Download citation
Download citation
link to html
In the title compound 3,5-bis(4-methoxy­benzyl­idene)-1-methyl-4-piperidone, C22H23NO3, (I), the central heterocyclic ring adopts a flattened boat conformation, while in the related salt 3,5-bis(4-methoxy­benzyl­idene)-1-methyl-4-oxopiperidin­ium chloride, C22H24NO3+·Cl, (II), the ring exhibits a `sofa' conformation in which the N atom deviates from the planar fragment. The pendant benzene rings are twisted from the heterocyclic ring planes in both mol­ecules in the same direction, the range of dihedral angles between the ring planes being 24.5 (2)–32.7 (2)°. The dominant packing motif in (I) involves centrosymmetric dimers bound by weak intermolecular C—H...O hydrogen bonds. In (II), cations and anions are linked by strong N—H...Cl hydrogen bonds, while weak C—H...O and C—H...Cl hydrogen bonds link the cations and anions into a three-dimensional framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104022723/ga1078sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104022723/ga1078Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104022723/ga1078IIsup3.hkl
Contains datablock II

CCDC references: 257017; 257018

Comment top

The present investigation is a continuation of our work that includes the syntheses and structural investigation of nonlinear optical organic compounds with two-photon absorption properties, such compounds being potential biophotonic materials (Nesterov et al., 2003; Peterson et al., 2004a,2004b). Comparison of the structures of the investigated molecules with related compounds found in the literature that possess anticancer activities has shown that these compounds are very similar (Jia et al., 1988, 1989; Dimmock et al., 1992a, 1992b; Dimmock et al., 1994a, 1994b; Dimmock et al., 2001). The compounds that we are investigating may find applications as agents for locating cancer cells with two-photon exited fluorescence and have potential as agents for a photodynamic treatment of cancer (Nesterov et al., 2003; Peterson et al., 2004a,2004b). The syntheses and structural investigation of 3,5-bis(4-methoxybenzylidene)-1-methyl-4-piperidone, (I) (Fig. 1), and the salt, (II) (Fig. 2), that was obtained from (I) are presented here. Their two-photon absorption properties and fluorescence activity will be published elsewhere.

Both compounds contain two p-methoxyphenyl donor groups connected to the central acceptor heterocyclic ring via conjugated bridges, but the compounds have slightly different structures. In (I), the heterocyclic ring adopts a flattened boat conformation; atoms N1 and C4 are out of the C2/C3/C5/C6 plane [planar within 0.027 (3) Å] by −0.714 (3) and −0.190 (3) Å, respectively. In (II), the conformation of this ring can be described as sofa; atom N1 is out of the C2–C6 plane [planar within 0.013 (3) Å] by 0.686 (3) Å. We have previously described a conformation of the heterocyclic ring in related compounds (Nesterov et al., 2003). As seen in Figs. 1 and 2, the methyl substituents of the methoxy groups have different orientations relative to the phenyl rings. In both cases, these substituents almost lie in the planes of the aromatic rings [C10—C11—O2—C14 = −175.8 (3) and −7.8 (5)°, and C18—C19—O3—C22 = 174.0 (3) and 3.0 (5)°, in (I) and (II), respectively], with geometric parameters in good agreement with the literature data (Gallagher et al., 2001). According to these results, it is possible to predict the existence of other polymorphic modifications of (I) and (II) corresponding to other orientations of these flexible substituents.

Both molecules are non-planar; the dihedral angles between the flat part of the heterocycle and the two almost flat fragments that include the phenyl ring and the bridging atom are 24.5 (2) and 32.7 (2)° in (I), and 25.1 (2) and 31.0 (2)° in (II). The differences in a mutual orientation of these fragments and the flatness of the heterocyclic rings [especially in (II)] lead to H···H intramolecular steric interactions [H2A···H21A = 2.32 and 2.23 Å, and H6B···H13A = 2.32 and 2.09 Å, in (I) and (II), respectively]. These contacts are very close to or shorter than the sum of the van der Waals radii of H atoms (Rowland & Taylor, 1996). Nevertheless, it is possible to predict conjugation between the donor and acceptor parts of the molecules. The bond length distributions in the bridges show a small alternation of single C—C and double C=C bond lengths (Tables 1 and 3) around standard distances (Allen et al., 1987). Most of the geometric parameters in the investigated molecules are very similar to those reported in our previous studies (Nesterov et al., 2003).

In the crystal structure of (I), there is an intermolecular steric contact (H22C···O1 = 2.51 Å) that, according to literature data (Desiraju & Steiner 1999), can be considered as a weak hydrogen bond. Such hydrogen bonds link the molecules into centrosymmetric dimers (Fig. 3 and Table 2). In the crystal of (II), cations and anions are linked by strong N1—H1···Cl1 hydrogen bonds. In addition, weak H1B···O1 (2.45 Å) and H18A···O2 (2.52 Å) intermolecular hydrogen bonds link cations into layers parallel to the ac plane (Fig. 4). Moreover, the Cl anions form very weak intermolecular contacts with the cations (Cl1···H13A = 2.83 Å and Cl1···H21A =2.89 Å), thus completing a three-dimensional framework (Table 4). In salt (II), there are also intermolecular steric contacts between C···C atoms, which are less than the sum of the van der Waals radii of C atoms (Rowland & Taylor, 1996) [C4···C4(1 − x, 1 − y, 1 − z) = 3.228 (4) Å and C7···C15(1 − x, 1 − y,1 − z) = 3.376 (4) Å]. The remaining geometric parameters in the investigated molecules have normal values (Allen et al., 1987).

Experimental top

Compound (I) was obtained according to the procedure described by Nesterov et al. (2003). The precipitate was isolated and recrystallized from tetrahydrofurane (m.p. 477 K, yield 76%). Compound (II) was synthesized on the base (I) and recrystallized from ethanol (m.p. 484 K, yield 91%). Crystals of the two compounds were grown by isothermal evaporation of acetonitrile and ethanol solutions of (I) and (II), respectively. The compounds were characterized by 1H and 13C NMR spectroscopy.

Computing details top

For both compounds, data collection: CAD-4 Software (Enraf–Nonuis, 1989); cell refinement: CAD-4 Software; data reduction: SHELXTL (Sheldrick, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. : A view of (I), showing the atom numbering used. Non-H atoms are shown with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. : A view of (II), showing the atom numbering used. Non-H atoms are shown with displacement ellipsoids drawn at the 50% probability level.
[Figure 3] Fig. 3. : A projection of the crystal packing of (I) along the c axis. Dashed lines are intermolecular C—H···O hydrogen bonds (see Table 2).
[Figure 4] Fig. 4. : A projection of the crystal packing of (II) along the b axis. Dashed lines are intermolecular N—H···Cl and C—H···O hydrogen bonds (see Table 4).
(I) 3,5-bis(4-methoxybenzylidene)-1-methyl-4-piperidone top
Crystal data top
C22H23NO3F(000) = 744
Mr = 349.41Dx = 1.279 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.315 (2) ÅCell parameters from 24 reflections
b = 7.8910 (16) Åθ = 10–11°
c = 20.356 (4) ŵ = 0.09 mm1
β = 92.87 (3)°T = 295 K
V = 1815.2 (6) Å3Needle, yellow
Z = 40.50 × 0.20 × 0.10 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
Rint = 0.073
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.0°
Graphite monochromatorh = 013
θ/2θ scansk = 09
3340 measured reflectionsl = 2424
3167 independent reflections3 standard reflections every 97 reflections
1398 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.05P)2]
where P = (Fo2 + 2Fc2)/3
3167 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C22H23NO3V = 1815.2 (6) Å3
Mr = 349.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.315 (2) ŵ = 0.09 mm1
b = 7.8910 (16) ÅT = 295 K
c = 20.356 (4) Å0.50 × 0.20 × 0.10 mm
β = 92.87 (3)°
Data collection top
Enraf-Nonius CAD4
diffractometer
Rint = 0.073
3340 measured reflections3 standard reflections every 97 reflections
3167 independent reflections intensity decay: 3%
1398 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.03Δρmax = 0.16 e Å3
3167 reflectionsΔρmin = 0.20 e Å3
238 parameters
Special details top

Experimental. (I): 1H NMR (CDCl3, 300 MHz) δ 7.77 (s, 2H), 7.37 (d, 4H, J = 8.8 Hz), 6.95 (d, 4H, J = 8.8 Hz), 3.85 (s, 6H), 3.76 (s, 4H), 2.48 (s, 3H) p.p.m.. 13C NMR (CDCl3, 75 MHz) δ 186.8, 160.2, 135.9, 132.3, 131.3, 128.0, 114.0, 57.2, 55.3, 45.9 p.p.m..

(II): 1H NMR (DMSO-d6, 300 MHz) δ 11.80 (br s, 1H, NH), 7.83 (s, 2H), 7.53 (d, 4H, J = 8.8 Hz), 7.09 (d, 4H, J = 8.8 Hz), 4.64 (s, 4H), 3.84 (s, 6H), 2.98 (s, 3H) p.p.m.. 13C NMR (DMSO-d6, 75 MHz) δ 181.1, 160.8, 139.1, 133.0, 126.1, 124.8, 114.5, 55.5, 53.1, 42.2 p.p.m..

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H distances of 0.93 Å for aromatic H atoms with Uiso(H) = 1.2Ueq(C), 0.97 Å for CH2 with Uiso(H) = 1.2Ueq(C) and 0.96 Å for CH3 groups with Uiso(H) = 1.5Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.03600 (19)0.1467 (3)0.67933 (10)0.0727 (7)
O20.12189 (18)0.3551 (3)1.07297 (10)0.0639 (7)
O30.1767 (2)0.4268 (3)0.30861 (10)0.0813 (8)
N10.30109 (18)0.2390 (3)0.69294 (11)0.0441 (6)
C10.4293 (2)0.2564 (4)0.69818 (15)0.0583 (9)
H1A0.46100.18510.73300.087*
H1B0.44970.37220.70760.087*
H1C0.46170.22320.65740.087*
C20.2483 (2)0.3260 (4)0.63555 (13)0.0474 (8)
H2A0.29180.29850.59710.057*
H2B0.25240.44760.64230.057*
C30.1215 (2)0.2722 (4)0.62480 (14)0.0432 (8)
C40.0603 (3)0.2174 (4)0.68389 (14)0.0480 (8)
C50.1183 (2)0.2569 (4)0.74930 (14)0.0428 (7)
C60.2474 (3)0.2987 (4)0.75162 (15)0.0457 (8)
H6A0.25770.42040.75540.055*
H6B0.28620.24620.79000.055*
C70.0511 (3)0.2448 (4)0.80208 (14)0.0475 (8)
H7A0.02670.21140.79240.057*
C80.0800 (2)0.2755 (4)0.87154 (13)0.0410 (7)
C90.0088 (3)0.1995 (4)0.91714 (15)0.0554 (9)
H9A0.05230.12840.90210.066*
C100.0261 (3)0.2263 (4)0.98307 (15)0.0593 (9)
H10A0.02190.17201.01230.071*
C110.1141 (3)0.3331 (4)1.00649 (14)0.0458 (8)
C120.1866 (3)0.4099 (4)0.96313 (14)0.0509 (8)
H12A0.24720.48120.97860.061*
C130.1688 (3)0.3802 (4)0.89641 (14)0.0510 (8)
H13A0.21820.43260.86740.061*
C140.2065 (3)0.4737 (5)1.09958 (15)0.0751 (11)
H14A0.19790.48451.14610.113*
H14B0.19370.58191.07890.113*
H14C0.28490.43451.09170.113*
C150.0621 (2)0.2645 (4)0.56676 (14)0.0478 (8)
H15A0.01390.22030.56820.057*
C160.0962 (2)0.3136 (4)0.50127 (14)0.0451 (8)
C170.0421 (3)0.2336 (4)0.44676 (15)0.0599 (9)
H17A0.01510.15130.45320.072*
C180.0708 (3)0.2729 (5)0.38355 (16)0.0659 (10)
H18A0.03520.21440.34820.079*
C190.1521 (3)0.3988 (4)0.37257 (15)0.0546 (9)
C200.2046 (2)0.4836 (4)0.42576 (13)0.0494 (8)
H20A0.25850.57000.41900.059*
C210.1773 (2)0.4408 (4)0.48852 (14)0.0488 (8)
H21A0.21420.49850.52370.059*
C220.2508 (3)0.5651 (5)0.29362 (16)0.0776 (12)
H22A0.26340.56570.24730.116*
H22B0.32550.55390.31780.116*
H22C0.21370.66930.30560.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0572 (15)0.100 (2)0.0612 (15)0.0318 (15)0.0076 (11)0.0073 (14)
O20.0704 (15)0.0747 (17)0.0470 (14)0.0021 (13)0.0060 (11)0.0018 (13)
O30.120 (2)0.082 (2)0.0421 (14)0.0178 (17)0.0054 (13)0.0025 (13)
N10.0403 (13)0.0489 (17)0.0433 (14)0.0000 (12)0.0045 (11)0.0039 (13)
C10.0433 (18)0.072 (3)0.060 (2)0.0001 (17)0.0060 (14)0.0017 (18)
C20.0516 (19)0.048 (2)0.0423 (18)0.0018 (16)0.0028 (14)0.0019 (16)
C30.0452 (17)0.0383 (19)0.0462 (19)0.0011 (15)0.0037 (14)0.0022 (15)
C40.0442 (18)0.048 (2)0.052 (2)0.0051 (16)0.0061 (14)0.0013 (16)
C50.0472 (17)0.0342 (18)0.0475 (18)0.0014 (15)0.0074 (14)0.0001 (15)
C60.0502 (17)0.042 (2)0.0453 (17)0.0027 (15)0.0081 (13)0.0024 (15)
C70.0464 (18)0.044 (2)0.053 (2)0.0025 (16)0.0058 (14)0.0004 (16)
C80.0429 (17)0.0383 (19)0.0422 (17)0.0009 (15)0.0078 (13)0.0012 (15)
C90.0491 (19)0.064 (2)0.054 (2)0.0150 (17)0.0110 (15)0.0058 (18)
C100.059 (2)0.070 (3)0.049 (2)0.015 (2)0.0160 (15)0.0028 (18)
C110.0496 (19)0.050 (2)0.0384 (18)0.0077 (16)0.0040 (15)0.0047 (16)
C120.0525 (19)0.048 (2)0.053 (2)0.0072 (16)0.0081 (15)0.0053 (16)
C130.059 (2)0.049 (2)0.046 (2)0.0061 (17)0.0161 (16)0.0003 (16)
C140.083 (3)0.082 (3)0.058 (2)0.007 (2)0.0120 (19)0.009 (2)
C150.0426 (17)0.047 (2)0.054 (2)0.0025 (15)0.0032 (14)0.0030 (16)
C160.0387 (17)0.051 (2)0.0449 (19)0.0030 (15)0.0025 (14)0.0008 (16)
C170.056 (2)0.067 (3)0.055 (2)0.0136 (18)0.0101 (16)0.0059 (19)
C180.079 (2)0.067 (3)0.049 (2)0.012 (2)0.0168 (17)0.0043 (19)
C190.065 (2)0.056 (2)0.042 (2)0.0030 (18)0.0014 (16)0.0019 (17)
C200.051 (2)0.050 (2)0.047 (2)0.0015 (16)0.0015 (15)0.0015 (16)
C210.054 (2)0.049 (2)0.0427 (18)0.0015 (17)0.0025 (14)0.0073 (16)
C220.093 (3)0.081 (3)0.059 (2)0.004 (2)0.010 (2)0.009 (2)
Geometric parameters (Å, º) top
O1—C41.223 (3)C9—H9A0.9300
O2—C111.363 (3)C10—C111.372 (4)
O2—C141.426 (4)C10—H10A0.9300
O3—C191.363 (4)C11—C121.375 (4)
O3—C221.419 (4)C12—C131.383 (4)
N1—C61.446 (3)C12—H12A0.9300
N1—C11.455 (3)C13—H13A0.9300
N1—C21.457 (3)C14—H14A0.9600
C1—H1A0.9600C14—H14B0.9600
C1—H1B0.9600C14—H14C0.9600
C1—H1C0.9600C15—C161.458 (4)
C2—C31.503 (4)C15—H15A0.9300
C2—H2A0.9700C16—C171.392 (4)
C2—H2B0.9700C16—C211.393 (4)
C3—C151.331 (4)C17—C181.378 (4)
C3—C41.482 (4)C17—H17A0.9300
C4—C51.488 (4)C18—C191.380 (4)
C5—C71.351 (4)C18—H18A0.9300
C5—C61.495 (4)C19—C201.382 (4)
C6—H6A0.9700C20—C211.372 (4)
C6—H6B0.9700C20—H20A0.9300
C7—C81.455 (4)C21—H21A0.9300
C7—H7A0.9300C22—H22A0.9600
C8—C131.378 (4)C22—H22B0.9600
C8—C91.395 (4)C22—H22C0.9600
C9—C101.363 (4)
C11—O2—C14118.0 (2)C11—C10—H10A119.9
C19—O3—C22118.8 (3)O2—C11—C10115.6 (3)
C6—N1—C1111.6 (2)O2—C11—C12124.8 (3)
C6—N1—C2109.7 (2)C10—C11—C12119.6 (3)
C1—N1—C2112.4 (2)C11—C12—C13119.6 (3)
N1—C1—H1A109.5C11—C12—H12A120.2
N1—C1—H1B109.5C13—C12—H12A120.2
H1A—C1—H1B109.5C8—C13—C12122.0 (3)
N1—C1—H1C109.5C8—C13—H13A119.0
H1A—C1—H1C109.5C12—C13—H13A119.0
H1B—C1—H1C109.5O2—C14—H14A109.5
N1—C2—C3109.5 (2)O2—C14—H14B109.5
N1—C2—H2A109.8H14A—C14—H14B109.5
C3—C2—H2A109.8O2—C14—H14C109.5
N1—C2—H2B109.8H14A—C14—H14C109.5
C3—C2—H2B109.8H14B—C14—H14C109.5
H2A—C2—H2B108.2C3—C15—C16130.9 (3)
C15—C3—C4118.1 (3)C3—C15—H15A114.6
C15—C3—C2125.3 (3)C16—C15—H15A114.6
C4—C3—C2116.5 (2)C17—C16—C21116.5 (3)
O1—C4—C3121.5 (3)C17—C16—C15118.8 (3)
O1—C4—C5121.0 (3)C21—C16—C15124.6 (3)
C3—C4—C5117.5 (3)C18—C17—C16121.8 (3)
C7—C5—C4117.1 (3)C18—C17—H17A119.1
C7—C5—C6125.3 (3)C16—C17—H17A119.1
C4—C5—C6117.5 (2)C17—C18—C19120.2 (3)
N1—C6—C5110.6 (2)C17—C18—H18A119.9
N1—C6—H6A109.5C19—C18—H18A119.9
C5—C6—H6A109.5O3—C19—C18116.2 (3)
N1—C6—H6B109.5O3—C19—C20124.7 (3)
C5—C6—H6B109.5C18—C19—C20119.1 (3)
H6A—C6—H6B108.1C21—C20—C19120.2 (3)
C5—C7—C8130.8 (3)C21—C20—H20A119.9
C5—C7—H7A114.6C19—C20—H20A119.9
C8—C7—H7A114.6C20—C21—C16122.1 (3)
C13—C8—C9116.6 (3)C20—C21—H21A118.9
C13—C8—C7125.5 (3)C16—C21—H21A118.9
C9—C8—C7117.8 (3)O3—C22—H22A109.5
C10—C9—C8122.0 (3)O3—C22—H22B109.5
C10—C9—H9A119.0H22A—C22—H22B109.5
C8—C9—H9A119.0O3—C22—H22C109.5
C9—C10—C11120.2 (3)H22A—C22—H22C109.5
C9—C10—H10A119.9H22B—C22—H22C109.5
C6—N1—C2—C367.6 (3)C14—O2—C11—C123.9 (4)
C1—N1—C2—C3167.7 (2)C9—C10—C11—O2178.2 (3)
N1—C2—C3—C15149.9 (3)C9—C10—C11—C121.6 (5)
N1—C2—C3—C427.6 (3)O2—C11—C12—C13178.8 (3)
C15—C3—C4—O19.3 (5)C10—C11—C12—C130.9 (5)
C2—C3—C4—O1168.4 (3)C9—C8—C13—C120.3 (4)
C15—C3—C4—C5168.6 (3)C7—C8—C13—C12176.4 (3)
C2—C3—C4—C513.7 (4)C11—C12—C13—C80.0 (5)
O1—C4—C5—C713.5 (4)C4—C3—C15—C16177.8 (3)
C3—C4—C5—C7164.4 (3)C2—C3—C15—C164.7 (5)
O1—C4—C5—C6163.6 (3)C3—C15—C16—C17154.0 (3)
C3—C4—C5—C618.4 (4)C3—C15—C16—C2128.3 (5)
C1—N1—C6—C5171.8 (2)C21—C16—C17—C182.6 (5)
C2—N1—C6—C563.0 (3)C15—C16—C17—C18179.5 (3)
C7—C5—C6—N1157.9 (3)C16—C17—C18—C192.3 (5)
C4—C5—C6—N119.0 (4)C22—O3—C19—C18174.0 (3)
C4—C5—C7—C8179.5 (3)C22—O3—C19—C207.7 (5)
C6—C5—C7—C83.6 (5)C17—C18—C19—O3178.8 (3)
C5—C7—C8—C1325.0 (5)C17—C18—C19—C200.4 (5)
C5—C7—C8—C9158.3 (3)O3—C19—C20—C21177.1 (3)
C13—C8—C9—C100.3 (5)C18—C19—C20—C211.1 (5)
C7—C8—C9—C10177.3 (3)C19—C20—C21—C160.7 (5)
C8—C9—C10—C111.3 (5)C17—C16—C21—C201.1 (4)
C14—O2—C11—C10175.8 (3)C15—C16—C21—C20178.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22C···O1i0.962.513.394 (4)153
Symmetry code: (i) x, y+1, z+1.
(II) 3,5-bis(4-methoxybenzylidene)-1-methyl-4-oxopiperidinium chloride top
Crystal data top
C22H24NO3+·ClF(000) = 816
Mr = 385.87Dx = 1.308 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.030 (3) ÅCell parameters from 24 reflections
b = 8.0020 (16) Åθ = 11–12°
c = 16.585 (3) ŵ = 0.22 mm1
β = 100.81 (3)°T = 295 K
V = 1959.3 (7) Å3Prism, yellow
Z = 40.50 × 0.35 × 0.25 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.047
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 1.4°
Graphite monochromatorh = 018
θ/2θ scansk = 09
3962 measured reflectionsl = 2020
3811 independent reflections3 standard reflections every 97 reflections
2057 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.067P)2 + 0.05P]
where P = (Fo2 + 2Fc2)/3
3811 reflections(Δ/σ)max < 0.001
251 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C22H24NO3+·ClV = 1959.3 (7) Å3
Mr = 385.87Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.030 (3) ŵ = 0.22 mm1
b = 8.0020 (16) ÅT = 295 K
c = 16.585 (3) Å0.50 × 0.35 × 0.25 mm
β = 100.81 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.047
3962 measured reflections3 standard reflections every 97 reflections
3811 independent reflections intensity decay: 3%
2057 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.27 e Å3
3811 reflectionsΔρmin = 0.24 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The NH-hydrogen atom was found from a difference Fourier map and refined isotropically. All other H atoms were placed in geometrically calculated positions and refined using a riding model with C—H distances of 0.93 Å for aromatic H atoms with Uiso(H) = 1.2Ueq(C), 0.97 Å for CH2 with Uiso(H) = 1.2Ueq(C) and 0.96 Å for CH3 groups with Uiso (H) = 1.5Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.34440 (6)1.01504 (10)0.65498 (5)0.0570 (3)
O10.44018 (14)0.6789 (3)0.43821 (11)0.0562 (6)
O20.92125 (14)0.9902 (3)0.72942 (13)0.0615 (6)
O30.04136 (14)0.1980 (3)0.47422 (14)0.0633 (7)
N10.41077 (14)0.6641 (3)0.67577 (12)0.0323 (5)
C10.4061 (2)0.6411 (4)0.76422 (15)0.0459 (8)
H1A0.34420.62540.76960.069*
H1B0.43020.73830.79460.069*
H1C0.44090.54480.78530.069*
C20.35872 (18)0.5350 (4)0.62259 (15)0.0367 (7)
H2A0.29720.53130.63260.044*
H2B0.38610.42640.63610.044*
C30.35701 (17)0.5721 (4)0.53373 (15)0.0354 (7)
C40.43614 (18)0.6578 (4)0.51014 (16)0.0382 (7)
C50.51096 (17)0.7126 (3)0.57632 (15)0.0331 (6)
C60.50611 (17)0.6673 (4)0.66320 (15)0.0361 (6)
H6A0.53330.55830.67600.043*
H6B0.54030.74810.70030.043*
C70.58041 (18)0.7956 (3)0.55504 (16)0.0368 (7)
H7A0.57270.82240.49960.044*
C80.66576 (17)0.8507 (4)0.60415 (15)0.0338 (6)
C90.71451 (19)0.9752 (4)0.57254 (16)0.0411 (7)
H9A0.68931.02450.52270.049*
C100.79824 (19)1.0275 (4)0.61230 (17)0.0453 (7)
H10A0.82871.11160.58990.054*
C110.83679 (19)0.9541 (4)0.68600 (17)0.0445 (7)
C120.78991 (18)0.8318 (4)0.72028 (16)0.0437 (7)
H12A0.81500.78550.77090.052*
C130.70675 (18)0.7794 (4)0.67970 (16)0.0410 (7)
H13A0.67680.69500.70250.049*
C140.9772 (2)1.0947 (5)0.6922 (2)0.0742 (12)
H14A1.03801.09020.72290.111*
H14B0.95521.20740.69130.111*
H14C0.97641.05760.63710.111*
C150.28741 (19)0.5319 (4)0.47365 (16)0.0394 (7)
H15A0.29420.56550.42150.047*
C160.20278 (18)0.4444 (4)0.47620 (16)0.0374 (7)
C170.12804 (19)0.4780 (4)0.41567 (18)0.0486 (8)
H17A0.13400.55470.37490.058*
C180.0455 (2)0.4027 (4)0.41332 (19)0.0499 (8)
H18A0.00400.43160.37310.060*
C190.03698 (19)0.2831 (4)0.47158 (19)0.0472 (8)
C200.1107 (2)0.2430 (4)0.53132 (18)0.0495 (8)
H20A0.10500.16210.57030.059*
C210.19253 (19)0.3218 (4)0.53379 (17)0.0429 (7)
H21A0.24170.29310.57430.051*
C220.1175 (2)0.2290 (5)0.4110 (2)0.0726 (11)
H22A0.16730.16040.41960.109*
H22B0.10230.20290.35880.109*
H22C0.13430.34460.41200.109*
H10.381 (2)0.767 (4)0.6571 (18)0.057 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0725 (6)0.0483 (5)0.0438 (4)0.0182 (4)0.0054 (4)0.0049 (4)
O10.0621 (14)0.0760 (17)0.0298 (11)0.0187 (12)0.0065 (9)0.0029 (11)
O20.0437 (12)0.0814 (18)0.0549 (13)0.0165 (12)0.0023 (10)0.0088 (12)
O30.0417 (13)0.0672 (17)0.0793 (16)0.0094 (12)0.0068 (11)0.0002 (13)
N10.0361 (12)0.0324 (14)0.0281 (11)0.0000 (11)0.0051 (9)0.0009 (10)
C10.0530 (18)0.056 (2)0.0301 (14)0.0047 (15)0.0127 (13)0.0018 (14)
C20.0369 (15)0.0387 (17)0.0337 (14)0.0036 (13)0.0048 (11)0.0015 (12)
C30.0393 (16)0.0335 (16)0.0325 (14)0.0033 (13)0.0048 (12)0.0003 (12)
C40.0451 (16)0.0380 (17)0.0317 (15)0.0017 (14)0.0076 (12)0.0011 (13)
C50.0362 (14)0.0340 (16)0.0304 (13)0.0036 (13)0.0098 (11)0.0024 (12)
C60.0330 (14)0.0436 (17)0.0316 (14)0.0008 (13)0.0052 (11)0.0006 (13)
C70.0426 (16)0.0392 (18)0.0295 (14)0.0042 (14)0.0093 (12)0.0008 (12)
C80.0354 (15)0.0337 (16)0.0337 (14)0.0020 (13)0.0097 (11)0.0001 (12)
C90.0459 (16)0.0458 (19)0.0320 (13)0.0004 (15)0.0081 (12)0.0007 (13)
C100.0472 (17)0.047 (2)0.0425 (16)0.0102 (15)0.0091 (13)0.0055 (14)
C110.0399 (16)0.053 (2)0.0404 (15)0.0024 (15)0.0077 (13)0.0074 (15)
C120.0392 (16)0.058 (2)0.0336 (14)0.0077 (15)0.0070 (12)0.0108 (14)
C130.0349 (16)0.0459 (18)0.0442 (16)0.0040 (14)0.0124 (12)0.0093 (14)
C140.053 (2)0.090 (3)0.075 (3)0.022 (2)0.0003 (18)0.015 (2)
C150.0444 (16)0.0401 (17)0.0335 (14)0.0017 (14)0.0070 (12)0.0014 (13)
C160.0410 (16)0.0369 (16)0.0335 (14)0.0062 (13)0.0052 (12)0.0038 (12)
C170.0462 (17)0.053 (2)0.0421 (16)0.0007 (16)0.0038 (13)0.0045 (15)
C180.0403 (18)0.054 (2)0.0492 (18)0.0055 (15)0.0075 (14)0.0039 (16)
C190.0386 (17)0.048 (2)0.0540 (18)0.0018 (15)0.0059 (14)0.0090 (16)
C200.0515 (19)0.045 (2)0.0512 (18)0.0023 (16)0.0083 (15)0.0052 (15)
C210.0428 (17)0.0378 (18)0.0446 (16)0.0063 (14)0.0009 (13)0.0003 (14)
C220.0410 (19)0.075 (3)0.096 (3)0.0048 (19)0.0004 (18)0.016 (2)
Geometric parameters (Å, º) top
O1—C41.218 (3)C9—C101.372 (4)
O2—C111.368 (3)C9—H9A0.9300
O2—C141.407 (4)C10—C111.382 (4)
O3—C191.368 (4)C10—H10A0.9300
O3—C221.421 (4)C11—C121.388 (4)
N1—C21.483 (3)C12—C131.370 (4)
N1—C61.487 (3)C12—H12A0.9300
N1—C11.493 (3)C13—H13A0.9300
N1—H10.96 (3)C14—H14A0.9600
C1—H1A0.9600C14—H14B0.9600
C1—H1B0.9600C14—H14C0.9600
C1—H1C0.9600C15—C161.459 (4)
C2—C31.499 (3)C15—H15A0.9300
C2—H2A0.9700C16—C171.385 (4)
C2—H2B0.9700C16—C211.398 (4)
C3—C151.342 (4)C17—C181.374 (4)
C3—C41.487 (4)C17—H17A0.9300
C4—C51.483 (4)C18—C191.383 (4)
C5—C71.339 (4)C18—H18A0.9300
C5—C61.501 (3)C19—C201.378 (4)
C6—H6A0.9700C20—C211.377 (4)
C6—H6B0.9700C20—H20A0.9300
C7—C81.453 (4)C21—H21A0.9300
C7—H7A0.9300C22—H22A0.9600
C8—C91.396 (4)C22—H22B0.9600
C8—C131.409 (4)C22—H22C0.9600
C11—O2—C14117.8 (2)C9—C10—H10A120.3
C19—O3—C22117.9 (3)C11—C10—H10A120.3
C2—N1—C6110.1 (2)O2—C11—C10124.7 (3)
C2—N1—C1112.4 (2)O2—C11—C12115.2 (3)
C6—N1—C1111.4 (2)C10—C11—C12120.1 (3)
C2—N1—H1104.3 (18)C13—C12—C11120.1 (3)
C6—N1—H1109.9 (19)C13—C12—H12A120.0
C1—N1—H1108.6 (18)C11—C12—H12A120.0
N1—C1—H1A109.5C12—C13—C8121.3 (3)
N1—C1—H1B109.5C12—C13—H13A119.4
H1A—C1—H1B109.5C8—C13—H13A119.4
N1—C1—H1C109.5O2—C14—H14A109.5
H1A—C1—H1C109.5O2—C14—H14B109.5
H1B—C1—H1C109.5H14A—C14—H14B109.5
N1—C2—C3110.9 (2)O2—C14—H14C109.5
N1—C2—H2A109.5H14A—C14—H14C109.5
C3—C2—H2A109.5H14B—C14—H14C109.5
N1—C2—H2B109.5C3—C15—C16131.0 (3)
C3—C2—H2B109.5C3—C15—H15A114.5
H2A—C2—H2B108.0C16—C15—H15A114.5
C15—C3—C4117.8 (2)C17—C16—C21116.9 (3)
C15—C3—C2123.4 (3)C17—C16—C15118.6 (3)
C4—C3—C2118.9 (2)C21—C16—C15124.4 (2)
O1—C4—C5120.9 (2)C18—C17—C16122.8 (3)
O1—C4—C3120.7 (2)C18—C17—H17A118.6
C5—C4—C3118.3 (2)C16—C17—H17A118.6
C7—C5—C4118.2 (2)C17—C18—C19119.0 (3)
C7—C5—C6123.6 (2)C17—C18—H18A120.5
C4—C5—C6118.2 (2)C19—C18—H18A120.5
N1—C6—C5111.1 (2)O3—C19—C20116.2 (3)
N1—C6—H6A109.4O3—C19—C18124.0 (3)
C5—C6—H6A109.4C20—C19—C18119.8 (3)
N1—C6—H6B109.4C21—C20—C19120.5 (3)
C5—C6—H6B109.4C21—C20—H20A119.7
H6A—C6—H6B108.0C19—C20—H20A119.7
C5—C7—C8130.7 (2)C20—C21—C16120.9 (3)
C5—C7—H7A114.6C20—C21—H21A119.5
C8—C7—H7A114.6C16—C21—H21A119.5
C9—C8—C13116.8 (2)O3—C22—H22A109.5
C9—C8—C7118.5 (2)O3—C22—H22B109.5
C13—C8—C7124.6 (3)H22A—C22—H22B109.5
C10—C9—C8122.4 (3)O3—C22—H22C109.5
C10—C9—H9A118.8H22A—C22—H22C109.5
C8—C9—H9A118.8H22B—C22—H22C109.5
C9—C10—C11119.4 (3)
C6—N1—C2—C361.1 (3)C14—O2—C11—C12170.9 (3)
C1—N1—C2—C3174.2 (2)C9—C10—C11—O2177.0 (3)
N1—C2—C3—C15148.3 (3)C9—C10—C11—C121.7 (5)
N1—C2—C3—C431.7 (3)O2—C11—C12—C13176.4 (3)
C15—C3—C4—O15.5 (4)C10—C11—C12—C132.4 (5)
C2—C3—C4—O1174.5 (3)C11—C12—C13—C81.9 (5)
C15—C3—C4—C5176.2 (3)C9—C8—C13—C120.8 (4)
C2—C3—C4—C53.8 (4)C7—C8—C13—C12176.2 (3)
O1—C4—C5—C74.3 (4)C4—C3—C15—C16177.9 (3)
C3—C4—C5—C7177.4 (3)C2—C3—C15—C162.1 (5)
O1—C4—C5—C6173.8 (3)C3—C15—C16—C17153.2 (3)
C3—C4—C5—C64.5 (4)C3—C15—C16—C2130.0 (5)
C2—N1—C6—C562.0 (3)C21—C16—C17—C183.4 (5)
C1—N1—C6—C5172.6 (2)C15—C16—C17—C18179.6 (3)
C7—C5—C6—N1148.9 (3)C16—C17—C18—C192.8 (5)
C4—C5—C6—N133.1 (3)C22—O3—C19—C20176.6 (3)
C4—C5—C7—C8173.6 (3)C22—O3—C19—C183.0 (5)
C6—C5—C7—C84.4 (5)C17—C18—C19—O3178.8 (3)
C5—C7—C8—C9161.6 (3)C17—C18—C19—C200.8 (5)
C5—C7—C8—C1323.1 (5)O3—C19—C20—C21180.0 (3)
C13—C8—C9—C100.2 (4)C18—C19—C20—C210.4 (5)
C7—C8—C9—C10175.9 (3)C19—C20—C21—C160.3 (5)
C8—C9—C10—C110.6 (5)C17—C16—C21—C202.1 (4)
C14—O2—C11—C107.8 (5)C15—C16—C21—C20178.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.95 (3)2.07 (3)2.978 (3)160 (2)
C1—H1B···O1i0.962.453.180 (4)133
C18—H18A···O2ii0.932.523.374 (4)154
C13—H13A···Cl1iii0.932.843.657 (4)148
C21—H21A···Cl1iv0.932.893.682 (4)144
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x1, y+3/2, z1/2; (iii) x+1, y1/2, z+3/2; (iv) x, y1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC22H23NO3C22H24NO3+·Cl
Mr349.41385.87
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/c
Temperature (K)295295
a, b, c (Å)11.315 (2), 7.8910 (16), 20.356 (4)15.030 (3), 8.0020 (16), 16.585 (3)
β (°) 92.87 (3) 100.81 (3)
V3)1815.2 (6)1959.3 (7)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.090.22
Crystal size (mm)0.50 × 0.20 × 0.100.50 × 0.35 × 0.25
Data collection
DiffractometerEnraf-Nonius CAD4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3340, 3167, 1398 3962, 3811, 2057
Rint0.0730.047
(sin θ/λ)max1)0.5950.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.128, 1.03 0.049, 0.136, 1.01
No. of reflections31673811
No. of parameters238251
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.200.27, 0.24

Computer programs: CAD-4 Software (Enraf–Nonuis, 1989), CAD-4 Software, SHELXTL (Sheldrick, 1994), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL, SHELXL97.

Selected geometric parameters (Å, º) for (I) top
O1—C41.223 (3)C4—C51.488 (4)
O2—C111.363 (3)C5—C71.351 (4)
O3—C191.363 (4)C7—C81.455 (4)
C3—C151.331 (4)C15—C161.458 (4)
C3—C41.482 (4)
C11—O2—C14118.0 (2)C3—C4—C5117.5 (3)
C19—O3—C22118.8 (3)C7—C5—C4117.1 (3)
C15—C3—C4118.1 (3)C7—C5—C6125.3 (3)
C15—C3—C2125.3 (3)C4—C5—C6117.5 (2)
C4—C3—C2116.5 (2)C5—C7—C8130.8 (3)
O1—C4—C3121.5 (3)C3—C15—C16130.9 (3)
O1—C4—C5121.0 (3)
C4—C5—C7—C8179.5 (3)C4—C3—C15—C16177.8 (3)
C5—C7—C8—C9158.3 (3)C3—C15—C16—C17154.0 (3)
C14—O2—C11—C10175.8 (3)C22—O3—C19—C18174.0 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C22—H22C···O1i0.962.513.394 (4)153
Symmetry code: (i) x, y+1, z+1.
Selected geometric parameters (Å, º) for (II) top
O1—C41.218 (3)C4—C51.483 (4)
O2—C111.368 (3)C5—C71.339 (4)
O3—C191.368 (4)C7—C81.453 (4)
C3—C151.342 (4)C15—C161.459 (4)
C3—C41.487 (4)
C11—O2—C14117.8 (2)C5—C4—C3118.3 (2)
C19—O3—C22117.9 (3)C7—C5—C4118.2 (2)
C15—C3—C4117.8 (2)C7—C5—C6123.6 (2)
C15—C3—C2123.4 (3)C4—C5—C6118.2 (2)
C4—C3—C2118.9 (2)C5—C7—C8130.7 (2)
O1—C4—C5120.9 (2)C3—C15—C16131.0 (3)
O1—C4—C3120.7 (2)
C4—C5—C7—C8173.6 (3)C4—C3—C15—C16177.9 (3)
C5—C7—C8—C9161.6 (3)C3—C15—C16—C17153.2 (3)
C14—O2—C11—C107.8 (5)C22—O3—C19—C183.0 (5)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.95 (3)2.07 (3)2.978 (3)160 (2)
C1—H1B···O1i0.962.453.180 (4)133
C18—H18A···O2ii0.932.523.374 (4)154
C13—H13A···Cl1iii0.932.843.657 (4)148
C21—H21A···Cl1iv0.932.893.682 (4)144
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x1, y+3/2, z1/2; (iii) x+1, y1/2, z+3/2; (iv) x, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds