0.0610 (11)0.0475 (10)0.0045 (8)0.0016 (8)0.0025 (8)
C190.0785 (14)0.0644 (12)0.0434 (10)0.0004 (10)0.0026 (9)0.0063 (9)
C200.0856 (14)0.0550 (11)0.0417 (10)0.0166 (10)0.0175 (9)0.0070 (8)
C210.0608 (11)0.0489 (10)0.0577 (11)0.0071 (8)0.0188 (9)0.0153 (9)
C220.0492 (9)0.0419 (9)0.0468 (9)0.0018 (7)0.0035 (7)0.0052 (7)
C230.0909 (15)0.0557 (12)0.0609 (12)0.0088 (11)0.0091 (11)0.0124 (9)
C240.0702 (13)0.0587 (12)0.0590 (12)0.0132 (10)0.0009 (9)0.0091 (9)
N10.0373 (7)0.0399 (7)0.0354 (7)0.0002 (6)0.0037 (5)0.0002 (5)
O10.0824 (10)0.0440 (7)0.0648 (8)0.0076 (6)0.0173 (7)0.0054 (6)
O20.0739 (8)0.0529 (7)0.0468 (7)0.0035 (6)0.0094 (6)0.0067 (6)
O30.0670 (8)0.0560 (8)0.0479 (7)0.0087 (6)0.0068 (6)0.0015 (6)
C250.0422 (9)0.0551 (10)0.0503 (10)0.0004 (8)0.0050 (8)0.0012 (8)
O40.0454 (7)0.0889 (10)0.0616 (8)0.0036 (7)0.0119 (6)0.0182 (7)
O50.0496 (8)0.1077 (12)0.0650 (9)0.0047 (7)0.0025 (7)0.0156 (8)
C260.0356 (16)0.051 (3)0.055 (3)0.0047 (17)0.0059 (15)0.001 (2)
O60.094 (2)0.0599 (19)0.060 (2)0.0031 (18)0.0115 (18)0.0086 (16)
O70.0889 (18)0.0596 (17)0.0588 (14)0.0103 (13)0.0167 (12)0.0049 (13)
C2610.053 (3)0.057 (5)0.063 (5)0.007 (3)0.012 (3)0.003 (3)
O610.063 (3)0.123 (7)0.055 (3)0.018 (3)0.013 (2)0.014 (3)
O710.159 (5)0.077 (3)0.078 (3)0.039 (3)0.009 (3)0.021 (2)
O1W0.1223 (15)0.0767 (12)0.0575 (10)0.0141 (10)0.0067 (10)0.0002 (9)
O2W0.0811 (11)0.0847 (12)0.0607 (9)0.0070 (9)0.0017 (8)0.0167 (9)
O3W0.0996 (13)0.1195 (16)0.0510 (9)0.0351 (12)0.0001 (9)0.0113 (10)
Geometric parameters (Å, º) top
C1—O21.364 (2)C16—H16A0.9700
C1—C61.367 (2)C16—H16B0.9700
C1—C21.424 (2)C17—C181.382 (2)
C2—O31.3548 (19)C17—C221.385 (2)
C2—C31.376 (2)C18—C191.381 (3)
C3—C41.386 (2)C18—H180.9300
C3—H30.9300C19—C201.374 (3)
C4—C51.380 (2)C19—H190.9300
C4—C91.506 (2)C20—C211.369 (3)
C5—C61.404 (2)C20—H200.9300
C5—C71.454 (2)C21—C221.380 (2)
C6—H60.9300C21—H210.9300
C7—O11.220 (2)C22—H220.9300
C7—C81.522 (2)C23—O21.429 (2)
C8—C101.519 (2)C23—H23A0.9600
C8—C91.537 (2)C23—H23B0.9600
C8—H80.9800C23—H23C0.9600
C9—H9A0.9700C24—O31.425 (2)
C9—H9B0.9700C24—H24A0.9600
C10—C111.538 (2)C24—H24B0.9600
C10—H10A0.9700C24—H24C0.9600
C10—H10B0.9700N1—H1N0.912 (18)
C11—C121.516 (2)C25—O51.222 (2)
C11—C151.523 (2)C25—O41.240 (2)
C11—H110.9800C25—C2611.522 (10)
C12—C131.514 (2)C25—C261.550 (7)
C12—H12A0.9700C26—O71.200 (7)
C12—H12B0.9700C26—O61.308 (6)
C13—N11.499 (2)O6—H6A0.8200
C13—H13A0.9700C261—O711.202 (12)
C13—H13B0.9700C261—O611.318 (10)
C14—N11.4978 (19)O61—H610.8200
C14—C151.518 (2)O1W—H1W0.87 (3)
C14—H14A0.9700O1W—H2W0.77 (3)
C14—H14B0.9700O2W—H3W0.84 (3)
C15—H15A0.9700O2W—H4W0.92 (3)
C15—H15B0.9700O3W—H5W0.82 (3)
C16—C171.500 (2)O3W—H6W0.90 (3)
C16—N11.5047 (19)
O2—C1—C6125.33 (16)C14—C15—H15A109.1
O2—C1—C2114.42 (14)C11—C15—H15A109.1
C6—C1—C2120.25 (15)C14—C15—H15B109.1
O3—C2—C3124.75 (16)C11—C15—H15B109.1
O3—C2—C1114.36 (15)H15A—C15—H15B107.8
C3—C2—C1120.89 (15)C17—C16—N1113.01 (12)
C2—C3—C4118.67 (16)C17—C16—H16A109.0
C2—C3—H3120.7N1—C16—H16A109.0
C4—C3—H3120.7C17—C16—H16B109.0
C5—C4—C3120.44 (15)N1—C16—H16B109.0
C5—C4—C9111.72 (14)H16A—C16—H16B107.8
C3—C4—C9127.83 (15)C18—C17—C22119.11 (15)
C4—C5—C6121.65 (15)C18—C17—C16120.96 (15)
C4—C5—C7109.74 (14)C22—C17—C16119.93 (14)
C6—C5—C7128.59 (15)C19—C18—C17120.42 (17)
C1—C6—C5118.10 (16)C19—C18—H18119.8
C1—C6—H6120.9C17—C18—H18119.8
C5—C6—H6120.9C20—C19—C18119.78 (18)
O1—C7—C5127.06 (16)C20—C19—H19120.1
O1—C7—C8124.33 (15)C18—C19—H19120.1
C5—C7—C8108.61 (14)C21—C20—C19120.40 (17)
C10—C8—C7110.86 (14)C21—C20—H20119.8
C10—C8—C9116.24 (15)C19—C20—H20119.8
C7—C8—C9105.12 (13)C20—C21—C22120.06 (17)
C10—C8—H8108.1C20—C21—H21120.0
C7—C8—H8108.1C22—C21—H21120.0
C9—C8—H8108.1C21—C22—C17120.23 (16)
C4—C9—C8104.74 (14)C21—C22—H22119.9
C4—C9—H9A110.8C17—C22—H22119.9
C8—C9—H9A110.8O2—C23—H23A109.5
C4—C9—H9B110.8O2—C23—H23B109.5
C8—C9—H9B110.8H23A—C23—H23B109.5
H9A—C9—H9B108.9O2—C23—H23C109.5
C8—C10—C11115.29 (14)H23A—C23—H23C109.5
C8—C10—H10A108.5H23B—C23—H23C109.5
C11—C10—H10A108.5O3—C24—H24A109.5
C8—C10—H10B108.5O3—C24—H24B109.5
C11—C10—H10B108.5H24A—C24—H24B109.5
H10A—C10—H10B107.5O3—C24—H24C109.5
C12—C11—C15109.32 (14)H24A—C24—H24C109.5
C12—C11—C10110.33 (14)H24B—C24—H24C109.5
C15—C11—C10113.38 (14)C14—N1—C13110.58 (12)
C12—C11—H11107.9C14—N1—C16109.55 (12)
C15—C11—H11107.9C13—N1—C16112.72 (12)
C10—C11—H11107.9C14—N1—H1N106.9 (11)
C13—C12—C11112.86 (15)C13—N1—H1N107.3 (11)
C13—C12—H12A109.0C16—N1—H1N109.6 (11)
C11—C12—H12A109.0C1—O2—C23117.46 (14)
C13—C12—H12B109.0C2—O3—C24117.68 (14)
C11—C12—H12B109.0O5—C25—O4128.32 (18)
H12A—C12—H12B107.8O5—C25—C261116.6 (2)
N1—C13—C12110.61 (13)O4—C25—C261111.5 (2)
N1—C13—H13A109.5O5—C25—C26113.88 (19)
C12—C13—H13A109.5O4—C25—C26115.75 (18)
N1—C13—H13B109.5O7—C26—O6124.6 (7)
C12—C13—H13B109.5O7—C26—C25123.9 (4)
H13A—C13—H13B108.1O6—C26—C25111.5 (6)
N1—C14—C15111.34 (13)O71—C261—O61124.3 (11)
N1—C14—H14A109.4O71—C261—C25127.4 (6)
C15—C14—H14A109.4O61—C261—C25108.1 (10)
N1—C14—H14B109.4C261—O61—H61109.5
C15—C14—H14B109.4H1W—O1W—H2W104 (3)
H14A—C14—H14B108.0H3W—O2W—H4W104 (3)
C14—C15—C11112.46 (13)H5W—O3W—H6W107 (3)
O2—C1—C2—O31.0 (2)N1—C14—C15—C1155.49 (19)
C6—C1—C2—O3178.87 (15)C12—C11—C15—C1452.78 (19)
O2—C1—C2—C3179.30 (15)C10—C11—C15—C14176.32 (14)
C6—C1—C2—C30.8 (2)N1—C16—C17—C18103.79 (18)
O3—C2—C3—C4178.75 (15)N1—C16—C17—C2277.04 (18)
C1—C2—C3—C40.9 (2)C22—C17—C18—C190.1 (3)
C2—C3—C4—C50.4 (2)C16—C17—C18—C19179.24 (16)
C2—C3—C4—C9178.19 (16)C17—C18—C19—C200.0 (3)
C3—C4—C5—C60.2 (2)C18—C19—C20—C210.4 (3)
C9—C4—C5—C6178.99 (15)C19—C20—C21—C220.9 (3)
C3—C4—C5—C7178.61 (15)C20—C21—C22—C171.0 (3)
C9—C4—C5—C70.20 (19)C18—C17—C22—C210.6 (2)
O2—C1—C6—C5179.90 (15)C16—C17—C22—C21179.75 (15)
C2—C1—C6—C50.2 (2)C15—C14—N1—C1356.89 (17)
C4—C5—C6—C10.3 (2)C15—C14—N1—C16178.28 (13)
C7—C5—C6—C1178.26 (16)C12—C13—N1—C1457.20 (18)
C4—C5—C7—O1178.27 (18)C12—C13—N1—C16179.80 (13)
C6—C5—C7—O10.4 (3)C17—C16—N1—C14172.20 (13)
C4—C5—C7—C81.87 (19)C17—C16—N1—C1364.22 (17)
C6—C5—C7—C8179.45 (16)C6—C1—O2—C230.3 (3)
O1—C7—C8—C1051.1 (2)C2—C1—O2—C23179.79 (16)
C5—C7—C8—C10129.07 (15)C3—C2—O3—C240.0 (2)
O1—C7—C8—C9177.44 (18)C1—C2—O3—C24179.62 (15)
C5—C7—C8—C92.70 (18)O5—C25—C26—O787.0 (3)
C5—C4—C9—C81.50 (19)O4—C25—C26—O778.2 (4)
C3—C4—C9—C8179.80 (16)C261—C25—C26—O7170.1 (6)
C10—C8—C9—C4125.46 (16)O5—C25—C26—O692.7 (4)
C7—C8—C9—C42.48 (18)O4—C25—C26—O6102.2 (3)
C7—C8—C10—C11154.46 (15)C261—C25—C26—O610.3 (4)
C9—C8—C10—C1185.6 (2)O5—C25—C261—O71101.3 (6)
C8—C10—C11—C12176.34 (15)O4—C25—C261—O7159.0 (7)
C8—C10—C11—C1560.7 (2)C26—C25—C261—O71163.7 (9)
C15—C11—C12—C1353.7 (2)O5—C25—C261—O6183.1 (6)
C10—C11—C12—C13179.07 (15)O4—C25—C261—O61116.6 (4)
C11—C12—C13—N156.8 (2)C26—C25—C261—O6111.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.912 (18)1.857 (19)2.7601 (18)170.4 (16)
O6—H6A···O3Wi0.821.782.590 (5)167
O61—H61···O3Wi0.821.842.644 (8)168
O1W—H1W···O50.87 (3)1.94 (3)2.809 (3)178 (3)
O1W—H2W···O2ii0.77 (3)2.30 (3)3.033 (2)158 (3)
O1W—H2W···O3ii0.77 (3)2.40 (3)2.999 (2)136 (3)
O2W—H3W···O40.84 (3)1.93 (3)2.749 (2)163 (3)
O2W—H4W···O1iii0.92 (3)1.95 (3)2.864 (2)168 (3)
O3W—H5W···O1W0.82 (3)1.95 (3)2.770 (3)176 (3)
O3W—H6W···O2Wiv0.90 (3)1.89 (3)2.783 (3)174 (3)
C8—H8···Cg1v0.982.813.657 (2)146
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x+2, y1/2, z+1/2; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H30NO3+·C2HO4·3H2O
Mr523.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)8.5002 (5), 17.6318 (10), 18.2158 (10)
β (°) 97.744 (1)
V3)2705.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.23 × 0.12 × 0.09
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
25718, 4754, 4003
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.122, 1.01
No. of reflections4754
No. of parameters394
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.20

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1990) and Mercury (Macrae et al., 2006), SHELXL97.

Selected geometric parameters (Å, º) top
C1—O21.364 (2)C8—C91.537 (2)
C2—O31.3548 (19)C10—C111.538 (2)
C7—O11.220 (2)C16—C171.500 (2)
C8—C101.519 (2)C16—N11.5047 (19)
O2—C1—C6125.33 (16)C8—C10—C11115.29 (14)
O3—C2—C3124.75 (16)C17—C16—N1113.01 (12)
C10—C8—C9116.24 (15)C13—N1—C16112.72 (12)
C8—C10—C11—C12176.34 (15)C8—C10—C11—C1560.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.912 (18)1.857 (19)2.7601 (18)170.4 (16)
O6—H6A···O3Wi0.821.782.590 (5)167.1
O61—H61···O3Wi0.821.842.644 (8)168.3
O1W—H1W···O50.87 (3)1.94 (3)2.809 (3)178 (3)
O1W—H2W···O2ii0.77 (3)2.30 (3)3.033 (2)158 (3)
O1W—H2W···O3ii0.77 (3)2.40 (3)2.999 (2)136 (3)
O2W—H3W···O40.84 (3)1.93 (3)2.749 (2)163 (3)
O2W—H4W···O1iii0.92 (3)1.95 (3)2.864 (2)168 (3)
O3W—H5W···O1W0.82 (3)1.95 (3)2.770 (3)176 (3)
O3W—H6W···O2Wiv0.90 (3)1.89 (3)2.783 (3)174 (3)
C8—H8···Cg1v0.982.813.657 (2)146
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x+2, y1/2, z+1/2; (v) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds