Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the cationic complex present in the title compound, [Cu(C12H8N2)3][Hg2I6]·C2H6OS·H2O, the copper(II) center adopts a highly distorted octa­hedral geometry, ligated by the six N atoms of three 1,10-phenanthroline ligands. The structure includes an iodide-bridged dimeric mercurate anion for neutrality and uncoordinated dimethyl sulfoxide and water mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105043088/ga1111sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105043088/ga1111Isup2.hkl
Contains datablock I

CCDC reference: 299620

Comment top

Examples of monomeric tris-chelated complexes of copper(II) involving neutral N,N'-donors are limited and uncommon because of pronounced Jahn–Teller distortions (Anderson, 1972, 1973; Bertini et al., 1979; Cullen & Lingafelter et al., 1970; Folgado et al., 1990; Majumdar et al., 1998). The generalized synthetic device for this type of compound was developed by Goswani and co-workers (Choudhury et al., 1992; Choudhury, Deb & Goswami, 1994; Choudhury, Deb, Kharmawaphlang & Goswami, 1994; Deb et al., 1991; Kakoti et al., 1992; Kharmawaphlang et al., 1995), following the silver(I)-assisted metal exchange strategy. In the present work, we examined the exchange reaction between Cu(phen)I2 and Hg(phen)I2 (phen is 1,10-phenanthroline), with the hope of preparing tris chelates of CuII. Since HgII is a much softer Lewis acid than CuII, it was expected that the HgII center in Hg(phen)I2 would accept softer iodide ions from Cu(phen)I2, and provide a harder phen molecule, a typical N,N'-donor ligand, to the CuII center (Pearson, 1963).

A black solid was produced from the reaction of Cu(phen)I2 with Hg(phen)I2. When this solid was recrystallized, two differently colored crystals were formed in a dimethyl sulfoxide (DMSO)–water mixture; most of the sample crystallized as black crystallites, later identified by the elemental analysis as the bis-complex Cu(phen)2HgI4. The crystal structure of the minor product, pale-green crystals, (I), is presented here.

Selected bond distances and bond angles for (I) are summarized in Table 1. The crystal structure of (I) consists of discrete [Cu(phen)3]2+ cations and [Hg2I6]2− anions in a 1:1 ratio (Fig. 1). The CuII center in the [Cu(phen)3]2+ cation is six-coordinated with six N atoms of three phen ligands to form a distorted octahedral CuIIN6 chromophore. The [Cu(phen)3]2+ ion exhibits a static Jahn–Teller effect, with two long Cu—N bonds of similar distances at the axial site (Cu—N12 and Cu—N26). However, the remaining four shorter Cu—N bond distances on the equatorial plane are not equivalent, with a range of 2.082 (6)–2.128 (6) Å. In this respect, the distortion in the cation of (I) differs from those observed previously for other tris-chelated CuII complexes involving N,N'-donors, such as [Cu(byp)3](ClO4)2 (byp is 2,2'-bipyridine; Majumdar et al., 1998), [Cu(en)3](ClO4)2 (en is ethylenediamine; Bertini et al., 1979; Cullen & Lingafelter et al., 1970) and [Cu(phen)3](ClO4)2 (Anderson, 1973). The three larger N—Cu—N bond angles, where the two N atoms are in trans positions, differ by 8.5–13.2° from the ideal value of 180° for a perfect octahedron. The three dihedral angles between the N—Cu—N planes of the coordinated phen ligands are 85.2 (2), 86.9 (2) and 87.2 (2)°, respectively.

The bridging Hg—I bond distances in (I) range from 2.9020 (8) to 2.9499 (8) Å, and those in the terminal positions range from 2.6903 (8) to 2.7301 (7) Å. These values are well within the reported bond distances (2.864–3.005 Å for bridging iodide and 2.574–2.756 Å for terminal iodide) in [Hg2I6]2− anions (Bell et al., 2002; Fabry & Maximov, 1991; Pickardt & Wischlinski, 1999).

Packing stability of the structure of (I) is provided by hydrogen-bonding interactions between the DMSO molecule and the water molecule, and by C4—H4···Cgi [where Cgi is the centroid of ring C19–C22/C27/C28] interactions (see Table 2). There is also a probable hydrogen bond between the H atom (not located) of water O2W and the mercurate iodide atom I4 [O2W···I4 = 3.830 (10) Å]. The intermolecular distance between the two parallel aromatic rings of the coordinated phen ligands in the packing structure is longer than 4.11 Å, indicating an absence of significant ππ interactions between them.

Experimental top

Diiodo(1,10-phenanthroline)copper(II), Cu(phen)I2, and diiodo(1,10-phenanthroline)mercury(II), Hg(phen)I2, were prepared by the literature methods (Li et al., 2000). Black precipitates were produced from the reaction of Cu(phen)I2 (1.00 mmol) with Hg(phen)I2 (1.10 mmol) in acetonitrile. This solid was dissolved in a DMSO–water mixture and allowed to crystallize slowly. Two differently colored types of crystals were formed; most of the crsytals were black, but a small number of pale-green crystals of (I) were collected for X-ray study. Analysis calculated for C38H32CuHg2I6N6O2S: C 24.50, H 1.73, N 4.51%; found C 25.53, H 1.44, N 4.59%

Refinement top

One water H atom on OW2 was located in a difference Fourier map and refined with Uiso(H) values of 1.5Ueq(O); the other water H atom was not located. All other H atoms were refined using a riding model, with idealized geometry (C—H = 0.93–0.96 Å) and with Uiso(H) values of 1.2Ueq(C) or 1.5Ueq(C). The reflection (032) was omitted from the final cycles as an outlier reflection.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SMART; data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) diagram of (I), showing the atom-numbering scheme and 30% probability ellipsoids.
Tris(1,10-phenanthroline)copper(II) di-µ-iodo-bis(diiodomercurate) dimethyl sulfoxide monohydrate top
Crystal data top
[Cu(C12H8N2)3][Hg2I6]·C2H6OS·H2OF(000) = 3364
Mr = 1862.88Dx = 2.589 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4449 reflections
a = 12.6628 (10) Åθ = 2.3–22.3°
b = 18.8367 (15) ŵ = 10.81 mm1
c = 20.1380 (16) ÅT = 295 K
β = 95.789 (1)°Block, pale-green
V = 4778.9 (7) Å30.25 × 0.17 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
9373 independent reflections
Radiation source: fine-focus sealed tube5667 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1515
Tmin = 0.123, Tmax = 0.339k = 2023
29955 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0346P)2 + 0.3539P]
where P = (Fo2 + 2Fc2)/3
9373 reflections(Δ/σ)max = 0.001
503 parametersΔρmax = 0.97 e Å3
1 restraintΔρmin = 0.80 e Å3
Crystal data top
[Cu(C12H8N2)3][Hg2I6]·C2H6OS·H2OV = 4778.9 (7) Å3
Mr = 1862.88Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.6628 (10) ŵ = 10.81 mm1
b = 18.8367 (15) ÅT = 295 K
c = 20.1380 (16) Å0.25 × 0.17 × 0.10 mm
β = 95.789 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
9373 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
5667 reflections with I > 2σ(I)
Tmin = 0.123, Tmax = 0.339Rint = 0.046
29955 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.97 e Å3
9373 reflectionsΔρmin = 0.80 e Å3
503 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.53965 (3)0.19334 (2)0.32123 (2)0.07655 (14)
Hg20.78518 (3)0.32874 (2)0.34363 (2)0.07752 (14)
I10.55199 (4)0.08333 (3)0.23408 (3)0.06933 (19)
I20.36353 (5)0.20453 (4)0.38488 (3)0.0784 (2)
I30.75655 (4)0.42870 (3)0.43599 (3)0.06960 (19)
I40.96517 (5)0.31916 (4)0.28361 (3)0.0737 (2)
I50.58883 (5)0.32360 (3)0.25383 (3)0.07090 (19)
I60.73985 (5)0.19213 (3)0.40651 (3)0.0711 (2)
Cu0.15622 (6)0.29850 (5)0.58155 (4)0.0389 (2)
N10.1440 (5)0.3743 (3)0.5033 (3)0.0460 (16)
C20.0571 (6)0.4054 (4)0.4771 (4)0.057 (2)
H20.00640.39490.49450.068*
C30.0554 (7)0.4531 (5)0.4246 (5)0.067 (3)
H30.00820.47270.40600.080*
C40.1492 (8)0.4706 (5)0.4010 (4)0.068 (3)
H40.15000.50320.36630.081*
C50.2438 (7)0.4399 (5)0.4285 (4)0.056 (2)
C60.3452 (8)0.4548 (5)0.4081 (4)0.072 (3)
H60.35070.48610.37290.087*
C70.4340 (7)0.4249 (6)0.4382 (5)0.083 (3)
H70.49930.43720.42410.100*
C80.4309 (6)0.3755 (5)0.4903 (5)0.062 (2)
C90.5206 (7)0.3423 (6)0.5237 (6)0.082 (3)
H90.58790.35260.51160.098*
C100.5091 (7)0.2949 (6)0.5738 (5)0.080 (3)
H100.56780.27160.59510.096*
C110.4087 (6)0.2823 (5)0.5923 (4)0.061 (2)
H110.40190.25150.62780.073*
N120.3214 (5)0.3117 (3)0.5623 (3)0.0476 (16)
C130.3319 (6)0.3581 (4)0.5128 (4)0.0439 (19)
C140.2377 (5)0.3908 (4)0.4809 (4)0.0406 (18)
N150.1630 (5)0.3753 (3)0.6562 (3)0.0441 (16)
C160.2451 (7)0.4128 (5)0.6784 (5)0.065 (2)
H160.30800.40590.65920.078*
C170.2441 (7)0.4630 (5)0.7297 (5)0.068 (3)
H170.30460.48900.74420.081*
C180.1518 (7)0.4722 (5)0.7575 (4)0.063 (2)
H180.14880.50480.79200.075*
C190.0624 (6)0.4340 (4)0.7351 (4)0.047 (2)
C200.0380 (7)0.4388 (5)0.7629 (4)0.060 (2)
H200.04400.47000.79810.072*
C210.1224 (6)0.4004 (5)0.7401 (4)0.061 (2)
H210.18570.40540.75940.073*
C220.1166 (6)0.3513 (4)0.6859 (4)0.050 (2)
C230.2007 (6)0.3089 (5)0.6582 (5)0.067 (3)
H230.26580.31050.67580.080*
C240.1876 (7)0.2659 (5)0.6064 (5)0.071 (3)
H240.24340.23770.58790.085*
C250.0907 (7)0.2640 (4)0.5809 (4)0.061 (2)
H250.08300.23470.54450.073*
N260.0084 (5)0.3016 (3)0.6058 (3)0.0483 (16)
C270.0208 (6)0.3460 (4)0.6576 (4)0.048 (2)
C280.0714 (5)0.3857 (4)0.6834 (4)0.0419 (18)
N290.1277 (5)0.2120 (3)0.5166 (3)0.0494 (16)
C300.0904 (6)0.2128 (5)0.4529 (4)0.060 (2)
H300.07670.25630.43190.072*
C310.0707 (7)0.1506 (6)0.4162 (4)0.072 (3)
H310.04070.15270.37220.086*
C320.0954 (7)0.0881 (5)0.4449 (5)0.072 (3)
H320.08360.04660.42020.086*
C330.1385 (6)0.0839 (4)0.5114 (4)0.053 (2)
C340.1698 (7)0.0200 (5)0.5461 (5)0.071 (3)
H340.16340.02290.52320.085*
C350.2084 (7)0.0201 (5)0.6110 (5)0.068 (3)
H350.22780.02260.63210.082*
C360.2197 (6)0.0848 (5)0.6474 (4)0.055 (2)
C370.2587 (7)0.0885 (5)0.7136 (5)0.070 (3)
H370.28190.04750.73620.084*
C380.2634 (7)0.1515 (5)0.7459 (4)0.067 (3)
H380.28850.15330.79090.081*
C390.2309 (6)0.2144 (5)0.7122 (4)0.056 (2)
H390.23360.25740.73500.067*
N400.1962 (4)0.2124 (3)0.6477 (3)0.0465 (16)
C410.1902 (5)0.1492 (4)0.6155 (4)0.0447 (19)
C420.1513 (5)0.1485 (4)0.5462 (4)0.0454 (19)
S0.6139 (3)0.4490 (2)0.05364 (17)0.1205 (12)
C430.5597 (8)0.4968 (6)0.1164 (6)0.116 (4)
H43A0.60210.53820.12740.174*
H43B0.55860.46750.15530.174*
H43C0.48860.51100.10100.174*
C440.5211 (9)0.3839 (7)0.0498 (7)0.148 (5)
H44A0.53540.35010.01630.222*
H44B0.45210.40430.03880.222*
H44C0.52330.36060.09230.222*
O10.7139 (9)0.4193 (6)0.0868 (6)0.198 (5)
O2W0.9239 (7)0.4118 (5)0.1136 (5)0.131 (3)
H2W0.857 (5)0.398 (9)0.116 (9)0.197*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0749 (2)0.0728 (3)0.0854 (3)0.0067 (2)0.0252 (2)0.0172 (2)
Hg20.0711 (2)0.0786 (3)0.0847 (3)0.0098 (2)0.0169 (2)0.0245 (2)
I10.0584 (3)0.0716 (5)0.0789 (4)0.0013 (3)0.0119 (3)0.0201 (3)
I20.0774 (4)0.0849 (5)0.0769 (5)0.0132 (4)0.0270 (3)0.0044 (4)
I30.0614 (3)0.0689 (4)0.0809 (5)0.0098 (3)0.0188 (3)0.0215 (3)
I40.0659 (4)0.0858 (5)0.0707 (4)0.0017 (3)0.0132 (3)0.0136 (3)
I50.0746 (4)0.0654 (4)0.0684 (4)0.0077 (3)0.0135 (3)0.0154 (3)
I60.0824 (4)0.0581 (4)0.0689 (4)0.0023 (3)0.0123 (3)0.0090 (3)
Cu0.0401 (5)0.0380 (6)0.0388 (5)0.0016 (4)0.0057 (4)0.0007 (4)
N10.048 (4)0.043 (4)0.048 (4)0.004 (3)0.006 (3)0.006 (3)
C20.058 (5)0.056 (6)0.056 (6)0.003 (4)0.008 (4)0.007 (5)
C30.069 (6)0.069 (7)0.060 (6)0.005 (5)0.002 (5)0.004 (5)
C40.097 (7)0.046 (6)0.057 (6)0.010 (5)0.003 (5)0.009 (4)
C50.076 (6)0.053 (6)0.041 (5)0.007 (5)0.013 (4)0.000 (4)
C60.091 (7)0.074 (7)0.057 (6)0.015 (6)0.033 (5)0.013 (5)
C70.061 (6)0.109 (9)0.086 (8)0.024 (6)0.037 (5)0.019 (7)
C80.053 (5)0.068 (7)0.068 (6)0.019 (5)0.017 (5)0.002 (5)
C90.043 (5)0.098 (9)0.106 (9)0.013 (5)0.012 (5)0.005 (7)
C100.045 (5)0.102 (9)0.091 (8)0.005 (5)0.001 (5)0.010 (7)
C110.058 (5)0.065 (6)0.058 (6)0.005 (5)0.001 (4)0.002 (4)
N120.050 (4)0.048 (4)0.045 (4)0.005 (3)0.007 (3)0.003 (3)
C130.060 (5)0.037 (5)0.036 (5)0.010 (4)0.010 (4)0.006 (4)
C140.044 (4)0.038 (5)0.042 (5)0.007 (4)0.018 (3)0.007 (4)
N150.041 (3)0.046 (4)0.046 (4)0.001 (3)0.006 (3)0.006 (3)
C160.060 (5)0.071 (7)0.067 (6)0.011 (5)0.020 (5)0.008 (5)
C170.057 (5)0.079 (7)0.067 (7)0.004 (5)0.006 (5)0.005 (5)
C180.071 (6)0.055 (6)0.061 (6)0.016 (5)0.001 (5)0.014 (4)
C190.053 (5)0.047 (5)0.041 (5)0.012 (4)0.002 (4)0.000 (4)
C200.073 (6)0.066 (6)0.042 (5)0.022 (5)0.016 (4)0.003 (4)
C210.048 (5)0.078 (7)0.060 (6)0.013 (5)0.020 (4)0.007 (5)
C220.050 (5)0.057 (6)0.045 (5)0.012 (4)0.012 (4)0.008 (4)
C230.041 (4)0.080 (7)0.081 (7)0.005 (5)0.016 (5)0.001 (6)
C240.069 (6)0.067 (7)0.076 (7)0.008 (5)0.004 (5)0.013 (5)
C250.064 (6)0.051 (6)0.067 (6)0.006 (5)0.009 (5)0.010 (5)
N260.059 (4)0.039 (4)0.046 (4)0.003 (3)0.004 (3)0.001 (3)
C270.050 (5)0.048 (5)0.044 (5)0.004 (4)0.003 (4)0.010 (4)
C280.045 (4)0.039 (5)0.042 (5)0.011 (4)0.007 (4)0.009 (4)
N290.052 (4)0.045 (4)0.053 (4)0.001 (3)0.013 (3)0.003 (3)
C300.061 (5)0.064 (6)0.054 (6)0.002 (5)0.002 (4)0.002 (5)
C310.088 (7)0.079 (8)0.045 (6)0.006 (6)0.004 (5)0.015 (5)
C320.086 (7)0.070 (7)0.061 (7)0.011 (6)0.015 (5)0.017 (5)
C330.061 (5)0.046 (6)0.055 (6)0.002 (4)0.018 (4)0.003 (4)
C340.103 (7)0.038 (6)0.075 (7)0.001 (5)0.023 (6)0.000 (5)
C350.092 (7)0.039 (6)0.079 (7)0.012 (5)0.032 (6)0.006 (5)
C360.061 (5)0.050 (6)0.054 (6)0.009 (4)0.010 (4)0.006 (4)
C370.072 (6)0.061 (7)0.078 (7)0.011 (5)0.005 (5)0.013 (5)
C380.077 (6)0.074 (7)0.050 (6)0.010 (5)0.003 (4)0.007 (5)
C390.058 (5)0.059 (6)0.051 (6)0.002 (4)0.007 (4)0.007 (4)
N400.046 (4)0.041 (4)0.053 (4)0.000 (3)0.011 (3)0.001 (3)
C410.043 (4)0.042 (5)0.051 (5)0.004 (4)0.012 (4)0.001 (4)
C420.047 (4)0.039 (5)0.052 (5)0.008 (4)0.018 (4)0.002 (4)
S0.117 (2)0.155 (3)0.091 (2)0.030 (3)0.0185 (19)0.040 (2)
C430.1010.0680.174 (12)0.003 (6)0.008 (8)0.014 (8)
C440.1050.1210.215 (15)0.040 (8)0.005 (10)0.007 (11)
O10.176 (9)0.1380.278 (15)0.062 (7)0.016 (9)0.078 (8)
O2W0.160 (8)0.090 (6)0.150 (8)0.003 (6)0.046 (7)0.002 (5)
Geometric parameters (Å, º) top
Cu—N12.120 (6)C20—C211.335 (11)
Cu—N122.179 (6)C20—H200.9300
Cu—N152.082 (6)C21—C221.438 (11)
Cu—N262.189 (6)C21—H210.9300
Cu—N292.098 (6)C22—C271.395 (10)
Cu—N402.128 (6)C22—C231.401 (11)
Hg1—I12.7301 (7)C23—C241.345 (12)
Hg1—I22.6903 (8)C23—H230.9300
Hg1—I52.9020 (8)C24—C251.377 (11)
Hg1—I62.9151 (7)C24—H240.9300
Hg2—I32.6967 (7)C25—N261.317 (9)
Hg2—I42.6914 (8)C25—H250.9300
Hg2—I52.9248 (7)N26—C271.358 (9)
Hg2—I62.9499 (8)C27—C281.439 (10)
N1—C21.309 (9)N29—C301.320 (9)
N1—C141.347 (8)N29—C421.357 (9)
C2—C31.386 (12)C30—C311.394 (12)
C2—H20.9300C30—H300.9300
C3—C41.364 (12)C31—C321.335 (12)
C3—H30.9300C31—H310.9300
C4—C51.393 (11)C32—C331.396 (11)
C4—H40.9300C32—H320.9300
C5—C141.413 (10)C33—C421.406 (10)
C5—C61.416 (11)C33—C341.426 (11)
C6—C71.346 (12)C34—C351.350 (12)
C6—H60.9300C34—H340.9300
C7—C81.406 (12)C35—C361.422 (11)
C7—H70.9300C35—H350.9300
C8—C91.407 (11)C36—C371.375 (11)
C8—C131.415 (10)C36—C411.406 (10)
C9—C101.366 (13)C37—C381.352 (12)
C9—H90.9300C37—H370.9300
C10—C111.382 (11)C38—C391.406 (11)
C10—H100.9300C38—H380.9300
C11—N121.326 (9)C39—N401.329 (9)
C11—H110.9300C39—H390.9300
N12—C131.343 (9)N40—C411.353 (9)
C13—C141.435 (10)C41—C421.432 (10)
N15—C161.297 (10)S—O11.480 (10)
N15—C281.346 (9)S—C441.694 (11)
C16—C171.401 (12)S—C431.748 (12)
C16—H160.9300C43—H43A0.9600
C17—C181.358 (11)C43—H43B0.9600
C17—H170.9300C43—H43C0.9600
C18—C191.379 (10)C44—H44A0.9600
C18—H180.9300C44—H44B0.9600
C19—C281.396 (10)C44—H44C0.9600
C19—C201.442 (11)O2W—H2W0.89 (8)
N1—Cu—N1277.9 (2)C28—C19—C20118.2 (7)
N1—Cu—N1593.6 (2)C21—C20—C19122.6 (8)
N1—Cu—N2698.5 (2)C21—C20—H20118.7
N1—Cu—N2993.7 (2)C19—C20—H20118.7
N1—Cu—N40166.8 (2)C20—C21—C22120.6 (8)
N12—Cu—N1594.5 (2)C20—C21—H21119.7
N12—Cu—N26171.5 (2)C22—C21—H21119.7
N12—Cu—N2994.9 (2)C27—C22—C23117.0 (8)
N12—Cu—N4091.5 (2)C27—C22—C21118.0 (7)
N15—Cu—N2678.0 (2)C23—C22—C21125.0 (8)
N15—Cu—N29169.1 (2)C24—C23—C22120.3 (8)
N15—Cu—N4095.1 (2)C24—C23—H23119.9
N26—Cu—N2993.0 (2)C22—C23—H23119.9
N26—Cu—N4093.0 (2)C23—C24—C25119.2 (8)
N29—Cu—N4079.2 (2)C23—C24—H24120.4
I1—Hg1—I2118.02 (2)C25—C24—H24120.4
I1—Hg1—I5108.19 (2)N26—C25—C24123.1 (8)
I1—Hg1—I6105.66 (2)N26—C25—H25118.5
I2—Hg1—I5112.57 (2)C24—C25—H25118.5
I2—Hg1—I6115.68 (3)C25—N26—C27118.3 (7)
I5—Hg1—I693.86 (2)C25—N26—Cu129.5 (6)
I3—Hg2—I4122.37 (2)C27—N26—Cu112.0 (5)
I3—Hg2—I5106.53 (2)N26—C27—C22122.0 (7)
I3—Hg2—I6105.52 (3)N26—C27—C28116.4 (7)
I4—Hg2—I5115.20 (2)C22—C27—C28121.5 (8)
I4—Hg2—I6110.15 (2)N15—C28—C19122.5 (7)
I5—Hg2—I692.661 (19)N15—C28—C27118.6 (7)
Hg1—I5—Hg287.016 (19)C19—C28—C27118.9 (7)
Hg1—I6—Hg286.309 (19)C30—N29—C42118.6 (7)
C2—N1—C14119.7 (7)C30—N29—Cu128.2 (6)
C2—N1—Cu126.5 (6)C42—N29—Cu113.2 (5)
C14—N1—Cu113.8 (5)N29—C30—C31122.2 (8)
N1—C2—C3123.0 (8)N29—C30—H30118.9
N1—C2—H2118.5C31—C30—H30118.9
C3—C2—H2118.5C32—C31—C30119.3 (9)
C4—C3—C2118.5 (8)C32—C31—H31120.3
C4—C3—H3120.8C30—C31—H31120.3
C2—C3—H3120.8C31—C32—C33121.1 (9)
C3—C4—C5120.3 (8)C31—C32—H32119.4
C3—C4—H4119.9C33—C32—H32119.4
C5—C4—H4119.9C32—C33—C42116.3 (8)
C4—C5—C14117.4 (8)C32—C33—C34125.4 (9)
C4—C5—C6124.9 (9)C42—C33—C34118.2 (8)
C14—C5—C6117.7 (8)C35—C34—C33122.0 (8)
C7—C6—C5121.9 (8)C35—C34—H34119.0
C7—C6—H6119.0C33—C34—H34119.0
C5—C6—H6119.0C34—C35—C36120.5 (8)
C6—C7—C8121.9 (8)C34—C35—H35119.7
C6—C7—H7119.1C36—C35—H35119.7
C8—C7—H7119.1C37—C36—C41116.8 (8)
C7—C8—C9124.7 (8)C37—C36—C35123.5 (8)
C7—C8—C13119.0 (8)C41—C36—C35119.7 (8)
C9—C8—C13116.3 (8)C38—C37—C36120.4 (9)
C10—C9—C8120.1 (8)C38—C37—H37119.8
C10—C9—H9119.9C36—C37—H37119.8
C8—C9—H9119.9C37—C38—C39120.6 (8)
C9—C10—C11118.8 (8)C37—C38—H38119.7
C9—C10—H10120.6C39—C38—H38119.7
C11—C10—H10120.6N40—C39—C38120.1 (8)
N12—C11—C10123.6 (9)N40—C39—H39120.0
N12—C11—H11118.2C38—C39—H39120.0
C10—C11—H11118.2C39—N40—C41119.3 (7)
C11—N12—C13118.0 (7)C39—N40—Cu128.6 (6)
C11—N12—Cu130.0 (6)C41—N40—Cu111.9 (5)
C13—N12—Cu112.0 (5)N40—C41—C36122.7 (7)
N12—C13—C8123.1 (7)N40—C41—C42118.2 (7)
N12—C13—C14118.1 (7)C36—C41—C42119.1 (7)
C8—C13—C14118.8 (7)N29—C42—C33122.3 (7)
N1—C14—C5121.1 (7)N29—C42—C41117.3 (7)
N1—C14—C13118.2 (7)C33—C42—C41120.4 (7)
C5—C14—C13120.7 (7)O1—S—C44107.7 (7)
C16—N15—C28118.3 (7)O1—S—C43104.4 (7)
C16—N15—Cu126.9 (6)C44—S—C4394.8 (6)
C28—N15—Cu114.8 (5)S—C43—H43A109.5
N15—C16—C17123.7 (8)S—C43—H43B109.5
N15—C16—H16118.1H43A—C43—H43B109.5
C17—C16—H16118.1S—C43—H43C109.5
C18—C17—C16117.5 (8)H43A—C43—H43C109.5
C18—C17—H17121.2H43B—C43—H43C109.5
C16—C17—H17121.2S—C44—H44A109.5
C17—C18—C19120.8 (8)S—C44—H44B109.5
C17—C18—H18119.6H44A—C44—H44B109.5
C19—C18—H18119.6S—C44—H44C109.5
C18—C19—C28117.2 (7)H44A—C44—H44C109.5
C18—C19—C20124.5 (8)H44B—C44—H44C109.5
I2—Hg1—I5—Hg2116.86 (2)C22—C23—C24—C250.1 (14)
I1—Hg1—I5—Hg2110.91 (2)C23—C24—C25—N261.2 (14)
I6—Hg1—I5—Hg23.03 (2)C24—C25—N26—C272.1 (12)
I4—Hg2—I5—Hg1116.76 (3)C24—C25—N26—Cu172.3 (6)
I3—Hg2—I5—Hg1104.05 (3)N15—Cu—N26—C25178.7 (7)
I6—Hg2—I5—Hg12.99 (2)N29—Cu—N26—C254.9 (7)
I2—Hg1—I6—Hg2114.34 (3)N1—Cu—N26—C2589.4 (7)
I1—Hg1—I6—Hg2113.12 (2)N40—Cu—N26—C2584.2 (7)
I5—Hg1—I6—Hg23.01 (2)N15—Cu—N26—C274.1 (5)
I4—Hg2—I6—Hg1121.08 (2)N29—Cu—N26—C27169.8 (5)
I3—Hg2—I6—Hg1104.99 (2)N1—Cu—N26—C2795.9 (5)
I5—Hg2—I6—Hg12.98 (2)N40—Cu—N26—C2790.5 (5)
N15—Cu—N1—C284.0 (6)C25—N26—C27—C221.7 (11)
N29—Cu—N1—C288.0 (6)Cu—N26—C27—C22173.7 (6)
N40—Cu—N1—C2145.1 (9)C25—N26—C27—C28179.6 (6)
N12—Cu—N1—C2177.8 (7)Cu—N26—C27—C284.2 (8)
N26—Cu—N1—C25.6 (7)C23—C22—C27—N260.5 (11)
N15—Cu—N1—C1495.2 (5)C21—C22—C27—N26179.3 (7)
N29—Cu—N1—C1492.8 (5)C23—C22—C27—C28178.3 (7)
N40—Cu—N1—C1435.7 (13)C21—C22—C27—C282.9 (11)
N12—Cu—N1—C141.4 (5)C16—N15—C28—C191.4 (11)
N26—Cu—N1—C14173.6 (5)Cu—N15—C28—C19178.4 (5)
C14—N1—C2—C32.7 (12)C16—N15—C28—C27178.1 (7)
Cu—N1—C2—C3178.1 (6)Cu—N15—C28—C272.1 (8)
N1—C2—C3—C42.7 (13)C18—C19—C28—N150.9 (11)
C2—C3—C4—C51.2 (13)C20—C19—C28—N15177.2 (7)
C3—C4—C5—C140.0 (12)C18—C19—C28—C27178.5 (7)
C3—C4—C5—C6179.5 (9)C20—C19—C28—C273.4 (11)
C4—C5—C6—C7177.9 (9)N26—C27—C28—N151.6 (10)
C14—C5—C6—C71.6 (14)C22—C27—C28—N15176.3 (7)
C5—C6—C7—C82.0 (16)N26—C27—C28—C19177.9 (7)
C6—C7—C8—C9179.9 (10)C22—C27—C28—C194.2 (11)
C6—C7—C8—C131.6 (16)N15—Cu—N29—C30118.1 (12)
C7—C8—C9—C10180.0 (11)N1—Cu—N29—C3014.0 (7)
C13—C8—C9—C101.5 (14)N40—Cu—N29—C30177.2 (7)
C8—C9—C10—C112.2 (16)N12—Cu—N29—C3092.2 (7)
C9—C10—C11—N122.7 (16)N26—Cu—N29—C3084.7 (7)
C10—C11—N12—C132.4 (12)N15—Cu—N29—C4261.4 (14)
C10—C11—N12—Cu178.8 (7)N1—Cu—N29—C42166.5 (5)
N15—Cu—N12—C1185.4 (7)N40—Cu—N29—C422.3 (5)
N29—Cu—N12—C1189.1 (7)N12—Cu—N29—C4288.3 (5)
N1—Cu—N12—C11178.2 (7)N26—Cu—N29—C4294.8 (5)
N40—Cu—N12—C119.8 (7)C42—N29—C30—C312.5 (12)
N15—Cu—N12—C1393.4 (5)Cu—N29—C30—C31177.0 (6)
N29—Cu—N12—C1392.1 (5)N29—C30—C31—C323.6 (14)
N1—Cu—N12—C130.6 (5)C30—C31—C32—C331.2 (15)
N40—Cu—N12—C13171.4 (5)C31—C32—C33—C421.8 (13)
C11—N12—C13—C81.7 (11)C31—C32—C33—C34178.4 (9)
Cu—N12—C13—C8179.3 (6)C32—C33—C34—C35178.2 (9)
C11—N12—C13—C14179.1 (7)C42—C33—C34—C351.6 (13)
Cu—N12—C13—C140.2 (8)C33—C34—C35—C360.3 (14)
C7—C8—C13—N12179.9 (8)C34—C35—C36—C37179.9 (9)
C9—C8—C13—N121.3 (12)C34—C35—C36—C410.2 (13)
C7—C8—C13—C141.0 (12)C41—C36—C37—C382.6 (13)
C9—C8—C13—C14179.6 (8)C35—C36—C37—C38177.4 (9)
C2—N1—C14—C51.4 (11)C36—C37—C38—C391.4 (14)
Cu—N1—C14—C5179.4 (6)C37—C38—C39—N400.8 (13)
C2—N1—C14—C13177.3 (7)C38—C39—N40—C411.6 (11)
Cu—N1—C14—C132.0 (8)C38—C39—N40—Cu173.5 (6)
C4—C5—C14—N10.0 (11)N15—Cu—N40—C3910.1 (7)
C6—C5—C14—N1179.6 (7)N29—Cu—N40—C39179.3 (7)
C4—C5—C14—C13178.6 (7)N1—Cu—N40—C39120.7 (11)
C6—C5—C14—C130.9 (11)N12—Cu—N40—C3984.5 (7)
N12—C13—C14—N11.5 (10)N26—Cu—N40—C3988.3 (7)
C8—C13—C14—N1179.3 (7)N15—Cu—N40—C41174.4 (5)
N12—C13—C14—C5179.9 (7)N29—Cu—N40—C413.8 (5)
C8—C13—C14—C50.7 (11)N1—Cu—N40—C4154.7 (12)
N29—Cu—N15—C16148.8 (11)N12—Cu—N40—C4190.9 (5)
N1—Cu—N15—C1679.0 (7)N26—Cu—N40—C4196.3 (5)
N40—Cu—N15—C1691.0 (7)C39—N40—C41—C360.4 (11)
N12—Cu—N15—C160.9 (7)Cu—N40—C41—C36175.6 (6)
N26—Cu—N15—C16176.9 (7)C39—N40—C41—C42179.2 (7)
N29—Cu—N15—C2831.0 (15)Cu—N40—C41—C424.8 (8)
N1—Cu—N15—C28101.2 (5)C37—C36—C41—N401.8 (12)
N40—Cu—N15—C2888.8 (5)C35—C36—C41—N40178.2 (7)
N12—Cu—N15—C28179.4 (5)C37—C36—C41—C42178.7 (7)
N26—Cu—N15—C283.3 (5)C35—C36—C41—C421.4 (11)
C28—N15—C16—C170.8 (12)C30—N29—C42—C330.8 (11)
Cu—N15—C16—C17179.0 (6)Cu—N29—C42—C33179.6 (6)
N15—C16—C17—C180.3 (14)C30—N29—C42—C41179.1 (7)
C16—C17—C18—C190.7 (13)Cu—N29—C42—C410.5 (8)
C17—C18—C19—C280.2 (12)C32—C33—C42—N292.9 (12)
C17—C18—C19—C20178.1 (8)C34—C33—C42—N29177.3 (7)
C18—C19—C20—C21179.5 (8)C32—C33—C42—C41177.0 (7)
C28—C19—C20—C211.5 (12)C34—C33—C42—C412.8 (11)
C19—C20—C21—C220.3 (13)N40—C41—C42—N293.1 (10)
C20—C21—C22—C271.0 (12)C36—C41—C42—N29177.3 (7)
C20—C21—C22—C23179.6 (8)N40—C41—C42—C33176.9 (7)
C27—C22—C23—C240.4 (13)C36—C41—C42—C332.7 (11)
C21—C22—C23—C24178.3 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2W···O10.89 (8)1.89 (10)2.664 (14)144 (15)
C4—H4···Cgi0.932.743.619 (10)160
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C12H8N2)3][Hg2I6]·C2H6OS·H2O
Mr1862.88
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)12.6628 (10), 18.8367 (15), 20.1380 (16)
β (°) 95.789 (1)
V3)4778.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)10.81
Crystal size (mm)0.25 × 0.17 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.123, 0.339
No. of measured, independent and
observed [I > 2σ(I)] reflections
29955, 9373, 5667
Rint0.046
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.094, 1.00
No. of reflections9373
No. of parameters503
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.97, 0.80

Computer programs: SMART (Bruker, 2002), SMART, SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cu—N12.120 (6)Hg1—I22.6903 (8)
Cu—N122.179 (6)Hg1—I52.9020 (8)
Cu—N152.082 (6)Hg1—I62.9151 (7)
Cu—N262.189 (6)Hg2—I32.6967 (7)
Cu—N292.098 (6)Hg2—I42.6914 (8)
Cu—N402.128 (6)Hg2—I52.9248 (7)
Hg1—I12.7301 (7)Hg2—I62.9499 (8)
N1—Cu—N1277.9 (2)I1—Hg1—I2118.02 (2)
N1—Cu—N40166.8 (2)I5—Hg1—I693.86 (2)
N12—Cu—N26171.5 (2)I3—Hg2—I4122.37 (2)
N15—Cu—N2678.0 (2)I5—Hg2—I692.661 (19)
N15—Cu—N29169.1 (2)Hg1—I5—Hg287.016 (19)
N29—Cu—N4079.2 (2)Hg1—I6—Hg286.309 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2W···O10.89 (8)1.89 (10)2.664 (14)144 (15)
C4—H4···Cgi0.932.743.619 (10)160
Symmetry code: (i) x, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds