Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the centrosymmetric title polymer, catena-poly[[bis[aqua­(1,10-phenanthroline-κ2N,N′)lead(II)]-di-μ3-5-carboxy-3-sulfonatobenzoato-1:2:1′κ4O3:O1,O1′:O1;2′:1:2κ4O1:O1,O1′:O3] dihydrate], {[Pb(C8H4O7S)(C12H8N2)(H2O)]·H2O}n, each seven-coordinate lead(II) ion is bound by five O atoms from one water molecule and three 5-sulfoisophthalate (sip) anions, and by two N atoms from a 1,10-phenanthroline (phen) ligand. The sip sulfonate group is monodentate. One O atom of the sip carboxyl­ate group is chelated to one Pb2+ cation, with the other also bridging an adjacent Pb2+ cation. The carboxyl group is uncoordinated. This unusual coordination results in a chain structure along the b axis, which is linked by strong intermolecular hydrogen bonds into a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105000132/ga1091sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105000132/ga1091Isup2.hkl
Contains datablock I

CCDC reference: 268081

Comment top

The impact of the toxic heavy metal Pb on the natural environment is reflected in the wealth of recent literature concerning the health hazards posed by Pb to humans (Chiaradia et al., 1997; Sauve et al., 1997). In view of the steady growth of the amount of lead released into the environment by human activity, the removal of this toxic metal from the human body using chelating agents is a field of growing importance (Radecka-Paryzek & Gdaniec, 1997). Lead(II) exhibits variable coordination number and geometry with ligands, independent of their ability to donate a lone pair of electrons (Wang & Vittal, 2003). A number of polymeric PbII compounds have been structurally characterized (Cecconi et al., 2003; Bridgewater & Parkin, 2000; Ying et al., 2003). The absence of crystal field stabilization energy effects allows the PbII cations to adopt a range of different coordination geometries not restricted to octahedral, tetrahedral or square planar (Foreman et al., 2000). The polytypic 5-sulfoisophthalate (sip) anion is an interesting ligand, with both carboxylate and sulfonate available as coordinating groups. This anion has the potential to form not only `short-bridged' structures via the carboxylate or sulfonate ends (Xiao et al., 2004), but also `longer-bridged' structures via the benzene ring, between metal ions (Foreman et al., 2000). Against this background, we report here the structure of the title compound, (I).

In (I), each Pb2+ ion coordinates to three O atoms from two carboxylate groups of two sip anions, with a typical Pb—O(carboxylate) distance range (Foreman et al., 2000), one sulfonate O atom from another sip anion, one water O atom, and two N atoms from one 1,10-phenanthroline (phen) ligand (Table 1). The Pb2+ cations are seven-coordinate, but their coordination geometry cannot be described as being close to a regular geometry, as expected by the absence of the crystal field stabilization energy effects (Fig. 1). The two phen N atoms and one O atom of the sip carboxylate are chelated to the Pb2+ cation, while the sulfonate group of another sip is monodentate. The other O atom of the chelated carboxylate bridges another Pb cation, with Pb—O distances of 2.831 (3) Å. In this way, two PbII ions are bridged by the sip carboxylate O atoms around a crystallographic centre of symmetry (`short' bridging). In addition, pairs of PbII ions are connected by two carboxylate and sulfonate `long' bridges, around another centre of symmetry. These two kinds of dinuclear ring are connected alternately, forming a chain structure along the b axis (Fig. 2).

The S—O distances fall within the typical range for the sulfonate anion [1.40–1.49 Å; Onoda et al., 2001], while their similarity suggests that strong conjugation of the sulfonate is predominant in (I). Each sip anion acts as a tetradentate ligand, connecting two Pb2+ ions through its one bridging and chelating carboxylate group and one monodentate sulfonate group. This coordination mode is quite different from other compounds containing this ligand, where the carboxylate groups are either in bidentate chelating or monodentate bridging fashion, e.g. polymeric disodium (µ-trans-4,4'-ethylenedipyridyl)bis[µ-5-sulfoisophthalato(3-)] dicadmate(II) hexahydrate (Tao et al., 2003).

Adjacent chain units are connected by strong hydrogen bonding and, to a lesser extent, by ππ interactions, to form a three-dimensional framework structure (Table 2, Fig. 2). The ππ interactions have an average distance between the aromatic ring of phen (C4–C7/C11/C12) and the aromatic ring of sip (symmetry code: x, y − 1, z) of 3.49 Å, with an interplanar angle of 4.5 (1)°.

Experimental top

The title compound was synthesized by adding a dimethylformamide solution (10 ml) of 1,10-phenanthroline (2 mmol, 0.42 g), sodium 5-sulfoisophthalate (2 mmol, 0.54 g) and 2,2'-dithiosalicylic acid (2 mmol, 0.63 g) dropwise to a stirred aqueous solution (10 ml) of lead nitrate (2 mmol, 0.71 g) at 298 K. The reaction mixture was filtered and the filtrate allowed to stand for about six weeks until yellow prismatic crystals were obtained. Prism-shaped crystals of (I) suitable for X-ray diffraction were collected by filtration, washed with water and ethanol, and dried in air.

Refinement top

The uncoordinated water H atoms were refined subject to the restraint O—H = 0.83 (5) Å. The carboxyl and coordinated water H atoms were refined subject to the restraint O—H = 0.82 (1) Å. The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of 0.93 Å and with Uiso(H) = 1.2Ueq(parent atom).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXTL (Bruker, 2002).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
Fig. 1. A view of (I), showing the contents of the asymmetric unit and the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Atoms bound to Pb1 and adjacent Pb atoms are labelled. H atoms have been omitted for clarity. [Symmetry codes: (i) 2 − x, 2 − y, 2 − z; (ii) x, y − 1, z; (iii) 2 − x, 1 − y, 2 − z].

Fig. 2. A perspective view of the molecular packing of (I). Hydrogen bonds are shown by dashed lines (see Table 2). Pb and non-C atoms are shown striated. H atoms have been omitted for clarity.
catena-poly[[bis[aqua(1,10-phenanthroline-κ2N,N')lead(II)]- di-µ3-5-carboxy-3-sulfonatobenzoato- 1:2:1'κ4O3:O1,O1':O1;2':1:2κ4O1:O1,O1':O3] dihydrate] top
Crystal data top
[Pb(C8H4O7S)(C12H8N2)(H2O)]·H2OZ = 2
Mr = 667.60F(000) = 640
Triclinic, P1Dx = 2.151 Mg m3
Hall symbol: -P1Mo Kα radiation, λ = 0.71073 Å
a = 7.2209 (6) ÅCell parameters from 3639 reflections
b = 9.6252 (7) Åθ = 1.4–25.1°
c = 15.0478 (12) ŵ = 8.34 mm1
α = 98.251 (1)°T = 298 K
β = 92.279 (1)°Prism, yellow
γ = 94.196 (1)°0.20 × 0.15 × 0.10 mm
V = 1030.92 (14) Å3
Data collection top
Bruker APEX area-detector
diffractometer
3638 independent reflections
Radiation source: fine-focus sealed tube3454 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: numerical
(SADABS; Bruker, 2002)
h = 88
Tmin = 0.24, Tmax = 0.43k = 1111
7489 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0433P)2]
where P = (Fo2 + 2Fc2)/3
3638 reflections(Δ/σ)max = 0.003
306 parametersΔρmax = 1.13 e Å3
2 restraintsΔρmin = 0.77 e Å3
Crystal data top
[Pb(C8H4O7S)(C12H8N2)(H2O)]·H2Oγ = 94.196 (1)°
Mr = 667.60V = 1030.92 (14) Å3
Triclinic, P1Z = 2
a = 7.2209 (6) ÅMo Kα radiation
b = 9.6252 (7) ŵ = 8.34 mm1
c = 15.0478 (12) ÅT = 298 K
α = 98.251 (1)°0.20 × 0.15 × 0.10 mm
β = 92.279 (1)°
Data collection top
Bruker APEX area-detector
diffractometer
3638 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2002)
3454 reflections with I > 2σ(I)
Tmin = 0.24, Tmax = 0.43Rint = 0.022
7489 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0242 restraints
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.13 e Å3
3638 reflectionsΔρmin = 0.77 e Å3
306 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.91506 (2)0.564015 (14)0.871257 (9)0.02809 (7)
C10.7127 (6)0.2721 (5)0.9492 (3)0.0400 (11)
H10.70600.33970.99950.048*
C20.6687 (7)0.1312 (6)0.9569 (4)0.0483 (13)
H20.63600.10581.01180.058*
C30.6736 (7)0.0319 (5)0.8844 (4)0.0495 (13)
H30.64680.06240.88960.059*
C40.7191 (6)0.0702 (5)0.8010 (3)0.0381 (10)
C50.7193 (7)0.0279 (5)0.7204 (4)0.0468 (13)
H50.68770.12280.72210.056*
C60.7640 (7)0.0137 (5)0.6427 (4)0.0489 (13)
H60.76100.05240.59100.059*
C70.8161 (6)0.1575 (5)0.6377 (3)0.0406 (11)
C80.8653 (8)0.2056 (6)0.5580 (3)0.0563 (14)
H80.86270.14250.50490.068*
C90.9173 (9)0.3449 (6)0.5573 (4)0.0633 (16)
H90.94940.37750.50430.076*
C100.9210 (8)0.4361 (5)0.6371 (3)0.0489 (12)
H100.95790.53050.63640.059*
C110.8215 (5)0.2575 (4)0.7149 (3)0.0305 (9)
C120.7681 (5)0.2146 (4)0.7988 (3)0.0296 (9)
C131.2218 (5)0.9930 (4)0.7652 (3)0.0272 (9)
C141.1949 (6)1.0665 (4)0.8493 (3)0.0274 (9)
H141.15641.01830.89550.033*
C151.2258 (5)1.2125 (4)0.8645 (3)0.0284 (9)
C161.2840 (5)1.2830 (4)0.7956 (3)0.0284 (9)
H161.30551.38060.80580.034*
C171.3107 (5)1.2095 (4)0.7109 (3)0.0283 (9)
C181.2777 (5)1.0632 (4)0.6961 (3)0.0280 (9)
H181.29351.01310.63970.034*
C191.3765 (6)1.2893 (4)0.6391 (3)0.0305 (9)
C201.1991 (6)1.2922 (4)0.9564 (3)0.0307 (9)
O11.1977 (6)1.2270 (4)1.0222 (2)0.0558 (10)
O21.1765 (4)1.4220 (3)0.9622 (2)0.0378 (7)
O31.4370 (5)1.4119 (3)0.6542 (2)0.0429 (8)
O41.3628 (5)1.2157 (3)0.5586 (2)0.0461 (8)
H41.40661.26370.52250.069*
O51.2325 (6)0.7609 (3)0.6578 (2)0.0569 (10)
O61.0023 (5)0.7662 (3)0.7677 (3)0.0519 (9)
O71.3214 (5)0.7635 (3)0.8146 (2)0.0568 (10)
O80.6029 (4)0.5857 (4)0.8107 (2)0.0497 (9)
H8B0.58720.53840.76070.075*
H8A0.57160.66490.82800.075*
O90.4703 (7)0.3456 (4)0.4299 (3)0.0690 (13)
N10.7641 (5)0.3138 (4)0.8722 (2)0.0319 (8)
N20.8751 (5)0.3968 (4)0.7143 (2)0.0354 (8)
S11.19291 (15)0.80538 (10)0.74953 (7)0.0313 (2)
H9A0.553 (7)0.308 (6)0.406 (4)0.047*
H9B0.473 (7)0.423 (4)0.426 (4)0.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.03739 (11)0.02172 (10)0.02432 (10)0.00027 (7)0.00194 (6)0.00170 (7)
C10.040 (3)0.040 (3)0.039 (3)0.010 (2)0.006 (2)0.011 (2)
C20.051 (3)0.048 (3)0.049 (3)0.011 (2)0.009 (2)0.026 (3)
C30.044 (3)0.029 (3)0.075 (4)0.010 (2)0.015 (3)0.019 (3)
C40.030 (2)0.026 (2)0.058 (3)0.0021 (17)0.009 (2)0.009 (2)
C50.040 (3)0.022 (2)0.074 (4)0.0010 (19)0.011 (2)0.003 (2)
C60.046 (3)0.032 (3)0.062 (3)0.001 (2)0.002 (2)0.014 (2)
C70.034 (2)0.035 (3)0.046 (3)0.0005 (19)0.002 (2)0.012 (2)
C80.069 (4)0.058 (3)0.033 (3)0.006 (3)0.003 (2)0.018 (2)
C90.090 (4)0.061 (4)0.034 (3)0.016 (3)0.011 (3)0.000 (3)
C100.068 (3)0.042 (3)0.034 (3)0.009 (2)0.008 (2)0.003 (2)
C110.029 (2)0.028 (2)0.034 (2)0.0045 (17)0.0038 (17)0.0002 (18)
C120.025 (2)0.027 (2)0.036 (2)0.0028 (16)0.0059 (17)0.0038 (18)
C130.027 (2)0.021 (2)0.031 (2)0.0009 (16)0.0014 (16)0.0010 (17)
C140.031 (2)0.026 (2)0.026 (2)0.0048 (16)0.0034 (16)0.0059 (17)
C150.027 (2)0.028 (2)0.031 (2)0.0066 (16)0.0011 (16)0.0022 (18)
C160.029 (2)0.024 (2)0.032 (2)0.0027 (16)0.0008 (16)0.0002 (17)
C170.025 (2)0.029 (2)0.030 (2)0.0003 (16)0.0012 (16)0.0046 (18)
C180.032 (2)0.025 (2)0.025 (2)0.0014 (16)0.0014 (16)0.0013 (17)
C190.037 (2)0.024 (2)0.030 (2)0.0024 (17)0.0009 (17)0.0015 (18)
C200.035 (2)0.028 (2)0.029 (2)0.0085 (17)0.0034 (17)0.0004 (18)
O10.100 (3)0.041 (2)0.0307 (18)0.0291 (19)0.0070 (18)0.0075 (16)
O20.0517 (18)0.0265 (16)0.0341 (16)0.0037 (14)0.0064 (14)0.0004 (13)
O30.060 (2)0.0326 (18)0.0346 (17)0.0063 (15)0.0071 (15)0.0042 (14)
O40.074 (2)0.0334 (18)0.0289 (17)0.0117 (16)0.0107 (16)0.0028 (14)
O50.101 (3)0.0278 (18)0.0383 (19)0.0037 (18)0.0193 (19)0.0060 (15)
O60.052 (2)0.0321 (18)0.075 (2)0.0030 (15)0.0127 (18)0.0201 (18)
O70.072 (2)0.039 (2)0.061 (2)0.0244 (18)0.0156 (19)0.0053 (17)
O80.0462 (19)0.043 (2)0.054 (2)0.0123 (16)0.0085 (16)0.0151 (17)
O90.111 (4)0.045 (2)0.060 (3)0.015 (2)0.039 (2)0.026 (2)
N10.0360 (19)0.0287 (19)0.0310 (19)0.0043 (15)0.0015 (15)0.0084 (16)
N20.044 (2)0.031 (2)0.0303 (19)0.0009 (16)0.0011 (16)0.0035 (16)
S10.0437 (6)0.0204 (5)0.0295 (5)0.0020 (4)0.0039 (4)0.0027 (4)
Geometric parameters (Å, º) top
Pb1—O82.432 (3)C11—C121.442 (6)
Pb1—N12.572 (3)C12—N11.355 (5)
Pb1—O1i2.588 (3)C13—C181.376 (6)
Pb1—O2i2.605 (3)C13—C141.386 (6)
Pb1—N22.653 (4)C13—S11.783 (4)
Pb1—O62.717 (3)C14—C151.390 (6)
Pb1—O2ii2.831 (3)C14—H140.9300
C1—N11.336 (5)C15—C161.382 (6)
C1—C21.392 (7)C15—C201.509 (6)
C1—H10.9300C16—C171.394 (6)
C2—C31.346 (8)C16—H160.9300
C2—H20.9300C17—C181.396 (5)
C3—C41.402 (7)C17—C191.486 (6)
C3—H30.9300C18—H180.9300
C4—C121.414 (6)C19—O31.214 (5)
C4—C51.426 (7)C19—O41.309 (5)
C5—C61.333 (7)C20—O11.246 (5)
C5—H50.9300C20—O21.263 (5)
C6—C71.421 (7)O1—Pb1i2.588 (3)
C6—H60.9300O2—Pb1i2.605 (3)
C7—C111.395 (6)O4—H40.8200
C7—C81.396 (7)O5—S11.431 (3)
C8—C91.367 (8)O6—S11.448 (3)
C8—H80.9300O7—S11.442 (3)
C9—C101.380 (7)O8—H8B0.8200
C9—H90.9300O8—H8A0.8200
C10—N21.319 (6)O9—H9A0.79 (4)
C10—H100.9300O9—H9B0.75 (4)
C11—N21.370 (5)
O8—Pb1—N178.88 (12)N2—C11—C7122.4 (4)
O8—Pb1—O1i76.52 (12)N2—C11—C12118.0 (4)
N1—Pb1—O1i119.70 (12)C7—C11—C12119.6 (4)
O8—Pb1—O2i95.36 (11)N1—C12—C4122.4 (4)
N1—Pb1—O2i78.81 (10)N1—C12—C11119.1 (4)
O1i—Pb1—O2i50.35 (10)C4—C12—C11118.5 (4)
O8—Pb1—N273.39 (11)C18—C13—C14120.7 (4)
N1—Pb1—N263.34 (11)C18—C13—S1120.5 (3)
O1i—Pb1—N2148.40 (12)C14—C13—S1118.8 (3)
O2i—Pb1—N2141.79 (10)C13—C14—C15119.9 (4)
O8—Pb1—O682.14 (12)C13—C14—H14120.0
N1—Pb1—O6145.22 (12)C15—C14—H14120.0
O1i—Pb1—O683.15 (11)C16—C15—C14119.6 (4)
O2i—Pb1—O6132.11 (10)C16—C15—C20120.6 (4)
N2—Pb1—O683.43 (11)C14—C15—C20119.9 (4)
O8—Pb1—O2ii151.86 (11)C15—C16—C17120.7 (4)
N1—Pb1—O2ii73.96 (10)C15—C16—H16119.7
O1i—Pb1—O2ii110.87 (10)C17—C16—H16119.7
O2i—Pb1—O2ii72.43 (10)C16—C17—C18119.3 (4)
N2—Pb1—O2ii100.26 (10)C16—C17—C19118.9 (4)
O6—Pb1—O2ii125.03 (10)C18—C17—C19121.8 (4)
N1—C1—C2122.4 (5)C13—C18—C17119.9 (4)
N1—C1—H1118.8C13—C18—H18120.0
C2—C1—H1118.8C17—C18—H18120.0
C3—C2—C1119.7 (5)O3—C19—O4123.3 (4)
C3—C2—H2120.1O3—C19—C17122.7 (4)
C1—C2—H2120.1O4—C19—C17113.9 (3)
C2—C3—C4120.3 (4)O1—C20—O2123.4 (4)
C2—C3—H3119.9O1—C20—C15118.8 (4)
C4—C3—H3119.9O2—C20—C15117.8 (4)
C3—C4—C12116.9 (4)C20—O1—Pb1i93.3 (2)
C3—C4—C5123.6 (4)C20—O2—Pb1i92.1 (2)
C12—C4—C5119.5 (4)C19—O4—H4109.5
C6—C5—C4121.4 (4)S1—O6—Pb1121.72 (19)
C6—C5—H5119.3Pb1—O8—H8B109.5
C4—C5—H5119.3Pb1—O8—H8A109.5
C5—C6—C7120.9 (5)H8B—O8—H8A129.2
C5—C6—H6119.5H9A—O9—H9B113 (6)
C7—C6—H6119.5C1—N1—C12118.2 (4)
C11—C7—C8117.1 (4)C1—N1—Pb1120.4 (3)
C11—C7—C6120.0 (5)C12—N1—Pb1120.2 (3)
C8—C7—C6122.9 (4)C10—N2—C11117.9 (4)
C9—C8—C7120.5 (5)C10—N2—Pb1124.1 (3)
C9—C8—H8119.8C11—N2—Pb1117.6 (3)
C7—C8—H8119.8O5—S1—O7114.5 (2)
C8—C9—C10118.5 (5)O5—S1—O6112.2 (2)
C8—C9—H9120.8O7—S1—O6111.3 (2)
C10—C9—H9120.8O5—S1—C13105.66 (19)
N2—C10—C9123.7 (5)O7—S1—C13105.3 (2)
N2—C10—H10118.2O6—S1—C13107.21 (19)
C9—C10—H10118.2
N1—C1—C2—C31.4 (7)N1—Pb1—O6—S1110.8 (3)
C1—C2—C3—C41.3 (7)O1i—Pb1—O6—S1114.7 (2)
C2—C3—C4—C123.3 (7)O2i—Pb1—O6—S1101.8 (2)
C2—C3—C4—C5177.1 (4)N2—Pb1—O6—S194.0 (2)
C3—C4—C5—C6179.9 (5)O2ii—Pb1—O6—S13.9 (3)
C12—C4—C5—C60.3 (7)C2—C1—N1—C121.8 (6)
C4—C5—C6—C71.1 (7)C2—C1—N1—Pb1165.7 (3)
C5—C6—C7—C110.1 (7)C4—C12—N1—C10.4 (6)
C5—C6—C7—C8179.5 (5)C11—C12—N1—C1179.4 (4)
C11—C7—C8—C90.5 (8)C4—C12—N1—Pb1167.9 (3)
C6—C7—C8—C9178.9 (5)C11—C12—N1—Pb113.0 (5)
C7—C8—C9—C100.4 (9)O8—Pb1—N1—C1104.3 (3)
C8—C9—C10—N20.8 (9)O1i—Pb1—N1—C136.9 (4)
C8—C7—C11—N21.0 (7)O2i—Pb1—N1—C16.5 (3)
C6—C7—C11—N2178.4 (4)N2—Pb1—N1—C1178.9 (4)
C8—C7—C11—C12178.6 (4)O6—Pb1—N1—C1162.4 (3)
C6—C7—C11—C122.0 (6)O2ii—Pb1—N1—C168.3 (3)
C3—C4—C12—N12.9 (6)O8—Pb1—N1—C1288.5 (3)
C5—C4—C12—N1177.5 (4)O1i—Pb1—N1—C12155.8 (3)
C3—C4—C12—C11178.0 (4)O2i—Pb1—N1—C12173.7 (3)
C5—C4—C12—C111.5 (6)N2—Pb1—N1—C1211.6 (3)
N2—C11—C12—N13.2 (6)O6—Pb1—N1—C1230.3 (4)
C7—C11—C12—N1176.4 (4)O2ii—Pb1—N1—C1299.0 (3)
N2—C11—C12—C4177.7 (4)C9—C10—N2—C110.2 (8)
C7—C11—C12—C42.7 (6)C9—C10—N2—Pb1173.2 (4)
C18—C13—C14—C150.4 (6)C7—C11—N2—C100.7 (6)
S1—C13—C14—C15176.7 (3)C12—C11—N2—C10178.9 (4)
C13—C14—C15—C160.3 (6)C7—C11—N2—Pb1172.8 (3)
C13—C14—C15—C20179.2 (4)C12—C11—N2—Pb17.6 (5)
C14—C15—C16—C170.4 (6)O8—Pb1—N2—C1091.7 (4)
C20—C15—C16—C17179.3 (4)N1—Pb1—N2—C10177.3 (4)
C15—C16—C17—C180.1 (6)O1i—Pb1—N2—C1073.4 (5)
C15—C16—C17—C19178.9 (4)O2i—Pb1—N2—C10168.9 (4)
C14—C13—C18—C171.0 (6)O6—Pb1—N2—C107.9 (4)
S1—C13—C18—C17176.1 (3)O2ii—Pb1—N2—C10116.5 (4)
C16—C17—C18—C130.8 (6)O8—Pb1—N2—C1195.3 (3)
C19—C17—C18—C13178.2 (4)N1—Pb1—N2—C119.6 (3)
C16—C17—C19—O312.4 (6)O1i—Pb1—N2—C11113.6 (3)
C18—C17—C19—O3166.6 (4)O2i—Pb1—N2—C1118.1 (4)
C16—C17—C19—O4167.5 (4)O6—Pb1—N2—C11179.1 (3)
C18—C17—C19—O413.5 (6)O2ii—Pb1—N2—C1156.5 (3)
C16—C15—C20—O1160.3 (4)Pb1—O6—S1—O5110.0 (2)
C14—C15—C20—O118.5 (6)Pb1—O6—S1—O719.8 (3)
C16—C15—C20—O220.7 (6)Pb1—O6—S1—C13134.4 (2)
C14—C15—C20—O2160.4 (4)C18—C13—S1—O51.9 (4)
O2—C20—O1—Pb1i9.1 (5)C14—C13—S1—O5179.0 (3)
C15—C20—O1—Pb1i169.8 (3)C18—C13—S1—O7119.7 (4)
O1—C20—O2—Pb1i9.0 (5)C14—C13—S1—O757.5 (4)
C15—C20—O2—Pb1i169.9 (3)C18—C13—S1—O6121.7 (3)
O8—Pb1—O6—S1168.1 (3)C14—C13—S1—O661.2 (4)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O9iii0.821.762.567 (5)169
O8—H8B···O3iv0.822.082.851 (5)156
O8—H8A···O7v0.822.122.749 (5)134
O9—H9A···O5vi0.79 (4)1.96 (4)2.749 (6)172 (6)
O9—H9B···O3vii0.75 (4)2.21 (4)2.862 (5)145 (5)
Symmetry codes: (iii) x+1, y+1, z; (iv) x1, y1, z; (v) x1, y, z; (vi) x+2, y+1, z+1; (vii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Pb(C8H4O7S)(C12H8N2)(H2O)]·H2O
Mr667.60
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.2209 (6), 9.6252 (7), 15.0478 (12)
α, β, γ (°)98.251 (1), 92.279 (1), 94.196 (1)
V3)1030.92 (14)
Z2
Radiation typeMo Kα
µ (mm1)8.34
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionNumerical
(SADABS; Bruker, 2002)
Tmin, Tmax0.24, 0.43
No. of measured, independent and
observed [I > 2σ(I)] reflections
7489, 3638, 3454
Rint0.022
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.058, 1.04
No. of reflections3638
No. of parameters306
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.13, 0.77

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXTL (Bruker, 2002).

Selected geometric parameters (Å, º) top
Pb1—O82.432 (3)Pb1—O2ii2.831 (3)
Pb1—N12.572 (3)O1—Pb1i2.588 (3)
Pb1—O1i2.588 (3)O2—Pb1i2.605 (3)
Pb1—O2i2.605 (3)O5—S11.431 (3)
Pb1—N22.653 (4)O6—S11.448 (3)
Pb1—O62.717 (3)O7—S11.442 (3)
O8—Pb1—O1i76.52 (12)O2i—Pb1—O6132.11 (10)
N1—Pb1—O1i119.70 (12)O8—Pb1—O2ii151.86 (11)
O8—Pb1—O2i95.36 (11)O2i—Pb1—O2ii72.43 (10)
O1i—Pb1—O2i50.35 (10)O6—Pb1—O2ii125.03 (10)
N1—Pb1—N263.34 (11)C20—O1—Pb1i93.3 (2)
O1i—Pb1—N2148.40 (12)C20—O2—Pb1i92.1 (2)
O1i—Pb1—O683.15 (11)S1—O6—Pb1121.72 (19)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O9iii0.821.762.567 (5)169
O8—H8B···O3iv0.822.082.851 (5)156
O8—H8A···O7v0.822.122.749 (5)134
O9—H9A···O5vi0.79 (4)1.96 (4)2.749 (6)172 (6)
O9—H9B···O3vii0.75 (4)2.21 (4)2.862 (5)145 (5)
Symmetry codes: (iii) x+1, y+1, z; (iv) x1, y1, z; (v) x1, y, z; (vi) x+2, y+1, z+1; (vii) x+2, y+2, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds