Download citation
Download citation
link to html
The VV atom in the title complex, [V(C16H16N5S)O2], is five-coordinate in a highly distorted square-pyramidal geometry, with the pyridyl N, the azomethine N and the thiol­ate S atoms of the di-2-pyridyl ketone N4,N4-(butane-1,4-di­yl)­thio­semi­carbazone ligand and one oxo ligand occupying the basal coordination positions, while the second oxo ligand occupies the apical position. The mol­ecules are inter­connected by weak inter­molecular inter­actions, mainly of the C—H...O type, involving the oxo atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105030337/ga1108sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105030337/ga1108Isup2.hkl
Contains datablock I

CCDC reference: 290563

Comment top

Thiosemicarbazones possessing N,N,S, N,N,O and O,N,S donor sites have emerged as an important class of biologically active ligands in the past few decades. The biological activity of thiosemicarbazones is related to their chelating ability with transition metal ions, bonding through S and N atoms (Klayman et al., 1984) and also on the parent aldehyde or ketone (Padhye & Kauffman, 1985; Lukevics et al., 1995). Among thousands of screened compounds (Klayman et al., 1979), 2-acetylpyridine thiosemicarbazones having the N4 atom disubstituted or as a part of the ring system possess the highest activity as antimalarial agents. Compared with the extensive studies on 2-acetylpyridine thiosemicarbazones (Garg et al., 1988), there are few reports on the metal complexes of thiosemicarbazones derived from di-2-pyridyl ketone (Duan et al., 1996; Philip et al., 2004). Vanadium coordination is seen in a variety of chemical and biological systems, thereby extending the inorganic pharmacology of thiosemicarbazones. Much of the biochemistry of vanadium is centered around the ability of vanadate ions, [H2VVO4], to adopt either a four-coordinate tetrahedral geometry or a five-coordinate trigonal-bipyramidal geometry (Crans, 1994). The establishment of the presence of a vanadium(IV)/vanadium(V) equilibrium in the reducing environment of living cells (Degani et al., 1981; Li et al., 1996), and the range of biological activities from antitumour, fungicide, bactericide, anti-inflammatory and antiviral activities of thiosemicarbazones (Sreekanth & Kurup, 2003), prompted us to undertake the crystal structure of the title compound, (I).

Recently, di-2-pyridyl ketone 4-methyl thiosemicarbazone acting as a pentadentate ligand towards rhenium carbonyls (Pereiras-Gabian et al., 2005) has been reported. We have reported the crystal structure of the present ligand, di-2-pyridyl ketone N4,N4-(butane-1,4-diyl)thiosemicarbazone (Usman et al., 2002; hereafter NBT), di-2-pyridyl ketone 4-methyl-4-phenyl-thiosemicarbazone (Philip et al., 2004) and the transition metal complexes of these ligands (Philip et al., 2004, 2005). We report here the first vanadium complex of the ligand di-2-pyridyl ketone N4,N4-(butane-1,4-diyl)thiosemicarbazone with the ligand in the tridentate form.

In the formation of (I), the NBT loses one H atom from its tautomeric thiol form and coordinates to vanadium through atoms N1, N3 and S1, which together with the oxo ligand O2 form the basal plane of a highly distorted square pyramid (Fig. 1 and Table 1). The atoms defining the basal plane have an average deviation of 0.191 Å from the plane; the second oxo ligand, O1, fills the apical position, with atoms V1 and O1 lying 0.539 (1) and 2.132 (2) Å from this plane. The O2—V1—N3 and O1—V1—N3 angles of 133.74 (8) and 116.82 (8)° are consistent with this description. The increase in C—S bond length from 1.671 (4) to 1.734 (2) Å together with a decrease in N4—C12 bond length from 1.374 (4) to 1.329 (2) Å in compound (I) compared with NBT confirms the coordination in the thiolate form. The E configuration about the C6—N3 and C12—N4 bonds relative to the N3—N4 bond of the thiosemicarbazone group is retained in (I).

Typically, vanadium(V) forms square-pyramidal five-coordinate complexes or octahedral six-coordinate complexes, except when significant steric constraints, such as those provided by a protein, are present (Mokry & Carrano, 1993). In (I), the τ value for the complex is 0.279, indicating a significant distortion towards the trigonal-bipyramidal form (Addison et al., 1984; Cornman et al., 1997). This configuration is in agreement with the values found in the dioxovanadium(V) complex of N,N'-dimethylethylenediamine (salicylaldehyde) (Xie et al., 2004). The formation of (I) in a highly distorted square-pyramidal rather than trigonal-bipyramidal geometry may be attributed to the electronic and/or steric requirements.

The V1—O1 distance is 0.009 (2) Å shorter than the V1—O2 distance, in agreement with values in similar dioxovanadium complexes (Sreekanth et al., 2003; Xie et al., 2004), but in contrast to another dioxovanadium complex (Maurya et al., 2002), where the two V—O distances are equal. The O—V—O angle is similar to those reported previously for the cis-VO2 moiety in other complexes (Xie et al., 2004; Sreekanth et al., 2003; Melchior et al., 1999; Asgedom et al., 1996; Lightenbarg et al., 1999; Maurya et al., 2002). The V1—N1 bond is 0.098 (2) Å shorter than the V1—N3 bond, thus confirming the strength of the pyridyl N coordination; this situation is also found in the dioxovanadium complex of 2-acetylpyridine morpholyl-3-thiosemicarbazone (Sreekanth et al., 2003) and the dioxovanadium complex of the ligand derived from 2-acetylpyridine and S-benzyldithiocarbazate (Maurya et al., 2002). The thiosemicarbazone moiety comprising atoms C6, N3, N4, C12, S1 and N5 shows a slight deviation from planarity after coordination, the maximum out of plane deviation at atom N4 changing from 0.0140 (1) Å for NBT to −0.0667 (3) Å in (I).

Ring-puckering analyses (Cremer & Pople, 1975) reveal that the pyrrolidine ring (Cg3), comprising atoms N5, C13, C14, C15 and C16, is closest to a twist form on atoms C14 and C15, with puckering parameters q2 = 0.337 (3) Å and ϕ = 278.1 (4)°, in contrast to the approximate envelope conformation in NBT. On complex formation, the thiosemicarbazone group forms two new five-membered rings, viz Cg1 [comprising atoms N3, N4, C12, S1 and V1, with a maximum out-of-plane deviation of 0.057 (2) Å for atom N3] and Cg2 [comprising atoms N1, C5, C6, N3 and V1, with a maximum deviation of 0.085 (2) Å for atom N3]. The other two rings, Cg4 (N1/C1–C5) and Cg5 (N2/C7–C11) are planar pyridyl rings; the Cg4 ring is close to coplanar with the thiosemicarbazone moiety, with a dihedral angle of 9.48 (1)° between their planes. The coordination of the azomethine N atom to the VV atom results in a slight redistribution of electron density along the thiosemicarbazone chain. This leads to a barely significant increase in length of 0.014 (4) Å for the azomethine bond C6—N3, a decrease in length of 0.045 (4) Å for the N4—C12 bond and an insignificant decrease of 0.002 (4) Å in the N3—N4 bond length in the complex compared with NBT.

In the crystal packing, each molecule is linked principally through one normal and one weak intermolecular C—H···O hydrogen bonds utilizing the oxo atoms O1 (Fig. 2 and Table 2). These VO···H—C interactions are in agreement with previous reports (Mokry & Carrano, 1993). The crystal structure cohesion may also be reinforced by weak aromatic ππ stacking interactions and a weak V1— O2···π interaction with pyridyl ring Cg5 [symmetry code: −x, 1 − y, 1 − z; at 3.899 (3) Å distance and an angle subtended at O2 of 143.46 (8)°]. The latter type of interaction has not been observed before for similar systems.

Experimental top

The di-2-pyridyl ketone N4,N4-(butane-1,4-diyl)thiosemicarbazone ligand was prepared as described by Usman et al. (2002). A solution of the ligand (5 mmol) dissolved in dichloromethane (20 ml) was mixed with an equimolar amount of vanadyl(IV) acetylacetonate dissolved in the same solvent (10 ml). The mixture was stirred for 24 h and the resulting solution was allowed to stand at room temperature. After slow evaporation, orange–red crystals of the complex separated out; these were collected by filtration, washed with ether and dried over P4O10 in vacuo. Single crystals suitable for X-ray diffraction were collected by slow evaporation of a solution in a 1:1 mixture of methanol and dichloromethane. Elemental analysis found: C 48.9, H 4.16, N 17.77%; calculated: C 48.86, H 4.10, N 17.80%.

Refinement top

The H atoms were positioned geometrically and treated as riding on the parent C atoms, with C—H = 0.93–0.97 Å.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Compound (I), with 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the unit-cell packing of (I), viewed along the b axis, with the main intermolecular hydrogen bonds shown by dashed lines (Table 2). The * and # symbols indicate atoms at equivalent positions (x,1/2 − y,-1/2 + z) and (-x,1/2 + y,3/2 − z) respectively.
[Di-2-pyridyl ketone N4,N4-(butane-1,4-diyl)thiosemicarbazonato- κ3N,N',S]dioxovanadium(V) top
Crystal data top
[V(C16H16N5S)O2]F(000) = 808
Mr = 393.34Dx = 1.511 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 545 reflections
a = 11.718 (5) Åθ = 2.4–28.1°
b = 10.794 (5) ŵ = 0.72 mm1
c = 13.868 (6) ÅT = 293 K
β = 99.727 (8)°Rectangular, orange–red
V = 1728.9 (14) Å30.40 × 0.25 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
4189 independent reflections
Radiation source: fine-focus sealed tube3223 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 0.2 pixels mm-1θmax = 28.1°, θmin = 2.4°
ω scansh = 1514
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1414
Tmin = 0.763, Tmax = 0.859l = 1718
15040 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0682P)2 + 0.1736P]
where P = (Fo2 + 2Fc2)/3
4134 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
[V(C16H16N5S)O2]V = 1728.9 (14) Å3
Mr = 393.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.718 (5) ŵ = 0.72 mm1
b = 10.794 (5) ÅT = 293 K
c = 13.868 (6) Å0.40 × 0.25 × 0.22 mm
β = 99.727 (8)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4189 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3223 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.859Rint = 0.021
15040 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.03Δρmax = 0.35 e Å3
4134 reflectionsΔρmin = 0.20 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.20125 (3)0.36596 (3)0.62136 (2)0.04135 (12)
S10.33418 (5)0.28681 (4)0.52658 (4)0.05365 (16)
O10.27554 (16)0.37173 (14)0.72992 (11)0.0638 (4)
O20.11705 (15)0.24632 (13)0.61271 (12)0.0620 (4)
N10.07509 (14)0.49376 (13)0.64234 (11)0.0419 (4)
N20.18169 (19)0.84121 (15)0.55871 (14)0.0583 (5)
N30.21935 (13)0.52135 (12)0.52509 (11)0.0372 (3)
N40.29862 (14)0.52556 (13)0.46407 (12)0.0414 (3)
N50.41885 (15)0.40797 (14)0.39043 (13)0.0469 (4)
C10.00246 (19)0.4676 (2)0.70046 (15)0.0514 (5)
H10.00050.38980.72940.062*
C20.0838 (2)0.5505 (2)0.71870 (16)0.0552 (5)
H20.13500.53040.76080.066*
C30.08895 (19)0.66459 (19)0.67357 (16)0.0512 (5)
H30.14530.72170.68330.061*
C40.00923 (18)0.69349 (17)0.61351 (14)0.0466 (4)
H40.01170.77010.58250.056*
C50.07417 (17)0.60672 (15)0.60032 (13)0.0388 (4)
C60.16241 (17)0.62297 (14)0.53789 (13)0.0378 (4)
C70.18407 (17)0.74662 (16)0.49651 (14)0.0420 (4)
C80.20532 (18)0.76257 (17)0.40239 (15)0.0464 (4)
H80.20680.69490.36110.056*
C90.2243 (2)0.88087 (19)0.37077 (18)0.0572 (6)
H90.23810.89430.30750.069*
C100.2224 (2)0.9781 (2)0.4338 (2)0.0713 (7)
H100.23531.05870.41440.086*
C110.2013 (3)0.95401 (19)0.5255 (2)0.0760 (8)
H110.20051.02060.56800.091*
C120.35070 (16)0.41729 (16)0.45730 (14)0.0405 (4)
C130.4849 (2)0.29667 (19)0.37340 (18)0.0563 (5)
H13A0.43380.22700.35420.068*
H13B0.53950.27450.43150.068*
C140.5474 (3)0.3354 (2)0.2907 (2)0.0708 (7)
H14A0.62460.36520.31630.085*
H14B0.55330.26630.24710.085*
C150.4745 (3)0.4371 (3)0.2381 (2)0.0741 (7)
H15A0.41180.40320.19080.089*
H15B0.52090.49140.20450.089*
C160.4284 (2)0.50519 (19)0.31792 (17)0.0536 (5)
H16A0.48140.56990.34570.064*
H16B0.35350.54180.29360.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0580 (2)0.02954 (16)0.03669 (19)0.00026 (12)0.00859 (14)0.00275 (11)
S10.0722 (4)0.0327 (2)0.0596 (3)0.0069 (2)0.0214 (3)0.0041 (2)
O10.0807 (11)0.0651 (9)0.0422 (9)0.0205 (8)0.0007 (8)0.0021 (7)
O20.0885 (12)0.0391 (7)0.0636 (10)0.0142 (7)0.0280 (9)0.0012 (6)
N10.0498 (9)0.0374 (7)0.0392 (8)0.0030 (6)0.0096 (7)0.0032 (6)
N20.0915 (14)0.0337 (8)0.0530 (11)0.0071 (8)0.0216 (10)0.0035 (7)
N30.0471 (8)0.0302 (6)0.0348 (7)0.0014 (6)0.0079 (6)0.0004 (5)
N40.0500 (9)0.0344 (7)0.0418 (8)0.0018 (6)0.0137 (7)0.0009 (6)
N50.0521 (10)0.0396 (8)0.0511 (10)0.0006 (7)0.0151 (8)0.0046 (7)
C10.0580 (13)0.0503 (11)0.0473 (11)0.0070 (9)0.0128 (10)0.0066 (8)
C20.0550 (13)0.0692 (13)0.0442 (12)0.0098 (10)0.0160 (10)0.0062 (10)
C30.0513 (12)0.0541 (11)0.0487 (12)0.0025 (9)0.0102 (9)0.0136 (9)
C40.0569 (12)0.0398 (9)0.0434 (11)0.0022 (8)0.0090 (9)0.0043 (7)
C50.0480 (10)0.0345 (8)0.0337 (9)0.0040 (7)0.0062 (8)0.0034 (7)
C60.0493 (10)0.0297 (7)0.0344 (9)0.0031 (7)0.0072 (8)0.0004 (6)
C70.0504 (11)0.0301 (8)0.0456 (10)0.0002 (7)0.0082 (8)0.0029 (7)
C80.0583 (12)0.0366 (9)0.0453 (11)0.0020 (8)0.0114 (9)0.0027 (7)
C90.0731 (15)0.0464 (11)0.0547 (13)0.0023 (10)0.0183 (11)0.0143 (9)
C100.103 (2)0.0349 (10)0.0792 (17)0.0079 (11)0.0252 (15)0.0098 (10)
C110.127 (2)0.0314 (10)0.0746 (17)0.0102 (12)0.0323 (16)0.0065 (10)
C120.0449 (10)0.0342 (8)0.0417 (10)0.0033 (7)0.0053 (8)0.0033 (7)
C130.0574 (13)0.0457 (11)0.0682 (15)0.0013 (9)0.0176 (11)0.0118 (10)
C140.0781 (17)0.0721 (15)0.0683 (17)0.0028 (13)0.0302 (14)0.0186 (13)
C150.0884 (19)0.0792 (17)0.0603 (15)0.0043 (14)0.0287 (14)0.0106 (13)
C160.0597 (13)0.0508 (11)0.0535 (12)0.0069 (9)0.0187 (10)0.0009 (9)
Geometric parameters (Å, º) top
V1—O11.6080 (17)C4—H40.9300
V1—O21.6174 (16)C5—C61.467 (3)
V1—N12.0781 (17)C6—C71.491 (2)
V1—N32.1763 (16)C7—C81.380 (3)
V1—S12.3613 (9)C8—C91.380 (3)
S1—C121.734 (2)C8—H80.9300
N1—C11.343 (3)C9—C101.368 (3)
N1—C51.351 (2)C9—H90.9300
N2—C111.335 (3)C10—C111.362 (4)
N2—C71.340 (2)C10—H100.9300
N3—C61.311 (2)C11—H110.9300
N3—N41.359 (2)C13—C141.520 (3)
N4—C121.329 (2)C13—H13A0.9700
N5—C121.326 (3)C13—H13B0.9700
N5—C131.470 (3)C14—C151.502 (4)
N5—C161.471 (3)C14—H14A0.9700
C1—C21.362 (3)C14—H14B0.9700
C1—H10.9300C15—C161.503 (3)
C2—C31.378 (3)C15—H15A0.9700
C2—H20.9300C15—H15B0.9700
C3—C41.388 (3)C16—H16A0.9700
C3—H30.9300C16—H16B0.9700
C4—C51.388 (3)
O1—V1—O2109.11 (9)N2—C7—C6114.25 (17)
O1—V1—N197.39 (8)C8—C7—C6123.03 (16)
O2—V1—N195.79 (8)C7—C8—C9118.70 (19)
O1—V1—N3116.82 (8)C7—C8—H8120.7
O2—V1—N3133.74 (8)C9—C8—H8120.7
N1—V1—N373.72 (6)C10—C9—C8119.1 (2)
O1—V1—S1103.39 (7)C10—C9—H9120.5
O2—V1—S196.97 (6)C8—C9—H9120.5
N1—V1—S1150.45 (5)C11—C10—C9118.4 (2)
N3—V1—S178.20 (5)C11—C10—H10120.8
C12—S1—V199.23 (7)C9—C10—H10120.8
C1—N1—C5119.46 (17)N2—C11—C10124.4 (2)
C1—N1—V1120.95 (13)N2—C11—H11117.8
C5—N1—V1119.53 (13)C10—C11—H11117.8
C11—N2—C7116.7 (2)N5—C12—N4117.01 (16)
C6—N3—N4118.24 (14)N5—C12—S1117.56 (14)
C6—N3—V1117.20 (12)N4—C12—S1125.41 (15)
N4—N3—V1123.74 (11)N5—C13—C14103.33 (18)
C12—N4—N3112.64 (14)N5—C13—H13A111.1
C12—N5—C13124.77 (17)C14—C13—H13A111.1
C12—N5—C16123.28 (16)N5—C13—H13B111.1
C13—N5—C16111.73 (16)C14—C13—H13B111.1
N1—C1—C2122.7 (2)H13A—C13—H13B109.1
N1—C1—H1118.7C15—C14—C13105.1 (2)
C2—C1—H1118.7C15—C14—H14A110.7
C1—C2—C3118.7 (2)C13—C14—H14A110.7
C1—C2—H2120.6C15—C14—H14B110.7
C3—C2—H2120.6C13—C14—H14B110.7
C2—C3—C4119.4 (2)H14A—C14—H14B108.8
C2—C3—H3120.3C14—C15—C16104.2 (2)
C4—C3—H3120.3C14—C15—H15A110.9
C5—C4—C3119.18 (18)C16—C15—H15A110.9
C5—C4—H4120.4C14—C15—H15B110.9
C3—C4—H4120.4C16—C15—H15B110.9
N1—C5—C4120.45 (18)H15A—C15—H15B108.9
N1—C5—C6114.05 (16)N5—C16—C15103.47 (18)
C4—C5—C6125.40 (16)N5—C16—H16A111.1
N3—C6—C5113.91 (15)C15—C16—H16A111.1
N3—C6—C7124.95 (17)N5—C16—H16B111.1
C5—C6—C7121.12 (15)C15—C16—H16B111.1
N2—C7—C8122.72 (17)H16A—C16—H16B109.0
O1—V1—S1—C12111.81 (9)V1—N3—C6—C513.4 (2)
O2—V1—S1—C12136.59 (9)N4—N3—C6—C75.0 (3)
N1—V1—S1—C1221.65 (12)V1—N3—C6—C7165.09 (14)
N3—V1—S1—C123.28 (7)N1—C5—C6—N36.8 (2)
O1—V1—N1—C168.93 (16)C4—C5—C6—N3169.71 (17)
O2—V1—N1—C141.25 (16)N1—C5—C6—C7171.81 (16)
N3—V1—N1—C1175.22 (16)C4—C5—C6—C711.7 (3)
S1—V1—N1—C1156.48 (12)C11—N2—C7—C80.1 (4)
O1—V1—N1—C5108.18 (15)C11—N2—C7—C6179.6 (2)
O2—V1—N1—C5141.64 (14)N3—C6—C7—N2138.0 (2)
N3—V1—N1—C57.67 (13)C5—C6—C7—N240.4 (3)
S1—V1—N1—C526.4 (2)N3—C6—C7—C841.7 (3)
O1—V1—N3—C678.52 (15)C5—C6—C7—C8139.9 (2)
O2—V1—N3—C693.93 (16)N2—C7—C8—C90.4 (3)
N1—V1—N3—C611.62 (13)C6—C7—C8—C9179.9 (2)
S1—V1—N3—C6177.69 (14)C7—C8—C9—C100.6 (4)
O1—V1—N3—N490.95 (15)C8—C9—C10—C110.3 (4)
O2—V1—N3—N496.61 (16)C7—N2—C11—C100.4 (5)
N1—V1—N3—N4178.91 (15)C9—C10—C11—N20.2 (5)
S1—V1—N3—N48.23 (12)C13—N5—C12—N4178.94 (18)
C6—N3—N4—C12179.83 (16)C16—N5—C12—N47.1 (3)
V1—N3—N4—C1210.5 (2)C13—N5—C12—S12.5 (3)
C5—N1—C1—C20.6 (3)C16—N5—C12—S1171.50 (15)
V1—N1—C1—C2177.67 (16)N3—N4—C12—N5171.87 (15)
N1—C1—C2—C31.8 (3)N3—N4—C12—S16.6 (2)
C1—C2—C3—C42.0 (3)V1—S1—C12—N5177.88 (14)
C2—C3—C4—C50.1 (3)V1—S1—C12—N40.55 (17)
C1—N1—C5—C42.8 (3)C12—N5—C13—C14179.81 (19)
V1—N1—C5—C4179.91 (14)C16—N5—C13—C145.6 (2)
C1—N1—C5—C6179.43 (16)N5—C13—C14—C1525.0 (3)
V1—N1—C5—C63.4 (2)C13—C14—C15—C1635.3 (3)
C3—C4—C5—N12.5 (3)C12—N5—C16—C15158.8 (2)
C3—C4—C5—C6178.79 (18)C13—N5—C16—C1515.9 (2)
N4—N3—C6—C5176.52 (15)C14—C15—C16—N531.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O1i0.972.543.411 (3)149
C3—H3···O1ii0.932.653.544 (3)162
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[V(C16H16N5S)O2]
Mr393.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.718 (5), 10.794 (5), 13.868 (6)
β (°) 99.727 (8)
V3)1728.9 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.40 × 0.25 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.763, 0.859
No. of measured, independent and
observed [I > 2σ(I)] reflections
15040, 4189, 3223
Rint0.021
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.112, 1.03
No. of reflections4134
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.20

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
V1—O11.6080 (17)S1—C121.734 (2)
V1—O21.6174 (16)N3—C61.311 (2)
V1—N12.0781 (17)N3—N41.359 (2)
V1—N32.1763 (16)N4—C121.329 (2)
V1—S12.3613 (9)N5—C121.326 (3)
O1—V1—O2109.11 (9)O2—V1—S196.97 (6)
O1—V1—N197.39 (8)N1—V1—S1150.45 (5)
O2—V1—N195.79 (8)N3—V1—S178.20 (5)
O1—V1—N3116.82 (8)C12—S1—V199.23 (7)
O2—V1—N3133.74 (8)C6—N3—N4118.24 (14)
N1—V1—N373.72 (6)N3—C6—C5113.91 (15)
O1—V1—S1103.39 (7)N3—C6—C7124.95 (17)
N1—C5—C6—N36.8 (2)N3—C6—C7—N2138.0 (2)
C4—C5—C6—N3169.71 (17)N3—C6—C7—C841.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O1i0.972.543.411 (3)148.9
C3—H3···O1ii0.932.653.544 (3)161.6
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds