Download citation
Download citation
link to html
The title compound, C26H22N2O4, crystallizes in an anti-C=O orientation, with the two N-substituted benzene rings in different conformations relative to the naphthalene ring. These conformations allow two strong N—H...O hydrogen bonds and one C—H...π inter­action to generate mol­ecular chains in the cell.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106026928/ga3018sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106026928/ga3018Isup2.hkl
Contains datablock I

CCDC reference: 621288

Comment top

Non-covalent interactions, such as hydrogen bonding, ππ stacking and C—H···π interactions, play a dominant role in supramolecular self-assembly (Casnati et al., 2003; Ghosh & Bharadwaj, 2004; Glidewell et al., 2005; Jennings et al., 2001). Moreover, the conformations of the molecular building blocks have an important influence on the supramolecular structure. In order to further understanding of supramolecular self-assembly through non-covalent interactions, we have designed and synthesized an N-substituted aromatic acylamide, the title compound, (I), a member of the 1,4-naphthalenecarboxamide family. These compounds are used as optical brightening agents (Farbwerke Hoechst, 1965), optical whiteners (Farbwerke Hoechst, 1969), chemotherapeutic agents (Wander, 1965; Cain et al., 1969) and reagents for oligomers and polymers (Masu et al., 2005; Hsiao & Chang, 2004). We report here the structure of (I) (Fig. 1, Table 1).

As in the case of the related compounds N,N'-dimethyl-1,4-naphthalenecarboxamide [Cambridge Structural database (CSD, Version?; Allen 2002) refcode RAPYUC; Lewis et al., 1996], and 8-methoxy-N-phenyl-1-naphthamide and 8-(dimethylamino)-N-phenyl-1-naphthamide (TAWRIT02 and TAWROZ, respectively; O'Leary et al., 2005), the naphthalene ring system of (I), containing two planar benzene rings, C1–C4/C9/C10 and C5–C10, with maximum deviations of 0.031 (2) and -0.007 (3) Å for atoms C4 and C8, respectively, is slightly distorted from planarity, with an interplanar angle of 3.4 (1)°. The corresponding angles for RAPYUC, TAWRIT02 and TAWROZ are 1.72 (7), 4.8 (1) and 4.6 (1)°, respectively. In (I), consistent with intermolecular packing interactions (see below), the substituent groups at atoms C1 and C4 are twisted away from the naphthalene ring system (Table 1). Thus, the planes C12–C17 and C1–C4/C9/C10 form a dihedral angle of 72.5 (1)°, while the planes C20–C25 and C1–C4/C9/C10 are almost parallel, with a dihedral angle of 5.0 (1)°.

The O1/N1/C11/C12 and O3/N2/C19/C20 planes form dihedral angles of 60.4 (1) and 43.8 (1)°, respectively, with the napthalene plane. The other two benzene rings of (I), C12–C17 and C20–C25, are coplanar, with maximum deviations of -0.005 (2) and 0.011 (1) Å for atoms C13 and C21, respectively. These two benzene planes, C12–C17 and C20–C25, have an interplanar angle of 72.0 (1)°, quite different from the crystallographically enforced parallel ring planes (0°) found in the related structures N,N'-diphenylterephthalamide (CSD refcode DPTPAM; Harkema et al., 1979) and 2,4,2',4'-tetranitro-N,N'-diphenylterephthalamide (CSD refcode FENPET; Novozhilova et al., 1986)·The two planes O1/N1/C11/C12 and C12–C17 subtend a dihedral angle of 48.1 (1)°, while the two planes O3/N2/C19/C20 and C20–C25 make a dihedral angle of 42.5 (1)° (Fig. 1). Because of the sp2 hybridization of atoms N1 and N2, partial double-bond character is observed in the identical N1—C11/N2—C19 and N1—C12/N2—C20 linkages [average N—C bond lengths 1.353 (2) and 1.421 (2) Å, respectively].

The observed anti-CO orientation of (I) (Fig. 1) differs from the reported cis-CO orientation in the closest related structure, RAPYUC. The packing structure of (I) involves two strong intermolecular N—H···O hydrogen bonds (Steiner, 2002) (Table 2), which link adjacent molecules into a one-dimensional chain, running parallel to the [001] direction, with a graph-set motif of R22(18) (Bernstein et al., 1995) (Fig. 2). A similar hydrogen-bond network is found in N,N'-dimethyl-1,4'-phenylenediacetamide, N,N'-dimethyl-4,4'-biphenyldicarboxamide, N,N'-dimethyl-4,4'-stilbenedicarboxamide and N,N'-dimethyl-4,4'-diphenylacetylenedicarboxamide (CSD refcodes RAPYIQ, ZUKJUK10, ZUKJOE10 and ZUKKAR10, respectively; Lewis et al., 1996). Within the chain between adjacent molecules, there is also a classical intermolecular C—H···π hydrogen bond (Desiraju & Steiner, 1999) (Fig. 2 and Table 2; Cg2 is the centroid of the C5–C10 ring). There are no significant interactions between adjacent chains.

Experimental top

Naphthalene-1,4-dicarboxylic acid (2 mmol) and an excess of thionyl chloride in dioxane (20 ml) were boiled under reflux for 6 h. The solution was distilled by reduced pressure and a yellow solid was obtained. O-Anisidine (4 mmol) in tetrahydrofuran (20 ml) was added to the yellow solid and boiled under reflux for 1 d. The solution was then cooled to ambient temperature and filtered to remove the tetrahydrofuran. The precipitate was dissolved in dimethylsulfoxide and allowed to stand for one month at ambient temperature, and colourless single crystals of (I) suitable for X-ray diffraction were obtained.

Refinement top

All H atoms were placed in calculated positions and included in the final cycles of refinement using a riding model, with N—H = 0.88 Å and C—H = 0.95 or 0.98 Å, and with Uiso(H) = 1.2Ueq(N,C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of (I), with displacement ellipsoids at drawn the 30% probability level, viewed along the b axis. Dashed lines depict the intermolecular hydrogen bonds (see Table 2; Cg2 is the centroid of the C5–C10 ring). H atoms not involved in hydrogen bonding have been omitted for clarity.
N,N'-Bis(2-methoxyphenyl)naphthalene-1,4-dicarboxamide top
Crystal data top
C26H22N2O4F(000) = 896
Mr = 426.46Dx = 1.352 Mg m3
MonoclinicCcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 9668 reflections
a = 34.7194 (9) Åθ = 3.0–27.5°
b = 6.0462 (1) ŵ = 0.09 mm1
c = 10.0042 (3) ÅT = 153 K
β = 93.975 (1)°Column, colourless
V = 2095.03 (9) Å30.35 × 0.21 × 0.14 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2049 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 26.0°, θmin = 3.4°
ω scansh = 4242
8696 measured reflectionsk = 77
2074 independent reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.5976P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2074 reflectionsΔρmax = 0.27 e Å3
292 parametersΔρmin = 0.21 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0042 (8)
Crystal data top
C26H22N2O4V = 2095.03 (9) Å3
Mr = 426.46Z = 4
MonoclinicCcMo Kα radiation
a = 34.7194 (9) ŵ = 0.09 mm1
b = 6.0462 (1) ÅT = 153 K
c = 10.0042 (3) Å0.35 × 0.21 × 0.14 mm
β = 93.975 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2049 reflections with I > 2σ(I)
8696 measured reflectionsRint = 0.014
2074 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0292 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.06Δρmax = 0.27 e Å3
2074 reflectionsΔρmin = 0.21 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26715 (4)0.5097 (3)0.23758 (13)0.0243 (3)
O20.22530 (4)0.1268 (2)0.57759 (14)0.0255 (3)
O30.44834 (4)0.5514 (3)0.66101 (14)0.0267 (3)
O40.49031 (5)0.1080 (3)0.33995 (15)0.0296 (4)
N10.25272 (5)0.4794 (3)0.45421 (15)0.0177 (3)
H1N0.26150.49420.53840.021*
N20.46429 (5)0.4694 (3)0.45087 (16)0.0182 (3)
H2N0.45600.46920.36580.022*
C10.31914 (5)0.5484 (3)0.40293 (18)0.0167 (4)
C20.34382 (5)0.3959 (3)0.35411 (17)0.0190 (4)
H20.33420.28830.29110.023*
C30.38327 (5)0.3976 (3)0.39666 (17)0.0194 (4)
H30.40000.28910.36360.023*
C40.39798 (5)0.5550 (3)0.48565 (18)0.0166 (4)
C50.38814 (5)0.9061 (3)0.61120 (17)0.0190 (4)
H50.41490.91340.63770.023*
C60.36402 (6)1.0679 (3)0.65184 (18)0.0212 (4)
H60.37411.18520.70690.025*
C70.32411 (6)1.0615 (3)0.61225 (19)0.0213 (4)
H70.30751.17350.64160.026*
C80.30945 (5)0.8947 (3)0.53204 (18)0.0197 (4)
H80.28270.89410.50450.024*
C90.33338 (5)0.7222 (3)0.48894 (17)0.0158 (3)
C100.37386 (5)0.7271 (3)0.53005 (17)0.0164 (4)
C110.27725 (5)0.5161 (3)0.35739 (18)0.0155 (4)
C120.21345 (5)0.4178 (3)0.42651 (18)0.0172 (4)
C130.19931 (5)0.2342 (3)0.49328 (19)0.0199 (4)
C140.16084 (6)0.1713 (4)0.4682 (2)0.0274 (4)
H140.15090.04850.51410.033*
C150.13710 (6)0.2880 (4)0.3764 (2)0.0315 (5)
H150.11100.24380.35920.038*
C160.15099 (6)0.4683 (4)0.3094 (2)0.0312 (5)
H160.13460.54690.24600.037*
C170.18924 (6)0.5337 (4)0.3355 (2)0.0231 (4)
H170.19880.65850.29050.028*
C180.21267 (7)0.0657 (4)0.6459 (2)0.0330 (5)
H18A0.19220.02440.70380.040*
H18B0.23450.12890.70060.040*
H18C0.20270.17530.58010.040*
C190.43904 (6)0.5291 (3)0.54159 (19)0.0174 (4)
C200.50327 (5)0.4069 (3)0.48311 (18)0.0192 (4)
C210.51692 (6)0.2188 (3)0.42038 (19)0.0219 (4)
C220.55549 (6)0.1559 (4)0.4444 (2)0.0305 (5)
H220.56520.03070.40020.037*
C230.57946 (6)0.2768 (4)0.5329 (3)0.0347 (5)
H230.60560.23330.54980.042*
C240.56585 (6)0.4602 (4)0.5971 (2)0.0332 (5)
H240.58260.54130.65830.040*
C250.52750 (6)0.5263 (4)0.5718 (2)0.0251 (4)
H250.51810.65280.61540.030*
C260.50263 (8)0.0825 (4)0.2699 (2)0.0354 (5)
H26A0.52240.03930.20950.042*
H26B0.48050.14730.21770.042*
H26C0.51350.19160.33450.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0210 (7)0.0394 (8)0.0125 (7)0.0031 (6)0.0010 (5)0.0006 (6)
O20.0259 (7)0.0235 (7)0.0275 (7)0.0002 (6)0.0055 (6)0.0094 (6)
O30.0212 (7)0.0430 (8)0.0155 (7)0.0058 (6)0.0010 (5)0.0039 (6)
O40.0320 (8)0.0277 (8)0.0287 (8)0.0052 (6)0.0007 (6)0.0096 (7)
N10.0158 (7)0.0249 (8)0.0122 (7)0.0021 (6)0.0007 (6)0.0015 (6)
N20.0154 (8)0.0261 (8)0.0129 (8)0.0030 (6)0.0003 (6)0.0009 (6)
C10.0173 (10)0.0197 (9)0.0131 (8)0.0012 (7)0.0002 (7)0.0033 (7)
C20.0206 (8)0.0214 (9)0.0151 (8)0.0026 (7)0.0015 (6)0.0027 (7)
C30.0209 (9)0.0214 (9)0.0160 (8)0.0020 (7)0.0035 (7)0.0008 (7)
C40.0147 (9)0.0210 (9)0.0141 (8)0.0005 (7)0.0023 (7)0.0012 (7)
C50.0188 (8)0.0216 (9)0.0167 (9)0.0035 (7)0.0013 (7)0.0010 (7)
C60.0278 (9)0.0178 (8)0.0182 (9)0.0033 (7)0.0024 (7)0.0019 (7)
C70.0255 (9)0.0178 (8)0.0209 (9)0.0045 (7)0.0040 (7)0.0013 (7)
C80.0206 (8)0.0211 (9)0.0175 (8)0.0015 (7)0.0026 (7)0.0033 (7)
C90.0180 (8)0.0174 (8)0.0120 (8)0.0005 (7)0.0018 (6)0.0027 (6)
C100.0179 (8)0.0195 (8)0.0121 (8)0.0000 (7)0.0023 (6)0.0026 (6)
C110.0161 (9)0.0160 (8)0.0142 (9)0.0018 (7)0.0003 (7)0.0002 (6)
C120.0132 (8)0.0220 (9)0.0166 (9)0.0001 (7)0.0028 (7)0.0034 (7)
C130.0185 (9)0.0207 (9)0.0212 (10)0.0013 (7)0.0065 (7)0.0040 (7)
C140.0224 (10)0.0267 (10)0.0342 (11)0.0058 (8)0.0104 (8)0.0055 (9)
C150.0147 (9)0.0388 (13)0.0410 (13)0.0023 (8)0.0017 (8)0.0117 (10)
C160.0203 (11)0.0414 (13)0.0311 (12)0.0070 (9)0.0043 (9)0.0026 (10)
C170.0210 (10)0.0264 (10)0.0216 (10)0.0028 (8)0.0006 (8)0.0004 (8)
C180.0434 (13)0.0205 (10)0.0371 (13)0.0014 (9)0.0169 (11)0.0073 (9)
C190.0181 (9)0.0180 (9)0.0162 (9)0.0002 (7)0.0012 (7)0.0000 (7)
C200.0162 (9)0.0247 (10)0.0170 (9)0.0008 (7)0.0029 (7)0.0036 (8)
C210.0213 (9)0.0253 (10)0.0194 (9)0.0028 (8)0.0036 (7)0.0031 (7)
C220.0246 (11)0.0309 (11)0.0371 (12)0.0090 (9)0.0104 (9)0.0064 (10)
C230.0158 (9)0.0426 (13)0.0456 (14)0.0047 (9)0.0025 (9)0.0110 (11)
C240.0193 (11)0.0396 (13)0.0398 (14)0.0066 (9)0.0054 (9)0.0050 (10)
C250.0215 (10)0.0283 (11)0.0253 (10)0.0007 (8)0.0005 (8)0.0010 (8)
C260.0511 (15)0.0255 (11)0.0303 (12)0.0061 (10)0.0082 (11)0.0057 (9)
Geometric parameters (Å, º) top
O1—C111.226 (2)C8—H80.9500
O2—C131.357 (2)C9—C101.437 (2)
O2—C181.434 (2)C12—C171.386 (3)
O3—C191.223 (2)C12—C131.402 (3)
O4—C211.359 (3)C13—C141.395 (3)
O4—C261.429 (3)C14—C151.384 (3)
N1—C111.352 (3)C14—H140.9500
N1—C121.422 (2)C15—C161.384 (4)
N1—H1N0.8800C15—H150.9500
N2—C191.354 (2)C16—C171.393 (3)
N2—C201.420 (2)C16—H160.9500
N2—H2N0.8800C17—H170.9500
C1—C21.372 (3)C18—H18A0.9800
C1—C91.425 (3)C18—H18B0.9800
C1—C111.506 (2)C18—H18C0.9800
C2—C31.406 (2)C20—C251.383 (3)
C2—H20.9500C20—C211.398 (3)
C3—C41.377 (3)C21—C221.397 (3)
C3—H30.9500C22—C231.381 (4)
C4—C101.426 (3)C22—H220.9500
C4—C191.503 (2)C23—C241.381 (4)
C5—C61.368 (3)C23—H230.9500
C5—C101.421 (3)C24—C251.397 (3)
C5—H50.9500C24—H240.9500
C6—C71.415 (3)C25—H250.9500
C6—H60.9500C26—H26A0.9800
C7—C81.365 (3)C26—H26B0.9800
C7—H70.9500C26—H26C0.9800
C8—C91.419 (3)
C13—O2—C18118.21 (17)C14—C13—C12119.50 (18)
C21—O4—C26118.27 (18)C15—C14—C13120.0 (2)
C11—N1—C12123.14 (15)C15—C14—H14120.0
C11—N1—H1N118.4C13—C14—H14120.0
C12—N1—H1N118.4C14—C15—C16120.77 (19)
C19—N2—C20124.74 (16)C14—C15—H15119.6
C19—N2—H2N117.6C16—C15—H15119.6
C20—N2—H2N117.6C15—C16—C17119.5 (2)
C2—C1—C9120.78 (17)C15—C16—H16120.3
C2—C1—C11114.77 (17)C17—C16—H16120.3
C9—C1—C11124.45 (16)C12—C17—C16120.4 (2)
C1—C2—C3120.44 (17)C12—C17—H17119.8
C1—C2—H2119.8C16—C17—H17119.8
C3—C2—H2119.8O2—C18—H18A109.5
C4—C3—C2120.74 (17)O2—C18—H18B109.5
C4—C3—H3119.6H18A—C18—H18B109.5
C2—C3—H3119.6O2—C18—H18C109.5
C3—C4—C10120.41 (17)H18A—C18—H18C109.5
C3—C4—C19117.95 (16)H18B—C18—H18C109.5
C10—C4—C19121.48 (16)O3—C19—N2123.01 (18)
C6—C5—C10121.21 (16)O3—C19—C4122.11 (17)
C6—C5—H5119.4N2—C19—C4114.82 (16)
C10—C5—H5119.4C25—C20—C21120.19 (18)
C5—C6—C7120.31 (17)C25—C20—N2122.31 (18)
C5—C6—H6119.8C21—C20—N2117.49 (17)
C7—C6—H6119.8O4—C21—C22124.9 (2)
C8—C7—C6120.20 (17)O4—C21—C20115.44 (17)
C8—C7—H7119.9C22—C21—C20119.7 (2)
C6—C7—H7119.9C23—C22—C21119.6 (2)
C7—C8—C9121.28 (17)C23—C22—H22120.2
C7—C8—H8119.4C21—C22—H22120.2
C9—C8—H8119.4C24—C23—C22120.8 (2)
C8—C9—C1122.65 (17)C24—C23—H23119.6
C8—C9—C10118.66 (16)C22—C23—H23119.6
C1—C9—C10118.66 (15)C23—C24—C25119.9 (2)
C5—C10—C4123.00 (16)C23—C24—H24120.1
C5—C10—C9118.33 (15)C25—C24—H24120.1
C4—C10—C9118.66 (15)C20—C25—C24119.8 (2)
O1—C11—N1122.94 (17)C20—C25—H25120.1
O1—C11—C1120.30 (16)C24—C25—H25120.1
N1—C11—C1116.59 (15)O4—C26—H26A109.5
C17—C12—C13119.82 (18)O4—C26—H26B109.5
C17—C12—N1121.70 (18)H26A—C26—H26B109.5
C13—C12—N1118.48 (17)O4—C26—H26C109.5
O2—C13—C14124.66 (19)H26A—C26—H26C109.5
O2—C13—C12115.83 (17)H26B—C26—H26C109.5
C9—C1—C2—C35.1 (3)C18—O2—C13—C12178.43 (18)
C11—C1—C2—C3175.33 (16)C17—C12—C13—O2178.11 (17)
C1—C2—C3—C41.4 (3)N1—C12—C13—O21.6 (3)
C2—C3—C4—C103.8 (3)C17—C12—C13—C140.6 (3)
C2—C3—C4—C19171.71 (16)N1—C12—C13—C14179.71 (17)
C10—C5—C6—C70.7 (3)O2—C13—C14—C15177.62 (19)
C5—C6—C7—C80.7 (3)C12—C13—C14—C151.0 (3)
C6—C7—C8—C91.4 (3)C13—C14—C15—C160.5 (3)
C7—C8—C9—C1178.62 (17)C14—C15—C16—C170.4 (3)
C7—C8—C9—C100.8 (2)C13—C12—C17—C160.3 (3)
C2—C1—C9—C8174.22 (17)N1—C12—C17—C16179.37 (19)
C11—C1—C9—C85.3 (3)C15—C16—C17—C120.8 (3)
C2—C1—C9—C103.6 (3)C20—N2—C19—O35.8 (3)
C11—C1—C9—C10176.88 (15)C20—N2—C19—C4171.22 (17)
C6—C5—C10—C4179.93 (17)C3—C4—C19—O3134.0 (2)
C6—C5—C10—C91.3 (2)C10—C4—C19—O341.5 (3)
C3—C4—C10—C5173.65 (17)C3—C4—C19—N243.0 (2)
C19—C4—C10—C511.0 (3)C10—C4—C19—N2141.52 (17)
C3—C4—C10—C95.1 (2)C19—N2—C20—C2546.2 (3)
C19—C4—C10—C9170.22 (15)C19—N2—C20—C21134.5 (2)
C8—C9—C10—C50.6 (2)C26—O4—C21—C222.6 (3)
C1—C9—C10—C5177.37 (16)C26—O4—C21—C20178.31 (19)
C8—C9—C10—C4179.39 (17)C25—C20—C21—O4177.09 (18)
C1—C9—C10—C41.4 (2)N2—C20—C21—O43.6 (3)
C12—N1—C11—O13.6 (3)C25—C20—C21—C222.0 (3)
C12—N1—C11—C1171.64 (16)N2—C20—C21—C22177.32 (18)
C2—C1—C11—O156.1 (2)O4—C21—C22—C23177.2 (2)
C9—C1—C11—O1123.4 (2)C20—C21—C22—C231.8 (3)
C2—C1—C11—N1119.28 (18)C21—C22—C23—C240.5 (4)
C9—C1—C11—N161.2 (2)C22—C23—C24—C250.6 (4)
C11—N1—C12—C1750.0 (3)C21—C20—C25—C241.0 (3)
C11—N1—C12—C13129.65 (19)N2—C20—C25—C24178.37 (19)
C18—O2—C13—C140.2 (3)C23—C24—C25—C200.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.881.992.845 (2)164
N2—H2N···O3ii0.882.052.917 (2)168
C2—H2···Cg2ii0.952.553.353 (2)142
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC26H22N2O4
Mr426.46
Crystal system, space groupMonoclinicCc
Temperature (K)153
a, b, c (Å)34.7194 (9), 6.0462 (1), 10.0042 (3)
β (°) 93.975 (1)
V3)2095.03 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.21 × 0.14
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8696, 2074, 2049
Rint0.014
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.080, 1.06
No. of reflections2074
No. of parameters292
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.21

Computer programs: RAPID-AUTO (Rigaku, 2004), RAPID-AUTO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP in SHELXTL (Bruker, 1997), SHELXTL97.

Selected geometric parameters (Å, º) top
N1—C111.352 (3)N2—C201.420 (2)
N1—C121.422 (2)C1—C111.506 (2)
N2—C191.354 (2)C4—C191.503 (2)
C11—N1—C12123.14 (15)C19—N2—C20124.74 (16)
C12—N1—C11—C1171.64 (16)C20—N2—C19—C4171.22 (17)
C2—C1—C11—N1119.28 (18)C3—C4—C19—N243.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.881.992.845 (2)164.0
N2—H2N···O3ii0.882.052.917 (2)168.0
C2—H2···Cg2ii0.952.553.353 (2)142.0
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+1, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds