organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Urea–N,N-di­methyl­acetamide (1/1)

aSolid-State Research Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and bISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, England
*Correspondence e-mail: alastair.florence@strath.ac.uk

(Received 16 November 2007; accepted 16 December 2007; online 4 January 2008)

Urea forms a 1:1 solvate with N,N-dimethyl­acetamide (DMA) [systematic name: diamino­methanal–N,N-dimethyl­acetamide (1/1), C4H9NO·CH4N2O] with both mol­ecules positioned on a twofold axis, giving rise to rotational disorder of the DMA mol­ecule. The mol­ecules display a layered structure in which urea mol­ecules form hydrogen-bonded ribbons bounded by mol­ecules of solvent.

Related literature

For details on experimental methods used to obtain this crystalline compound, see: Florence et al. (2003[Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.]). For crystal structures of urea, see: Fernandes et al. (2007[Fernandes, P., Florence, A. J., Fabbiani, F., David, W. I. F. & Shankland, K. (2007). Acta Cryst. E63, o4861.]); Vaughan & Donohue (1952[Vaughan, P. & Donohue, J. (1952). Acta Cryst. 5, 530-535.]), and references therein; Swaminathan et al. (1984[Swaminathan, S., Craven, B. M. & McMullan, R. K. (1984). Acta Cryst. B40, 300-306.]); Pryor & Sanger (1970[Pryor, A. W. & Sanger, P. L. (1970). Acta Cryst. A26, 543-558.]); Guth et al. (1980[Guth, H., Heger, G., Klein, S., Treutmann, W. & Scheringer, C. (1980). Z. Kristallogr. 153, 237-254.]); Weber et al. (2002[Weber, H. P., Marshall, W. G. & Dmitriev, V. (2002). Acta Cryst. A58 (Suppl.), C174.]). For related literature, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C4H9NO·CH4N2O

  • Mr = 147.18

  • Monoclinic, C 2/c

  • a = 7.2770 (3) Å

  • b = 17.5394 (9) Å

  • c = 7.3789 (4) Å

  • β = 119.450 (3)°

  • V = 820.11 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 K

  • 0.40 × 0.12 × 0.04 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS. Version 2007/2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.867, Tmax = 1 (expected range = 0.864–0.996)

  • 5338 measured reflections

  • 941 independent reflections

  • 552 reflections with I > 2.0σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.150

  • S = 0.89

  • 939 reflections

  • 63 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H31⋯O2i 0.87 (2) 2.06 (2) 2.930 (2) 180 (3)
N3—H32⋯O9ii 0.87 (2) 2.09 (2) 2.878 (3) 149.7 (19)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) -x, -y+1, -z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The crystal structure of urea has been widely studied (see for example, Vaughan and Donohue (1952) and references therein; Swaminathan et al. (1984), Pryor and Sanger (1970), Guth et al. (1980) and Weber et al. (2002)). This previously unreported crystalline solvate of urea was discovered during an investigation into the influence of different crystallization solvents on urea crystal morphology (see also Fernandes et al., 2007). The sample was obtained by slow evaporation from a saturated N,N-dimethylacetamide (DMA) solution at 298 K and identified by using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003). Subsequent recrystallization produced a single-crystal suitable for X-ray diffraction at 120 K (Fig. 1).

Both molecules lie over a two fold rotation axis resulting in the DMA being disordered (see refinement section for details). Each urea molecule interacts with adjacent urea molecules via contact 1 (Fig. 2, entry 1, Table 1), forming a hydrogen bonded ribbon that runs in the direction [-1 0 1]. Molecules of DMA lie on the edge of the ribbons, connected through a second hydrogen bond (contact 2), (entry 2, Table 1).The DMA-bordered ribbons of urea pack side-by-side to form a two-dimensional sheet.

Related literature top

For details on experimental methods used to obtain this crystal, see: Florence et al. (2003). For crystal structures of urea, see: Fernandes et al. (2007); Vaughan & Donohue (1952), and references therein; Swaminathan et al. (1984); Pryor & Sanger (1970); Guth et al. (1980); Weber et al. (2002). For related literature, see: Etter (1990).

Experimental top

The compound was sourced from Sigma-Aldrich and used as supplied. A single-crystal sample of the 1/1 solvate was recrystallized from a saturated N,N-dimethylacetamide solution by isothermal solvent evaporation at room temperature (298 K).

Refinement top

The DMA moiety was found to be disordered over a 2-fold rotation axis, with atoms C7 and O9 sitting on this axis. The site occupancies of N4 and C8 were consequently fixed to 1/2, whilst that of C6 was fixed to 1.0 as this atom acts as a methyl carbon both attached to N4 and to C8 in the disordered model. All non-H-atoms were modelled with anisotropic displacement parameters. H-atoms attached to N3 were located in a difference Fourier map and their positions were freely refined. H-atoms attached to C6 and C7 were positioned geometrically, taking into account disorder and occupancy of the parents atoms, and their positions were fixed during refinement. Uiso(H) were assigned in the range 1.2–1.5 times Ueq of the parent atom.

Note that both the (1 1 0) and the (-2 0 2) reflections were excluded from the final refinement as they were significant outliers on the Fo versus Fc plot.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: enCIFer (Allen et al., 2004) and publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probablility displacement ellipsoids. Hydrogen atoms have been omitted for clarity. A twofold axis runs through C1, O2 of urea and O9, C7 of DMA, giving rise to the rotational disorder of the DMA molecule. Symmetry codes: (i) -x, y, 1/2 - z. (ii) -x, y, 3/2 - z.
[Figure 2] Fig. 2. Selected molecular packing, viewed down the a axis, of the title compound illustrating the hydrogen bonded network. Urea molecules (green) form an R22(8) motif (Etter, 1990) involving contact 1 (entry 1, Table 1) that propagates to form an infinite ribbon. DMA molecules (shown in blues with rotational disorder) are hydrogen bonded via N—H···O contacts 2 (entry 2, Table 1) at the edges of the ribbon. Hydrogen bonds are shown as dashed lines and hydrogen atoms have been omitted for clarity. Symmetry codes: (a) -x, 1 - y, 1 - z; (b) 1/2 - x, 1/2 - y, 1 - z.
Diaminomethanal–N,N-dimethylacetamide solvate (1:1) top
Crystal data top
C4H9NO·CH4N2OF(000) = 320
Mr = 147.18Dx = 1.192 Mg m3
Monoclinic, C2/cMelting point: 406 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 7.2770 (3) ÅCell parameters from 2218 reflections
b = 17.5394 (9) Åθ = 3–27°
c = 7.3789 (4) ŵ = 0.09 mm1
β = 119.450 (3)°T = 120 K
V = 820.11 (7) Å3Lath, colourless
Z = 40.40 × 0.12 × 0.04 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
941 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode552 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.4°
ϕ & ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
k = 2222
Tmin = 0.867, Tmax = 1l = 99
5338 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: geom + difmap
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.150 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.07P)2] ,
where P = (max(Fo2,0) + 2Fc2)/3
S = 0.89(Δ/σ)max = 0.000129
939 reflectionsΔρmax = 0.31 e Å3
63 parametersΔρmin = 0.39 e Å3
0 restraints
Crystal data top
C4H9NO·CH4N2OV = 820.11 (7) Å3
Mr = 147.18Z = 4
Monoclinic, C2/cMo Kα radiation
a = 7.2770 (3) ŵ = 0.09 mm1
b = 17.5394 (9) ÅT = 120 K
c = 7.3789 (4) Å0.40 × 0.12 × 0.04 mm
β = 119.450 (3)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
941 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
552 reflections with I > 2.0σ(I)
Tmin = 0.867, Tmax = 1Rint = 0.048
5338 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 0.89Δρmax = 0.31 e Å3
939 reflectionsΔρmin = 0.39 e Å3
63 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.00000.30587 (14)0.25000.0293
O20.00000.23473 (9)0.25000.0380
N30.1649 (2)0.34642 (10)0.3935 (3)0.0360
N40.0668 (4)0.37977 (18)0.7962 (5)0.03470.5000
C60.2835 (3)0.40670 (13)0.9670 (4)0.0525
C70.00000.29897 (16)0.75000.0508
C80.0735 (5)0.4351 (2)0.6946 (6)0.03470.5000
O90.00000.50307 (11)0.75000.0628
H310.264 (3)0.3224 (11)0.499 (4)0.0365*
H320.158 (3)0.3959 (13)0.393 (3)0.0360*
H710.14090.29690.63800.0608*0.5000
H720.00740.27600.86960.0608*0.5000
H730.09080.27320.71240.0608*0.5000
H610.28800.46080.96650.0542*0.5000
H620.30560.38941.09800.0542*0.5000
H630.38890.38660.94090.0542*0.5000
H640.28270.35260.96570.0542*0.5000
H650.31080.42441.09940.0542*0.5000
H660.38850.42500.93770.0542*0.5000
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0239 (11)0.0284 (14)0.0251 (13)0.00000.0038 (10)0.0000
O20.0315 (9)0.0245 (10)0.0342 (11)0.00000.0022 (8)0.0000
N30.0289 (8)0.0261 (9)0.0325 (10)0.0009 (6)0.0006 (7)0.0011 (7)
N40.0290 (18)0.0271 (17)0.038 (2)0.0003 (11)0.0085 (16)0.0020 (14)
C60.0327 (10)0.0554 (14)0.0474 (14)0.0003 (9)0.0026 (10)0.0046 (11)
C70.0663 (19)0.0236 (14)0.059 (2)0.00000.0286 (17)0.0000
C80.0332 (19)0.030 (2)0.031 (2)0.0004 (14)0.0084 (16)0.0008 (16)
O90.0855 (16)0.0210 (11)0.0587 (16)0.00000.0176 (13)0.0000
Geometric parameters (Å, º) top
O9—C81.288 (4)C6—H630.9500
O9—C8i1.288 (4)C6—H640.9500
O2—C11.248 (3)C6—H650.9500
N4—C61.531 (4)C6—H610.9500
N4—C81.339 (5)C6—H660.9500
N4—C71.483 (4)C7—H72i0.9500
N3—C11.348 (2)C7—H73i0.9500
N3—H320.87 (2)C7—H71i0.9500
N3—H310.87 (2)C7—H710.9500
C6—C8i1.488 (5)C7—H720.9500
C6—H620.9500C7—H730.9500
C6—N4—C7124.9 (2)C8i—C6—H6172.00
C6—N4—C8115.5 (3)H62—C6—H63110.00
C7—N4—C8119.4 (3)H62—C6—H6472.00
C1—N3—H32119.8 (14)C8i—C6—H66109.00
H31—N3—H32120.7 (19)N4—C7—H71i75.00
C1—N3—H31118.4 (14)N4—C7—H72i119.00
N4—C8—C6i114.0 (3)N4—C7—H73109.00
O9—C8—N4114.2 (3)H71—C7—H72110.00
O9—C8—C6i131.8 (3)H71—C7—H73110.00
N4—C6—H61109.00N4—C7—H73i126.00
N4—C6—H62109.00H71—C7—H71i176.00
N4—C6—H63109.00H71—C7—H72i68.00
N4—C6—H6472.00H71—C7—H73i68.00
H61—C6—H63110.00H72—C7—H73110.00
H61—C6—H64178.00N4i—C7—H72119.00
H61—C6—H6572.00H71i—C7—H7268.00
H61—C6—H6668.00N4i—C7—H7175.00
N4—C6—H65124.00N4i—C7—H73126.00
N4—C6—H66122.00H71i—C7—H7368.00
H61—C6—H62110.00N4i—C7—H71i109.00
H62—C6—H66126.00N4i—C7—H72i109.00
C8i—C6—H62121.00N4i—C7—H73i109.00
H63—C6—H6468.00H71i—C7—H72i110.00
H63—C6—H65123.00H71i—C7—H73i110.00
C8i—C6—H63125.00N4—C7—H71109.00
H64—C6—H65110.00N4—C7—H72109.00
H64—C6—H66110.00O2—C1—N3121.84 (12)
C8i—C6—H64109.00O2—C1—N3ii121.84 (12)
H65—C6—H66110.00N3—C1—N3ii116.3 (2)
C8i—C6—H65109.00
Symmetry codes: (i) x, y, z+3/2; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H31···O2iii0.87 (2)2.06 (2)2.930 (2)180 (3)
N3—H32···O9iv0.87 (2)2.09 (2)2.878 (3)149.7 (19)
Symmetry codes: (iii) x+1/2, y+1/2, z+1; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC4H9NO·CH4N2O
Mr147.18
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)7.2770 (3), 17.5394 (9), 7.3789 (4)
β (°) 119.450 (3)
V3)820.11 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.12 × 0.04
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.867, 1
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
5338, 941, 552
Rint0.048
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.150, 0.89
No. of reflections939
No. of parameters63
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.39

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H31···O2i0.87 (2)2.06 (2)2.930 (2)180 (3)
N3—H32···O9ii0.87 (2)2.09 (2)2.878 (3)149.7 (19)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

The authors thank the Basic Technology programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (http://www.cposs.org.uk ). We also thank the EPSRC National X-ray Crystallography Service at the University of Southampton for the data collection.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2007). SADABS. Version 2007/2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFernandes, P., Florence, A. J., Fabbiani, F., David, W. I. F. & Shankland, K. (2007). Acta Cryst. E63, o4861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlorence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGuth, H., Heger, G., Klein, S., Treutmann, W. & Scheringer, C. (1980). Z. Kristallogr. 153, 237–254.  CrossRef CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPryor, A. W. & Sanger, P. L. (1970). Acta Cryst. A26, 543–558.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSwaminathan, S., Craven, B. M. & McMullan, R. K. (1984). Acta Cryst. B40, 300–306.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationVaughan, P. & Donohue, J. (1952). Acta Cryst. 5, 530–535.  CrossRef CAS IUCr Journals Google Scholar
First citationWeber, H. P., Marshall, W. G. & Dmitriev, V. (2002). Acta Cryst. A58 (Suppl.), C174.  Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds