Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [NiCl(C12H32N6)(H2O)]Cl3·3H2O, has the bis­(diamine)-substituted cyclic tetra­amine in a planar coordination to triplet ground-state NiII [average Ni—N = 2.068 (3) Å], with a chloride ion [Ni—Cl = 2.4520 (5) Å] and a water mol­ecule [Ni—O = 2.177 (2) Å] coordinated in the axial sites. The amine substituents are protonated and equatorially oriented. The amine groups, ammonium groups, water molecules and chloride ions are linked by an extensive hydrogen-bonding network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106010407/ga3002sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106010407/ga3002Isup2.hkl
Contains datablock I

CCDC reference: 618605

Comment top

The structures of a variety of compounds of trans-6,13-diamine-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane, diam (Comba et al., 1986), with NiII have been described. Structures have been reported by Curtis et al. (1993) for octahedral, triplet ground state NiII compounds with six-coordinate diam (diam-N6) in the 1RS,4RS,8SR,11SR configuration (labelled as β) for β-[Ni(diam-N6)](ClO4)2·H2O, β-[Ni(diam-N6)]Cl2 and β-[Ni(diam-N6)][ZnCl4]·1.5H2O, and with four-coordinate diam (diam-N4) for trans-β-[Ni(diam-N4)(NCS)2]. The compound α-[Ni(diamH-N5)Cl]ClO4)2·H2O has mono-protonated pentadentate diam in the 1RS,4SR,8RS,11SR (α) configuration, with one coordinated chloride ion, while the compound β-[Ni(diamH2-N4)](ClO4)2, with both amine substituents protonated, has square-planar singlet ground state NiII (Curtis et al., 1993). The structure of the title compound, trans-β-[Ni(diamH2-N4)Cl(H2O)]Cl3·3H2O, (I), formal composition Ni2+.(diam)·2H+·4Cl·4H2O, which crystallizes from solutions of [Ni(diam)]2+ in HCl, is now reported. It was uncertain if this triplet ground state NiII compound had water or chloride ions completing the octahedral coordination.

The structural study shows triplet ground state NiII in planar coordination by the four intracyclic secondary amine N atoms of the di-protonated diam ligand, with one chloride ion and one water molecule trans-axially coordinated (Fig. 1 and Table 1). The diam ligand is achiral, but the four secondary amine groups become chiral centres when coordinated. The β-[Ni(diam-N4)]2+ cation is generally found to crystallize racemically, e.g. for trans-β-[Ni(diam-N4)(NCS)2], with centrosymmetrically related molecules (Curtis et al., 1993). However the asymmetric coordination environment introduced by the dissimilar additional ligands for the cation of (I) leads to chirality of the cation, and thence to the chiral space group P21 for the crystal. We believe an arbitrary choice was made from a crystal batch containing 50% of each enantiomeric crystal form. The related compounds trans-α-[Ni(diamH-N5)Cl](ClO4)2·H2O and trans-α-[Cu(diam-N5)(OClO3)]ClO4 (Bernhardt et al., 1997) crystallize in centrosymmetric space groups P21/n and P1, respectively, so this condition does not arise.

The four N atoms are coplanar [the {maximum or r.m.s.?} displacements from the N4 plane are ±0.002 (1) Å], with the Ni atom displaced from this plane by 0.035 (1) Å towards the coordinated chloride ion. The cation has the 1R,4R,8S,11S (β) configuration usual for cyclic tetraamines in planar four-coordination, with gauche-conformation five-membered and chair-conformation six-membered chelate rings. The displacements of atoms from the N4 plane (in Å, with an s.u. of 0.002 Å unless specified) are −0.383 for atom C2, 0.356 for C3, 0.840 for C5, 0.450 for C6, 0.827 for C7, 0.405 for C9, −0.336 for C10, −0.865 for C12, −0.487 for C13, −0.828 for C14, −1.004 for C61, 1.279 (1) for N6, 0.957 for C131 and −1.353 (1) for N13.

The 6,13-diazonium substituents are equatorially oriented, as also reported for the amino/azonium substituents of trans-β-[Ni(diam-N4)(NCS)2], trans-β-[Cu(diamH2-N4)(OClO3)2](ClO4)2·6H2O (Comba et al., 1986), trans-β-[Cu(diamH2-N4)(OClO3)2](ClO4)2·2H2O (Bernhardt et al., 1997), trans-β-[Co(diamH2-N4)Cl2][ZnCl4]·0.5H2O·0.5EtOH (Curtis et al., 1992) and trans-β-[Pt(diamH2-N4)Cl2]Cl2(ClO4)2·4H2O (Bernhardt et al., 1991 or 1992?). The amino/azonium substituents are axially oriented for trans-β-[Cu(diam-N4)(OClO3)2] (Lawrance et al., 1986), trans-β-[Cu(diam-N4)(OH2)2](ClO4)2 (Bernhardt et al., 1997) and trans-β-[Pd(diamH2-N4)](ClO4)4 (Bernhardt et al., 1990), as well as for β-diam-N4 compounds of NiII and CuII with amido-substituted (Curtis & Puschmann, 2005; Curtis & Robinson, 2005) and anthracenylmethylamino-substituted diam (Bernhardt et al., 1999, 2002). Disorder precluded making an unambiguous assignment of orientation of the substituents for β-[Ni(diamH2-N4)](ClO4)2 (Gainsford & Rae, 1993).

The mean Ni—N distance of 2.068 (3) Å (Table 1) is comparable to values (Å) reported for other triplet ground state NiII compounds of diam, viz. 2.071 (6) for β-[Ni(diam-N6)](ClO4)2·H2O, 2.07 (1) for β-[Ni(diam-N6)]Cl2, 2.06 (1) for β-[Ni(diam-N6)][ZnCl4]·1.5H2O, 2.058 (6) for trans-β-[Ni(diam-N4)(NCS)2] and 2.058 (8) for trans-α-(diamH-N5)Cl]ClO4)2·H2O (Curtis et al., 1993). This distance is clearly little affected by whether the substituent amine groups are coordinated, free or protonated. The Ni—Cl distance here is somewhat shorter than the 2.553 (1) Å observed for trans-α-(diamH-N5)Cl]ClO4)2·H2O (Curtis et al., 1993) but similar to the 2.442 (2) Å found in a related dinickel(II) complex with perchlorate bound trans to the chloride (Szacilowski et al., 2005).

The secondary amine groups, water molecules, azonium and chloride ions are linked into an extensive network by hydrogen bonding involving all the water and nitrogen-bound H atoms (Table 2).

Experimental top

The compound was prepared as reported by Curtis et al. (1993) (see scheme), and a crystal was grown by evaporation of an aqueous solution.

Refinement top

Water H atoms were located in difference syntheses and their positions were refined with restrained O—H distances [O—H = 0.82 (s.u.?) Å] and H—O—H angles [H···H = 1.3 (s.u.) Å???]. The H atoms were placed in calculated positions (C—H = 0.96 and 0.97 Å; N—H = 0.89 and 0.91 Å) and treated as riding on their parent atoms with Uiso(H) values of 1.2Ueq(C,N) for CH2 and NH groups, and 1.5Ueq(C) for CH3 groups. Interchange of the substituent methyl and azonium sites caused an increase of R1 from 0.0164 to 0.0286.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3.2 (Farrugia, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with displacement ellipsoids drawn at 50% confidence levels and with H atoms shown as circles of arbitrary radii.
trans-[Aqua-chloro-(1R,4R,8S,11S-trans-6,13-diazonium-6,13-dimethyl- 1,4,8,11-tetraazacyclortetradecane-κ4 N1,4,8,11)nickel(II)] trichloride trihydrate top
Crystal data top
[NiCl(C12H32N6)(H2O)]Cl3·3H2OF(000) = 564
Mr = 533.01Dx = 1.530 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3552 reflections
a = 10.375 (1) Åθ = 3.1–28.2°
b = 10.532 (1) ŵ = 1.33 mm1
c = 10.893 (1) ÅT = 273 K
β = 103.610 (1)°Block, blue–violet
V = 1156.9 (2) Å30.40 × 0.40 × 0.32 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
3315 independent reflections
Radiation source: fine-focus sealed tube3243 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
ϕ and ω scansθmax = 28.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1012
Tmin = 0.535, Tmax = 0.653k = 1311
3617 measured reflectionsl = 914
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.040 w = 1/[σ2(Fo2)]
S = 0.97(Δ/σ)max = 0.001
4243 reflectionsΔρmax = 0.24 e Å3
280 parametersΔρmin = 0.31 e Å3
13 restraintsAbsolute structure: Flack (1983), 313 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.012 (7)
Crystal data top
[NiCl(C12H32N6)(H2O)]Cl3·3H2OV = 1156.9 (2) Å3
Mr = 533.01Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.375 (1) ŵ = 1.33 mm1
b = 10.532 (1) ÅT = 273 K
c = 10.893 (1) Å0.40 × 0.40 × 0.32 mm
β = 103.610 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3315 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
3243 reflections with I > 2σ(I)
Tmin = 0.535, Tmax = 0.653Rint = 0.010
3617 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.016H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.040Δρmax = 0.24 e Å3
S = 0.97Δρmin = 0.31 e Å3
4243 reflectionsAbsolute structure: Flack (1983), 313 Friedel pairs
280 parametersAbsolute structure parameter: 0.012 (7)
13 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.74036 (2)0.58166 (2)0.75384 (2)0.00804 (5)
N10.79466 (13)0.49497 (14)0.92890 (13)0.0093 (3)
H10.76950.54770.98520.011*
C20.94252 (16)0.49239 (18)0.96154 (17)0.0117 (4)
H2A0.97400.42410.91650.014*
H2B0.97550.47821.05140.014*
C30.99178 (17)0.61824 (17)0.92480 (16)0.0114 (4)
H3A0.96350.68630.97250.014*
H3B1.08790.61830.94300.014*
N40.93598 (14)0.63775 (14)0.78690 (13)0.0096 (3)
H40.97820.58300.74490.012*
C50.95801 (17)0.76731 (17)0.74468 (16)0.0103 (4)
H5A1.05250.78460.76400.012*
H5B0.91710.82790.79080.012*
C60.90051 (17)0.78506 (17)0.60257 (17)0.0094 (4)
C610.95810 (17)0.69146 (17)0.52381 (17)0.0112 (4)
H61A0.92570.71090.43580.017*
H61B0.93190.60680.53990.017*
H61C1.05310.69740.54590.017*
N60.94441 (14)0.91506 (14)0.57217 (14)0.0110 (3)
H6D0.91220.93140.49050.016*
H6E1.03260.91800.58970.016*
H6F0.91440.97280.61830.016*
C70.74726 (17)0.78866 (17)0.56313 (17)0.0098 (4)
H7A0.71490.84970.61550.012*
H7B0.71950.81680.47610.012*
N80.68776 (13)0.66347 (14)0.57552 (13)0.0091 (3)
H80.71300.60950.52030.011*
C90.54003 (17)0.66760 (19)0.54396 (18)0.0125 (4)
H9A0.50640.68200.45420.015*
H9B0.50970.73620.58950.015*
C100.48999 (17)0.54071 (17)0.58160 (16)0.0113 (4)
H10A0.39390.54140.56440.014*
H10B0.51680.47270.53290.014*
N110.54663 (14)0.51951 (14)0.71836 (13)0.0091 (3)
H110.50280.57210.76100.011*
C120.52747 (18)0.38941 (17)0.75920 (16)0.0103 (4)
H12A0.57040.33060.71290.012*
H12B0.43340.37010.73870.012*
C130.58373 (17)0.36976 (17)0.90160 (17)0.0096 (4)
C1310.52423 (17)0.46122 (17)0.98070 (17)0.0122 (4)
H13A0.42930.45450.95750.018*
H13B0.55000.54640.96610.018*
H13C0.55580.44061.06850.018*
N130.54265 (14)0.23808 (14)0.92972 (14)0.0106 (3)
H13D0.57550.22061.01100.016*
H13E0.57360.18230.88240.016*
H13F0.45460.23350.91240.016*
C140.73671 (17)0.36936 (17)0.94227 (18)0.0106 (4)
H14A0.76410.34251.02970.013*
H14B0.77090.30820.89130.013*
Cl10.67601 (4)0.77095 (4)0.85613 (4)0.01244 (9)
Cl20.83430 (4)0.94679 (4)0.27890 (4)0.01455 (10)
Cl30.89871 (5)0.14288 (5)0.74143 (4)0.01861 (11)
Cl40.73747 (4)0.43082 (4)0.36420 (4)0.01473 (10)
O10.79164 (13)0.41296 (13)0.66016 (14)0.0144 (3)
H1E0.777 (2)0.410 (2)0.5839 (15)0.038 (8)*
H1F0.8293 (19)0.3497 (17)0.6855 (19)0.025 (7)*
O20.62333 (16)0.06241 (15)0.77669 (14)0.0236 (3)
H2E0.6963 (17)0.082 (3)0.770 (2)0.046 (8)*
H2F0.630 (2)0.0161 (16)0.794 (2)0.044 (8)*
O30.72995 (14)0.66095 (15)0.16085 (13)0.0191 (3)
H3E0.740 (2)0.611 (2)0.219 (2)0.042 (8)*
H3F0.790 (2)0.711 (2)0.192 (3)0.060 (10)*
O40.33849 (14)0.68592 (14)0.81124 (14)0.0171 (3)
H4E0.319 (3)0.746 (2)0.759 (2)0.075 (11)*
H4F0.284 (2)0.628 (2)0.781 (2)0.043 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00835 (10)0.00711 (10)0.00841 (11)0.00007 (9)0.00143 (8)0.00055 (8)
N10.0091 (7)0.0092 (8)0.0097 (8)0.0012 (6)0.0022 (6)0.0003 (6)
C20.0101 (9)0.0115 (9)0.0120 (10)0.0004 (8)0.0004 (7)0.0032 (7)
C30.0105 (8)0.0129 (10)0.0095 (9)0.0021 (7)0.0002 (7)0.0019 (7)
N40.0124 (7)0.0075 (7)0.0090 (8)0.0006 (6)0.0027 (6)0.0011 (6)
C50.0109 (8)0.0094 (9)0.0105 (9)0.0025 (8)0.0022 (7)0.0002 (7)
C60.0107 (8)0.0065 (9)0.0115 (9)0.0019 (7)0.0035 (7)0.0020 (7)
C610.0128 (9)0.0100 (9)0.0117 (10)0.0001 (7)0.0044 (7)0.0002 (7)
N60.0110 (7)0.0098 (8)0.0123 (8)0.0005 (7)0.0030 (6)0.0011 (6)
C70.0098 (8)0.0083 (9)0.0105 (9)0.0002 (7)0.0009 (7)0.0009 (7)
N80.0083 (7)0.0073 (8)0.0117 (8)0.0001 (6)0.0025 (6)0.0001 (6)
C90.0096 (9)0.0141 (10)0.0126 (10)0.0005 (8)0.0002 (7)0.0037 (7)
C100.0105 (8)0.0125 (10)0.0098 (9)0.0026 (7)0.0001 (7)0.0020 (7)
N110.0106 (7)0.0074 (7)0.0092 (8)0.0001 (6)0.0021 (6)0.0002 (6)
C120.0107 (8)0.0089 (9)0.0109 (10)0.0019 (7)0.0016 (7)0.0003 (7)
C130.0105 (9)0.0073 (9)0.0112 (9)0.0009 (7)0.0030 (7)0.0013 (7)
C1310.0118 (9)0.0109 (10)0.0145 (10)0.0001 (8)0.0044 (7)0.0004 (7)
N130.0117 (8)0.0083 (8)0.0118 (8)0.0014 (6)0.0024 (6)0.0011 (6)
C140.0113 (9)0.0091 (9)0.0112 (9)0.0004 (7)0.0024 (7)0.0013 (7)
Cl10.0154 (2)0.0090 (2)0.0140 (2)0.00063 (18)0.00578 (17)0.00082 (16)
Cl20.0136 (2)0.0150 (2)0.0142 (2)0.00205 (19)0.00154 (16)0.00211 (18)
Cl30.0281 (3)0.0126 (2)0.0176 (2)0.0044 (2)0.0104 (2)0.00145 (19)
Cl40.0147 (2)0.0153 (2)0.0135 (2)0.00040 (19)0.00195 (16)0.00169 (18)
O10.0200 (7)0.0106 (7)0.0124 (8)0.0042 (6)0.0035 (6)0.0017 (5)
O20.0304 (8)0.0126 (8)0.0319 (9)0.0011 (8)0.0154 (7)0.0002 (7)
O30.0174 (7)0.0196 (8)0.0177 (8)0.0039 (7)0.0010 (6)0.0025 (6)
O40.0185 (7)0.0140 (7)0.0167 (8)0.0009 (6)0.0000 (6)0.0014 (6)
Geometric parameters (Å, º) top
Ni1—N12.069 (2)N8—C91.490 (2)
Ni1—N42.063 (2)N8—H80.9100
Ni1—N82.077 (2)C9—C101.524 (2)
Ni1—N112.062 (2)C9—H9A0.9700
Ni1—O12.177 (2)C9—H9B0.9700
Ni1—Cl12.4520 (5)C10—N111.484 (2)
N1—C141.475 (2)C10—H10A0.9700
N1—C21.491 (2)C10—H10B0.9700
N1—H10.9100N11—C121.469 (2)
C2—C31.508 (2)N11—H110.9100
C2—H2A0.9700C12—C131.537 (2)
C2—H2B0.9700C12—H12A0.9700
C3—N41.491 (2)C12—H12B0.9700
C3—H3A0.9700C13—N131.503 (2)
C3—H3B0.9700C13—C1311.517 (2)
N4—C51.475 (2)C13—C141.544 (2)
N4—H40.9100C131—H13A0.9600
C5—C61.534 (2)C131—H13B0.9600
C5—H5A0.9700C131—H13C0.9600
C5—H5B0.9700N13—H13D0.8900
C6—N61.504 (2)N13—H13E0.8900
C6—C611.519 (2)N13—H13F0.8900
C6—C71.547 (2)C14—H14A0.9700
C61—H61A0.9600C14—H14B0.9700
C61—H61B0.9600O1—H1E0.809 (15)
C61—H61C0.9600O1—H1F0.789 (15)
N6—H6D0.8900O2—H2E0.804 (15)
N6—H6E0.8900O2—H2F0.849 (16)
N6—H6F0.8900O3—H3E0.811 (16)
C7—N81.475 (2)O3—H3F0.824 (16)
C7—H7A0.9700O4—H4E0.840 (17)
C7—H7B0.9700O4—H4F0.843 (16)
N1—Ni1—N485.53 (6)C6—C7—H7A109.2
N1—Ni1—N8178.16 (7)N8—C7—H7B109.2
N1—Ni1—N1194.28 (6)C6—C7—H7B109.2
N4—Ni1—N894.34 (6)H7A—C7—H7B107.9
N4—Ni1—N11177.96 (7)C7—N8—C9112.49 (14)
N8—Ni1—N1185.78 (5)C7—N8—Ni1115.64 (11)
N1—Ni1—O191.62 (6)C9—N8—Ni1104.91 (10)
N4—Ni1—O188.66 (6)C7—N8—H8107.8
N8—Ni1—O186.54 (6)C9—N8—H8107.8
N11—Ni1—O189.31 (6)Ni1—N8—H8107.8
N1—Ni1—Cl189.10 (4)N8—C9—C10108.01 (15)
N4—Ni1—Cl192.85 (4)N8—C9—H9A110.1
N8—Ni1—Cl192.75 (4)C10—C9—H9A110.1
N11—Ni1—Cl189.18 (4)N8—C9—H9B110.1
O1—Ni1—Cl1178.37 (4)C10—C9—H9B110.1
C14—N1—C2112.37 (14)H9A—C9—H9B108.4
C14—N1—Ni1117.26 (11)N11—C10—C9108.81 (14)
C2—N1—Ni1105.63 (10)N11—C10—H10A109.9
C14—N1—H1107.0C9—C10—H10A109.9
C2—N1—H1107.0N11—C10—H10B109.9
Ni1—N1—H1107.0C9—C10—H10B109.9
N1—C2—C3108.33 (15)H10A—C10—H10B108.3
N1—C2—H2A110.0C12—N11—C10113.24 (14)
C3—C2—H2A110.0C12—N11—Ni1115.78 (12)
N1—C2—H2B110.0C10—N11—Ni1106.18 (10)
C3—C2—H2B110.0C12—N11—H11107.1
H2A—C2—H2B108.4C10—N11—H11107.1
N4—C3—C2108.23 (14)Ni1—N11—H11107.1
N4—C3—H3A110.1N11—C12—C13112.64 (14)
C2—C3—H3A110.1N11—C12—H12A109.1
N4—C3—H3B110.1C13—C12—H12A109.1
C2—C3—H3B110.1N11—C12—H12B109.1
H3A—C3—H3B108.4C13—C12—H12B109.1
C5—N4—C3112.93 (14)H12A—C12—H12B107.8
C5—N4—Ni1115.39 (11)N13—C13—C131107.29 (13)
C3—N4—Ni1105.62 (10)N13—C13—C12105.74 (14)
C5—N4—H4107.5C131—C13—C12112.27 (15)
C3—N4—H4107.5N13—C13—C14105.10 (14)
Ni1—N4—H4107.5C131—C13—C14111.52 (15)
N4—C5—C6112.05 (14)C12—C13—C14114.24 (13)
N4—C5—H5A109.2C13—C131—H13A109.5
C6—C5—H5A109.2C13—C131—H13B109.5
N4—C5—H5B109.2H13A—C131—H13B109.5
C6—C5—H5B109.2C13—C131—H13C109.5
H5A—C5—H5B107.9H13A—C131—H13C109.5
N6—C6—C61106.67 (13)H13B—C131—H13C109.5
N6—C6—C5105.49 (14)C13—N13—H13D109.5
C61—C6—C5112.32 (15)C13—N13—H13E109.5
N6—C6—C7105.14 (14)H13D—N13—H13E109.5
C61—C6—C7111.99 (15)C13—N13—H13F109.5
C5—C6—C7114.42 (14)H13D—N13—H13F109.5
C6—C61—H61A109.5H13E—N13—H13F109.5
C6—C61—H61B109.5N1—C14—C13112.62 (15)
H61A—C61—H61B109.5N1—C14—H14A109.1
C6—C61—H61C109.5C13—C14—H14A109.1
H61A—C61—H61C109.5N1—C14—H14B109.1
H61B—C61—H61C109.5C13—C14—H14B109.1
C6—N6—H6D109.5H14A—C14—H14B107.8
C6—N6—H6E109.5Ni1—O1—H1E120.3 (17)
H6D—N6—H6E109.5Ni1—O1—H1F132.9 (16)
C6—N6—H6F109.5H1E—O1—H1F107 (2)
H6D—N6—H6F109.5H2E—O2—H2F104 (2)
H6E—N6—H6F109.5H3E—O3—H3F99 (2)
N8—C7—C6112.18 (14)H4E—O4—H4F104 (2)
N8—C7—H7A109.2
N11—Ni1—N1—C1437.57 (12)N11—Ni1—N8—C7142.02 (12)
N4—Ni1—N1—C14140.39 (12)N4—Ni1—N8—C740.02 (12)
N8—Ni1—N1—C1454.3 (19)N1—Ni1—N8—C7126.0 (18)
O1—Ni1—N1—C1451.86 (12)O1—Ni1—N8—C7128.41 (11)
Cl1—Ni1—N1—C14126.68 (11)Cl1—Ni1—N8—C753.05 (11)
N11—Ni1—N1—C2163.64 (11)N11—Ni1—N8—C917.48 (11)
N4—Ni1—N1—C214.32 (11)N4—Ni1—N8—C9164.56 (12)
N8—Ni1—N1—C271.8 (19)N1—Ni1—N8—C9109.5 (18)
O1—Ni1—N1—C274.21 (11)O1—Ni1—N8—C9107.05 (11)
Cl1—Ni1—N1—C2107.25 (11)Cl1—Ni1—N8—C971.49 (11)
C14—N1—C2—C3170.83 (14)C7—N8—C9—C10170.28 (14)
Ni1—N1—C2—C341.81 (16)Ni1—N8—C9—C1043.77 (16)
N1—C2—C3—N458.22 (17)N8—C9—C10—N1157.90 (17)
C2—C3—N4—C5169.84 (14)C9—C10—N11—C12168.14 (14)
C2—C3—N4—Ni142.85 (15)C9—C10—N11—Ni140.01 (15)
N11—Ni1—N4—C5134.1 (17)N4—Ni1—N11—C1245.5 (18)
N1—Ni1—N4—C5141.05 (12)N1—Ni1—N11—C1239.14 (12)
N8—Ni1—N4—C540.79 (12)N8—Ni1—N11—C12139.01 (12)
O1—Ni1—N4—C5127.22 (12)O1—Ni1—N11—C1252.43 (12)
Cl1—Ni1—N4—C552.18 (11)Cl1—Ni1—N11—C12128.17 (11)
N11—Ni1—N4—C3100.4 (18)N4—Ni1—N11—C1081.1 (18)
N1—Ni1—N4—C315.57 (11)N1—Ni1—N11—C10165.75 (11)
N8—Ni1—N4—C3166.28 (11)N8—Ni1—N11—C1012.40 (11)
O1—Ni1—N4—C3107.30 (11)O1—Ni1—N11—C1074.18 (11)
Cl1—Ni1—N4—C373.30 (10)Cl1—Ni1—N11—C10105.21 (10)
C3—N4—C5—C6179.70 (13)C10—N11—C12—C13178.65 (13)
Ni1—N4—C5—C658.67 (16)Ni1—N11—C12—C1358.38 (16)
N4—C5—C6—N6173.64 (13)N11—C12—C13—N13173.77 (14)
N4—C5—C6—C6157.82 (18)N11—C12—C13—C13157.09 (19)
N4—C5—C6—C771.31 (19)N11—C12—C13—C1471.16 (19)
N6—C6—C7—N8174.54 (13)C2—N1—C14—C13176.84 (13)
C61—C6—C7—N859.09 (19)Ni1—N1—C14—C1354.16 (17)
C5—C6—C7—N870.20 (19)N13—C13—C14—N1176.28 (14)
C6—C7—N8—C9177.08 (14)C131—C13—C14—N160.35 (18)
C6—C7—N8—Ni156.57 (16)C12—C13—C14—N168.28 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.912.373.270 (2)169
N4—H4···Cl2ii0.912.483.323 (2)154
N6—H6D···Cl20.892.263.147 (2)173
N6—H6E···Cl4iii0.892.323.213 (2)179
N6—H6F···Cl3iv0.892.273.129 (2)163
N8—H8···Cl40.912.593.482 (2)168
N11—H11···O40.912.253.128 (2)161
N13—H13D···O4v0.891.972.854 (2)176
N13—H13E···O20.891.862.750 (2)175
N13—H13F···O3vi0.892.042.884 (2)158
O1—H1E···Cl40.81 (2)2.34 (2)3.145 (2)172 (2)
O1—H1F···Cl30.79 (2)2.33 (2)3.106 (2)168 (2)
O2—H2E···Cl30.80 (2)2.29 (2)3.090 (2)177 (2)
O2—H2F···Cl1vii0.85 (2)2.36 (2)3.201 (2)173 (2)
O3—H3E···Cl40.81 (2)2.47 (2)3.272 (2)169 (2)
O3—H3F···Cl20.82 (2)2.66 (2)3.352 (2)142 (2)
O4—H4E···Cl4viii0.84 (2)2.36 (2)3.197 (2)172 (3)
O4—H4F···Cl2vi0.84 (2)2.28 (2)3.113 (2)169 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+2, y1/2, z+1; (iii) x+2, y+1/2, z+1; (iv) x, y+1, z; (v) x+1, y1/2, z+2; (vi) x+1, y1/2, z+1; (vii) x, y1, z; (viii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[NiCl(C12H32N6)(H2O)]Cl3·3H2O
Mr533.01
Crystal system, space groupMonoclinic, P21
Temperature (K)273
a, b, c (Å)10.375 (1), 10.532 (1), 10.893 (1)
β (°) 103.610 (1)
V3)1156.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.33
Crystal size (mm)0.40 × 0.40 × 0.32
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.535, 0.653
No. of measured, independent and
observed [I > 2σ(I)] reflections
3617, 3315, 3243
Rint0.010
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.040, 0.97
No. of reflections4243
No. of parameters280
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.31
Absolute structureFlack (1983), 313 Friedel pairs
Absolute structure parameter0.012 (7)

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1997), SHELXTL (Sheldrick, 1997), SHELXTL, ORTEP-3.2 (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Ni1—N12.069 (2)Ni1—N112.062 (2)
Ni1—N42.063 (2)Ni1—O12.177 (2)
Ni1—N82.077 (2)Ni1—Cl12.4520 (5)
N1—Ni1—N485.53 (6)N1—Ni1—O191.62 (6)
N1—Ni1—N8178.16 (7)N4—Ni1—O188.66 (6)
N1—Ni1—N1194.28 (6)N1—Ni1—Cl189.10 (4)
N4—Ni1—N894.34 (6)N4—Ni1—Cl192.85 (4)
N4—Ni1—N11177.96 (7)O1—Ni1—Cl1178.37 (4)
N8—Ni1—N1185.78 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.912.373.270 (2)169.3
N4—H4···Cl2ii0.912.483.323 (2)154.3
N6—H6D···Cl20.892.263.147 (2)172.8
N6—H6E···Cl4iii0.892.323.213 (2)178.6
N6—H6F···Cl3iv0.892.273.129 (2)163.2
N8—H8···Cl40.912.593.482 (2)167.6
N11—H11···O40.912.253.128 (2)160.8
N13—H13D···O4v0.891.972.854 (2)175.6
N13—H13E···O20.891.862.750 (2)175.1
N13—H13F···O3vi0.892.042.884 (2)157.7
O1—H1E···Cl40.81 (2)2.34 (2)3.145 (2)172 (2)
O1—H1F···Cl30.79 (2)2.33 (2)3.106 (2)168 (2)
O2—H2E···Cl30.80 (2)2.29 (2)3.090 (2)177 (2)
O2—H2F···Cl1vii0.85 (2)2.36 (2)3.201 (2)173 (2)
O3—H3E···Cl40.81 (2)2.47 (2)3.272 (2)169 (2)
O3—H3F···Cl20.82 (2)2.66 (2)3.352 (2)142 (2)
O4—H4E···Cl4viii0.84 (2)2.36 (2)3.197 (2)172 (3)
O4—H4F···Cl2vi0.84 (2)2.28 (2)3.113 (2)169 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+2, y1/2, z+1; (iii) x+2, y+1/2, z+1; (iv) x, y+1, z; (v) x+1, y1/2, z+2; (vi) x+1, y1/2, z+1; (vii) x, y1, z; (viii) x+1, y+1/2, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds