Download citation
Download citation
link to html
The crystal structures of three Zn complexes with the peroxodi­sulfate anion (pds2−) acting as counter-ion are reported, namely bis(2,2′:6′,2′′-ter­pyridine-κ3N)­zinc(II) hexa­oxo-μ-peroxo-di­sulfate(VI) dihydrate N,N-di­methyl­form­amide solvate, [Zn(C15H11N3)2](S2O8)·2H2O·C3H7NO or [Zn(tpy)2](pds)·2H2O·DMF, (I), bis­[2,4,6-tris(2-pyridyl)-1,3,5-triazine-κ2N2,N4]­zinc(II) hexaoxo-μ-peroxo-di­sulfate(VI) dihydrate, [Zn(C18H12N6)2](S2O8)·2H2O or [Zn(tpt)2](pds)·2H2O, (II), and bis­[2,6-bis(1H-benzimidazol-2-yl-κN3)­pyridine]­zinc(II) hexaoxo-μ-peroxo-di­sulfate(VI) N,N-di­methyl­form­amide trisolvate, [Zn(C19H13N5)2](S2O8)·3C3H7NO or [Zn(bbp)2](pds)·3DMF, (III), where tpy is 2,2′:6′,2′′-ter­pyridine, tpt is 2,4,6-tris(2-pyridyl)-1,3,5-triazine, bbp is 2,6-bis(1H-benz­imidazol-2-yl)­pyridine and DMF is N,N-di­methyl­form­amide. The three structures are monomeric and present the Zn cation in a distorted octahedral environment, defined by two chelating tricoordinated ligands at almost right angles to each other. These cationic entities interact with an anionic network composed of hydrogen-bonded pds2− anions and solvate water and DMF mol­ecules via Coulombic forces, and with each other through a number of π–π and C=C...π contacts connecting the aromatic rings. The pds2− anions stabilize the structures in unprecedented counter-ion behaviour.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104014337/ga1063sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104014337/ga1063Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104014337/ga1063IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104014337/ga1063IIIsup4.hkl
Contains datablock III

CCDC references: 231156; 231157; 231158

Comment top

In the preceding articles of this series on crystal structures containing the peroxodisulfate anion, pds2− (Harvey Baggio Garland Burton & Baggio, 2001; Harvey Baggio Garland & Baggio, 2001), we have explored the complexing capabilities of the base towards some group 12 metals. Our results confirmed both the ability of the anion in coordinating Cd and Hg and its flexibility in adopting a variety of different coordination modes (polydentate, chelate, bridging etc.). Continuing our investigations on group 12 cations, we have now explored the system Zn2+ + pds2− + L [where L is a di-nitrogenated (N2) or tri-nitrogenated (N3) organic ligand]. Our results to date show the (N3) type [viz. 2,2':6',2''-terpyridine (tpy), 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tpt) or 2,6-bis(2-benzimidazolyl)pyridine (bbp)] to be more efficient in coordinating to Zn than (N2) type [2,2'-bipyridine (bpy), 1,10-phenanthroline (phen) or 2,9-dimethylphenanthroline (dmph)]. While no crystalline products containing pds have been obtained to date starting from the latter ligands, preparations including tpy, tpt and bbp readily yielded powdered material and, with some effort, small crystals suitable for structural analysis. In all cases, the psd2− group acts as a counterion, which constitutes a rather unusual behaviour of this anion in metallorganic compounds: the only ionic forms reported to date are the K+ and NH4+ inorganic salts (Naumov et al., 1997; Sivertsen & Sorum, 1969). Thus, the structures described herein, [Zn(tpy)2]2+(pds)2−·2H2O.dmf, (I), [Zn(tpt)2]2+(pds)2−·2H2O, (II), and [Zn(bbp)2]2+(pds)2−.3 dmf, (III), are the first in which the pds2− group acts as a counterion. \sch

The three compounds are ionic, presenting [Zn(N3)2]2+ cationic centres, with (N3) being tpy in (I), tpt in (II) and bbp in (III), and one pds2− anion balancing charges, plus some solvate molecules stabilizing the structures, viz. two water and one dmf molecules in (I), two water molecules in (II) and three dmf molecules in (III). Figs. 1, 2 and 3 show views of the three compounds. The analogies in coordination to the metal centre are apparent. In all cases, the ligands act in a double-tridentate mode, with the coordination planes (defined by the three bonded N atoms) being nearly perpendicular to each other, subtending dihedral angles of 91.4 (1)/91.8 (1)/91.6 (1)° [in the following discussion, three numbers separated by `/' will mean the numerical values corresponding to homologous quantities in structures (I), (II) and (III), respectively]. The ligands bind to the cation in a slightly slanted way, the metal centre being offset from the two coordination planes (A and B) by 0.026 (1) and 0.108 (1)/0.024 (1) and 0.156 (1)/0.014 (1) and 0.083 (1) Å, respectively.

The intrinsic pseudo-symmetry displayed by the ligands, in addition to their special coordination disposition, gives the ensemble in general (and the Zn coordination polyhedron in particular) a `quasi'-S4 character, with the pseudo C-4 axis being along the N2A—Zn1—N2B direction (hereinafter the `apical' line), the remaining two then constituting the basal plane. The Zn—N coordination distances are in accord with this distortion, with Zn—Ncentral [2.060 (7)/2.048 (4)/2.132 (8) Å] being distinctly different from the mean values of Zn—Nlateral [2.186 (16)/2.195 (50)/2.197 (19) Å]. The effect is comparable with that found in similarly coordinated [Zn(N3)2] cores in the Cambridge Structural Database [CSD, Version 5.25, 2003; Allen, 2002; refcodes HUGWOV, KOFQIF, LOXDEH, PULCEE, PULCII, QARJEY and XIZNAV; mean Zn—Ncentral 2.076 (11) Å; mean Zn—Nlateral 2.187 (20) Å]. In addition, the chelating character of the (N3) ligands forces some N—Zn—N angles to deviate significantly from idealized values (Tables 1, 3 and 5). Thus, the N2A—Zn1—N2B apical lines subtend angles of 173.8 (3)/165.3 (3)/173.6 (3)° instead of the ideal 180°, and the expected right angles present a broad span [74.3 (3)–110.1 (3)/73.4 (3)–117.9 (3)/74.5 (3)–109.2 (3)°].

The effect is also felt in the geometry of the ligand, leading to a variety of twisted conformations which, though recognizable as originating from an original planar pattern, present rather large average deviations from their mean planes [0.078 (1) and 0.062 (1) Å/0.050 (1) and 0.057 (1) Å/0.126 (1) and 0.079 (1) Å]. The deformation is mainly achieved by the constituent planar rings losing their relative coplanar orientation, up to maximum angular deviations of 10.3 (2)/7.9 (2)/13.5 (2)°. In structure (II), the departure from planarity is enhanced by the terminal pyridine moieties being significantly rotated from the core mean plane by 19.3 (1) and 16.1 (1)° for moieties A and B, respectively.

All three structures balance their cationic charge through one pds2− counterion per asymmetric unit. In structure (I), this is achieved via two independent halves mounted onto two different symmetry centres, and in structures (II) and (III) by a single unit lying on a general position. Unfortunately, that in (II) appears severely disordered and had to be modelled split into two similarly populated moieties [occupancies 0.526/0.474 (6)], and is therefore excluded from the following analysis. The remaining three units to be discussed [two in (I) and one in (III)] display bond distances and angles which approximately match those already reported in the literature. There is, however, a conspicuous exception to the observation noted in all previously described moieties, viz. that one of the three Oterm—S—Ocore angles is some 10° smaller than the other two, which corresponds to an almost planar Oterm—S—Ocore—Ocore disposition for the atoms involved, expressed in a torsion angle nearly (or exactly equal to) 180°, as shown in the last column of Table 7 (Harvey Baggio Garland Burton & Baggio, 2001; Harvey Baggio Garland & Baggio, 2001). The effect is seen in structure (III) (fourth column, third and fifth entries, Table 7). However, neither independent moiety in (I) follows this trend, either because there is not a distinctly smaller Oterm—S—Ocore angle, as in moiety A, or because where there is a difference in angles, the associated Oterm—S—Ocore—Ocore is not near 180°, as in moiety B (second column, third entry, Table 7). The reasons for this are not clear.

The packing of all three structures can be viewed as an ensemble of spheroidal [(I) and (III)] or prolate [(II)] isolated [Zn(N3)2]2+ groups forming a cationic network, with voids filled by an array of hydrogen-bonded pds2− anions, solvate water molecules and/or some dmf solvate molecules. These interactions can be internal to an anionic linear array and non-interacting with the cations [as in structure (I), Fig. 4], or can serve both as an internal connector and as a link from the anionic group through one side to the cationic centres [as in structure (II), Fig. 5], or can bridge two different cationic sites through pds2− anions [structure (III), Fig. 6]. A survey of the most important hydrogen-bonding interactions is presented in Tables 2, 4 and 6.

The cationic monomers in turn interact with each other through a variety of medium-range contacts, linking aromatic rings in a `face-to-face' or parallel-displaced arrangement (hereinafter ππ), as well as in an `edge-to-face' (CC···π) conformation (for details, see Janiak, 2000). The general trend is very similar in all three structures (Fig. 7). Due to the planar ligands being almost at right angles to each other, symmetry operations such as a unit-cell translation along the shortest axis [as in (I) and (II)] or an inversion centre [as in (III)] end up favouring the parallel (or perpendicular) approach of adjacent aromatic rings, to build up the two types of interactions described. Due to their similarity, we discuss only the case of structure (I), which is representative of all three. Full information for all three structures can be found from Fig.7 and Table 8. Fig. 7 displays two neighbouring units of (I) displaced one unit-cell edge along b, and shows the two types of interactions linking the adjacent moieties into a `dimeric' unit, viz. a parallel-displaced ππ interaction, linking pyridines N3B—C15B and N1B'-C5B', with a centre to centre distance of 3.67 (1) Å and a slippage angle (that subtended by the ring normal and the line joining ring centres) of \sim 22.1 (1)°, and a CC···π contact involving pyridines N1A'-C5A' and N3B—C15B, with an interplanar angle of 97.0 (1)° and an edge-to-plane distance (bond centre to ring centre) of 4.00 (1) Å. These values, and the corresponding ones for (II) and (II), are normal for these types of contacts (Janiak, 2000).

Summarizing, we have tried to produce some Zn2+pds2− complexes using (N2) and (N3) type ligands. The only successful trials were those involving the (N3) ligands, which were already known to be extremely versatile when coordinating to other transition metals, binding either through a single or a double tridentate bite provided by one or two ligands, respectively. In the former mode [triple bite of a single (N3) ligand], coordination of the accompanying anion is possible, a situation which often leads to the formation of dimers or polymers. The latter case [two (N3) ligands], instead, usually produces monomers, as in the complexes reported here, since such coordination leaves no room for any direct anion-cation interaction. Examples of these two different binding modes can be found for most of the transition metals for which these types of complexes have been reported. The single exception seems to be octahedral Zn. Although there are several examples of structures presenting one single (N3) ligand bound to a pentacoordinated Zn (CSD, refcodes BUJLUN, DOLVIJ, GADLUT, OFABOM, PUWTOQ, TPYZNC, UCECOU, WIBVOZ), none has been reported for hexacoordinated Zn. All the reported cases (CSD, refcodes HUGWOV, KOFQIF, LOXDEH, PULCEE, PULCII, QARJEY, XIZNAV) have two such tridentate (N3) groups bound to Zn at right angles to each other. It appears that the [Zn(N3)2]2+ chromophore is extremely stable and (N3) ligands tend to adopt this particular configuration whenever coordinating to Zn in an octahedral configuration. Our synthetic trials with tpy, tpt and bbp (providing the first reported examples of metal-organic compounds where the pds2− group acts as a counterion) appear to confirm this tendency, and at the same time seem to discourage the choice of (N3) ligands when trying to coordinate a mild base to Zn. Further synthetic work with the ligands of the (N2) group (bpy, phen, dmph), so far unsuccessful, is in progress.

Experimental top

The title compounds were prepared by diffusion of an aqueous solution of Zn(CH3COO)2·2H2O and K2(S2O8) (ratio?) into another of the corresponding organic ligand: tpy in dmf for (I), tpt in methanol for (II) and bbp in dmf for (III). The time required for the development of crystals suitable for X-ray diffraction was 15–20 d. All starting materials were reagent quality and used without further purification. The formulation of the three compounds was supported by elemental analysis for CHN performed on a Carlo-Erba EA 1108 instrument (O, S and Zn were not analysed). Elemental analysis for (I), required: C 47.57, H 3.99, N 11.77, O 21.12, S 7.70, Zn 7.85%; found: C 47.4, H 4.0, N 11.9%. Elemental analysis for (II), required: C 47.09, H 3.07, N 18.31, O 17.42, S 6.98, Zn 7.12%; found: C 47.1, H 3.1, N 18.4%. Elemental analysis for (III), required: C 51.34, H 4.31, N 16.56, O 16.01, S 5.83, Zn 5.95%; found: C 51.2, H 4.2, N 16.7%.

Refinement top

For all three compounds the crystals diffracted very poorly, with insignificant data beyond 2θ = 50°. In all cases, they provided extremely low Nobs/Ntot ratios (0.38, 0.42 and 0.43, respectively). H atoms attached to C or N atoms and unambiguously defined by the stereochemistry were placed in their calculated positions (C—H = 0.93 and N—H = 0.86 Å) and allowed to ride. The terminal methyl groups in dmf (C—H = 0.96 Å) were also allowed to rotate. The H atoms of the water molecules were located in structure (I) and three out of four in structure (II) (the remaining H atom was probably highly delocalized, due to it not being involved in hydrogen bonding). They were refined with restrained distances O—H = 0.82 Å, and (when applicable) with an H···H minimum of 1.36 Å. The pds2− anion in (II), as well as a dmf molecule in (III), appeared disordered and were refined with restrained bond distances. For this reason, the anion in (II) was not considered when discussing the pds2− geometry. Full use of the CCDC package was made for searching in the CSD Database (Allen, 2002).

Computing details top

For all compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL/PC (Sheldrick, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A molecular diagram for (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A molecular diagram for (II). Displacement ellipsoids are drawn at the 40% probability level and H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A molecular diagram for (III). Displacement ellipsoids are drawn at the 40% probability level and H atoms have been omitted for clarity.
[Figure 4] Fig. 4. A packing view of (I), showing (heavy lines) the negatively charged chains running along the crystallographic b axis through the channels left by the cationic array (thin lines). Only H atoms involved in hydrogen bonding are included.
[Figure 5] Fig. 5. A packing view of (II), showing (heavy lines) the [pds2− + 2H2O] clusters as pendant attachements of the cationic network (thin lines). Only part of the unit cell is shown for clarity, and only H atoms involved in hydrogen bonding are included.
[Figure 6] Fig. 6. A packing view of (III), showing (heavy lines) the pds2− anions as acceptors of (N—H)cation···Opds hydrogen bonds bridging neighbuoring cations (thin lines). Only H atoms involved in hydrogen bonding are included.
[Figure 7] Fig. 7. A schematic diagram showing the interactions between [Zn(N3)2]2+ groups in (I).
(I) bis(2,2':6',2''-terpyridine-κ3N)zinc(II) hexaoxo-µ-peroxo-disulfate(VI) dihydrate N,N-dimethylformamide solvate top
Crystal data top
[Zn(C15H11N3)2](S2O8)·2H2O·C3H7NOZ = 2
Mr = 833.15F(000) = 860
Triclinic, P1Dx = 1.494 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7932 (18) ÅCell parameters from 184 reflections
b = 9.4508 (19) Åθ = 2.4–22.3°
c = 22.629 (5) ŵ = 0.85 mm1
α = 89.95 (3)°T = 293 K
β = 82.97 (3)°Prism, colourless
γ = 82.84 (3)°0.20 × 0.10 × 0.05 mm
V = 1851.7 (7) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
6389 independent reflections
Radiation source: fine-focus sealed tube2422 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
[SADABS (Sheldrick, 1996) in SAINT (Bruker, 2000)]
h = 1010
Tmin = 0.90, Tmax = 0.96k = 1111
18342 measured reflectionsl = 2526
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 0.81 w = 1/[σ2(Fo2) + (0.0107P)2]
where P = (Fo2 + 2Fc2)/3
6391 reflections(Δ/σ)max = 0.009
493 parametersΔρmax = 0.60 e Å3
6 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Zn(C15H11N3)2](S2O8)·2H2O·C3H7NOγ = 82.84 (3)°
Mr = 833.15V = 1851.7 (7) Å3
Triclinic, P1Z = 2
a = 8.7932 (18) ÅMo Kα radiation
b = 9.4508 (19) ŵ = 0.85 mm1
c = 22.629 (5) ÅT = 293 K
α = 89.95 (3)°0.20 × 0.10 × 0.05 mm
β = 82.97 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6389 independent reflections
Absorption correction: multi-scan
[SADABS (Sheldrick, 1996) in SAINT (Bruker, 2000)]
2422 reflections with I > 2σ(I)
Tmin = 0.90, Tmax = 0.96Rint = 0.072
18342 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0586 restraints
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 0.81Δρmax = 0.60 e Å3
6391 reflectionsΔρmin = 0.40 e Å3
493 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.44279 (9)0.73264 (8)0.21729 (4)0.0511 (3)
S1A0.9168 (3)0.8445 (3)0.04376 (11)0.0829 (7)
O1A0.8969 (10)0.7684 (8)0.0084 (3)0.203 (4)
O2A0.9969 (7)0.7674 (8)0.0832 (3)0.180 (4)
O3A0.7788 (7)0.9261 (7)0.0656 (3)0.138 (3)
O4A1.0314 (7)0.9465 (7)0.0187 (4)0.194 (4)
S1B0.0933 (3)0.3004 (3)0.49588 (13)0.0918 (8)
O1B0.0227 (10)0.2312 (8)0.5428 (3)0.208 (4)
O2B0.2399 (8)0.3340 (9)0.5017 (3)0.179 (4)
O3B0.0832 (8)0.2460 (8)0.4385 (3)0.159 (3)
O4B0.0210 (12)0.4397 (7)0.4886 (5)0.269 (6)
O1C0.7277 (9)0.2928 (8)0.3252 (3)0.144 (3)
N1C0.6356 (9)0.1743 (8)0.4037 (4)0.096 (2)
C1C0.7356 (12)0.2486 (11)0.3749 (5)0.111 (3)
H1CA0.81850.26870.39390.133*
C2C0.6595 (13)0.1209 (12)0.4613 (5)0.160 (5)
H2CA0.75280.15010.47250.241*
H2CB0.66800.01860.46030.241*
H2CC0.57380.15790.48970.241*
C3C0.5019 (11)0.1485 (11)0.3772 (5)0.155 (5)
H3CA0.50410.19230.33890.233*
H3CB0.41060.18820.40230.233*
H3CC0.50110.04760.37270.233*
N1A0.3281 (6)0.9481 (5)0.2082 (3)0.0631 (17)
N2A0.4582 (6)0.7613 (6)0.1263 (2)0.0490 (15)
N3A0.5697 (6)0.5346 (5)0.1773 (2)0.0510 (15)
C1A0.2702 (9)1.0352 (8)0.2534 (4)0.083 (3)
H1AA0.27701.00510.29230.099*
C2A0.1998 (12)1.1709 (10)0.2434 (5)0.117 (4)
H2AA0.16181.23300.27510.141*
C3A0.1870 (13)1.2121 (10)0.1862 (5)0.131 (4)
H3AA0.13551.30130.17920.157*
C4A0.2480 (9)1.1252 (9)0.1398 (4)0.091 (3)
H4AA0.24571.15470.10070.109*
C5A0.3146 (8)0.9890 (7)0.1532 (4)0.063 (2)
C6A0.3855 (7)0.8841 (8)0.1059 (3)0.058 (2)
C7A0.3815 (8)0.8983 (8)0.0452 (4)0.066 (2)
H7AA0.32580.97860.03090.080*
C8A0.4585 (9)0.7958 (8)0.0057 (4)0.075 (2)
H8AA0.45890.80750.03510.090*
C9A0.5359 (8)0.6741 (7)0.0282 (3)0.059 (2)
H9AA0.58920.60250.00270.071*
C10A0.5320 (7)0.6617 (7)0.0889 (3)0.0446 (17)
C11A0.6041 (8)0.5338 (7)0.1185 (3)0.0517 (19)
C12A0.7008 (8)0.4237 (8)0.0884 (3)0.072 (2)
H12A0.72850.42920.04750.086*
C13A0.7566 (10)0.3054 (8)0.1188 (4)0.089 (3)
H13A0.81880.22920.09880.107*
C14A0.7179 (9)0.3035 (8)0.1787 (4)0.076 (3)
H14A0.75420.22590.20060.092*
C15A0.6240 (8)0.4183 (7)0.2070 (3)0.066 (2)
H15A0.59700.41530.24790.079*
N1B0.2268 (5)0.6400 (5)0.2368 (3)0.0539 (15)
N2B0.4325 (7)0.6802 (6)0.3063 (2)0.0564 (16)
N3B0.6443 (6)0.8110 (6)0.2471 (3)0.0587 (16)
C1B0.1217 (8)0.6308 (7)0.1993 (3)0.057 (2)
H1BA0.13890.66780.16130.069*
C2B0.0112 (8)0.5684 (8)0.2150 (4)0.070 (2)
H2BA0.08160.56190.18790.084*
C3B0.0367 (9)0.5163 (7)0.2715 (4)0.068 (2)
H3BA0.12460.47270.28290.082*
C4B0.0673 (9)0.5286 (7)0.3112 (4)0.066 (2)
H4BA0.05000.49510.34980.079*
C5B0.1985 (8)0.5917 (7)0.2926 (3)0.0536 (19)
C6B0.3204 (9)0.6081 (8)0.3320 (3)0.066 (2)
C7B0.3234 (10)0.5564 (9)0.3882 (4)0.095 (3)
H7BA0.24560.50590.40550.114*
C8B0.4423 (11)0.5803 (11)0.4182 (4)0.110 (4)
H8BA0.44610.54450.45640.132*
C9B0.5570 (11)0.6559 (10)0.3937 (4)0.092 (3)
H9BA0.63740.67310.41480.111*
C10B0.5492 (9)0.7055 (8)0.3367 (3)0.064 (2)
C11B0.6652 (8)0.7881 (8)0.3035 (3)0.062 (2)
C12B0.7848 (9)0.8366 (9)0.3295 (4)0.078 (3)
H12B0.79600.81900.36930.093*
C13B0.8848 (10)0.9105 (9)0.2952 (5)0.095 (3)
H13B0.96530.94510.31140.114*
C14B0.8663 (9)0.9337 (8)0.2366 (4)0.076 (3)
H14B0.93450.98360.21270.091*
C15B0.7468 (9)0.8829 (7)0.2137 (3)0.065 (2)
H15B0.73550.89830.17370.078*
O1W0.8425 (10)0.5296 (8)0.0652 (4)0.139 (3)
H1WA0.896 (11)0.582 (7)0.050 (5)0.167*
H1WB0.876 (12)0.449 (3)0.056 (5)0.167*
O2W0.1585 (12)0.9586 (8)0.3943 (3)0.147 (3)
H2WA0.135 (13)0.960 (9)0.4305 (7)0.177*
H2WB0.130 (14)1.040 (5)0.384 (4)0.177*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0500 (6)0.0489 (5)0.0528 (6)0.0006 (4)0.0068 (4)0.0097 (4)
S1A0.0865 (18)0.0748 (16)0.0848 (19)0.0085 (15)0.0018 (15)0.0265 (15)
O1A0.294 (12)0.140 (7)0.173 (8)0.031 (7)0.009 (8)0.055 (6)
O2A0.110 (6)0.261 (9)0.161 (7)0.017 (6)0.028 (5)0.145 (7)
O3A0.129 (6)0.168 (7)0.100 (5)0.008 (5)0.018 (4)0.046 (5)
O4A0.091 (5)0.183 (8)0.326 (12)0.050 (5)0.063 (6)0.164 (7)
S1B0.092 (2)0.0821 (18)0.098 (2)0.0006 (16)0.0091 (17)0.0161 (16)
O1B0.276 (11)0.165 (7)0.155 (7)0.017 (7)0.073 (7)0.077 (6)
O2B0.127 (7)0.274 (10)0.156 (7)0.044 (7)0.080 (6)0.013 (7)
O3B0.159 (7)0.218 (8)0.106 (6)0.010 (6)0.061 (5)0.028 (6)
O4B0.247 (12)0.185 (14)0.348 (16)0.016 (12)0.032 (10)0.062 (13)
O1C0.162 (7)0.179 (7)0.107 (6)0.068 (6)0.037 (5)0.070 (5)
N1C0.088 (6)0.099 (6)0.097 (6)0.011 (5)0.002 (5)0.014 (5)
C1C0.094 (8)0.148 (10)0.098 (9)0.040 (7)0.017 (7)0.031 (8)
C2C0.198 (13)0.151 (10)0.120 (10)0.010 (10)0.015 (9)0.029 (9)
C3C0.084 (8)0.155 (10)0.231 (14)0.026 (8)0.023 (9)0.057 (10)
N1A0.050 (4)0.060 (4)0.076 (5)0.007 (3)0.011 (4)0.007 (4)
N2A0.037 (4)0.062 (4)0.049 (4)0.007 (3)0.014 (3)0.003 (3)
N3A0.060 (4)0.042 (3)0.049 (4)0.001 (3)0.009 (3)0.011 (3)
C1A0.085 (7)0.055 (6)0.101 (7)0.017 (5)0.006 (5)0.007 (5)
C2A0.126 (9)0.074 (7)0.134 (10)0.014 (6)0.029 (8)0.023 (7)
C3A0.146 (10)0.081 (7)0.134 (10)0.068 (7)0.025 (8)0.019 (8)
C4A0.083 (7)0.076 (6)0.108 (8)0.017 (5)0.010 (6)0.042 (6)
C5A0.052 (5)0.055 (5)0.081 (6)0.001 (4)0.018 (5)0.014 (5)
C6A0.040 (5)0.067 (5)0.072 (6)0.017 (4)0.016 (4)0.030 (5)
C7A0.055 (5)0.070 (6)0.080 (7)0.014 (4)0.025 (5)0.039 (5)
C8A0.091 (7)0.084 (6)0.056 (6)0.029 (6)0.012 (5)0.017 (5)
C9A0.060 (5)0.052 (5)0.065 (6)0.018 (4)0.001 (4)0.009 (4)
C10A0.040 (4)0.059 (5)0.037 (5)0.018 (4)0.005 (4)0.011 (4)
C11A0.055 (5)0.043 (4)0.058 (5)0.005 (4)0.013 (4)0.004 (4)
C12A0.072 (6)0.069 (6)0.073 (6)0.004 (5)0.012 (5)0.005 (5)
C13A0.102 (7)0.058 (6)0.102 (8)0.010 (5)0.018 (6)0.026 (6)
C14A0.065 (6)0.061 (5)0.097 (7)0.024 (5)0.016 (5)0.002 (5)
C15A0.069 (6)0.064 (5)0.063 (5)0.002 (5)0.009 (4)0.008 (5)
N1B0.047 (4)0.052 (4)0.062 (4)0.002 (3)0.011 (3)0.008 (3)
N2B0.063 (5)0.059 (4)0.045 (4)0.008 (3)0.011 (4)0.002 (3)
N3B0.051 (4)0.050 (4)0.072 (5)0.007 (3)0.009 (4)0.001 (3)
C1B0.056 (5)0.056 (5)0.060 (5)0.002 (4)0.012 (4)0.008 (4)
C2B0.051 (6)0.071 (6)0.088 (7)0.014 (5)0.005 (5)0.006 (5)
C3B0.056 (6)0.046 (5)0.101 (7)0.005 (4)0.002 (5)0.007 (5)
C4B0.063 (6)0.058 (5)0.075 (6)0.008 (4)0.002 (5)0.016 (4)
C5B0.056 (5)0.052 (5)0.047 (5)0.008 (4)0.001 (4)0.006 (4)
C6B0.065 (6)0.075 (6)0.056 (6)0.003 (5)0.004 (5)0.013 (5)
C7B0.086 (7)0.134 (8)0.062 (6)0.007 (6)0.005 (5)0.057 (6)
C8B0.091 (8)0.186 (11)0.051 (6)0.008 (8)0.014 (6)0.016 (7)
C9B0.076 (7)0.131 (8)0.066 (7)0.008 (6)0.014 (5)0.002 (6)
C10B0.077 (6)0.072 (5)0.040 (5)0.012 (5)0.019 (5)0.000 (4)
C11B0.056 (6)0.075 (5)0.053 (5)0.007 (4)0.021 (5)0.000 (5)
C12B0.047 (6)0.102 (7)0.085 (7)0.001 (5)0.019 (5)0.024 (6)
C13B0.062 (7)0.079 (7)0.148 (10)0.001 (5)0.038 (7)0.041 (7)
C14B0.045 (6)0.067 (6)0.120 (8)0.009 (4)0.019 (5)0.002 (6)
C15B0.058 (6)0.055 (5)0.080 (6)0.006 (4)0.003 (5)0.007 (5)
O1W0.148 (7)0.127 (5)0.129 (6)0.032 (6)0.013 (5)0.000 (6)
O2W0.200 (8)0.151 (6)0.092 (5)0.048 (7)0.004 (6)0.016 (5)
Geometric parameters (Å, º) top
Zn1—N2A2.066 (5)C9A—C10A1.375 (7)
Zn1—N2B2.068 (5)C9A—H9AA0.9300
Zn1—N1A2.178 (5)C10A—C11A1.491 (7)
Zn1—N3B2.183 (5)C11A—C12A1.381 (7)
Zn1—N1B2.186 (5)C12A—C13A1.382 (8)
Zn1—N3A2.191 (5)C12A—H12A0.9300
S1A—O2A1.359 (5)C13A—C14A1.357 (8)
S1A—O3A1.391 (6)C13A—H13A0.9300
S1A—O1A1.423 (6)C14A—C15A1.384 (8)
S1A—O4A1.538 (6)C14A—H14A0.9300
O4A—O4Ai1.422 (8)C15A—H15A0.9300
S1B—O2B1.386 (6)N1B—C1B1.340 (7)
S1B—O1B1.372 (6)N1B—C5B1.346 (7)
S1B—O3B1.414 (6)N2B—C6B1.341 (7)
S1B—O4B1.574 (8)N2B—C10B1.348 (7)
O4B—O4Bii1.361 (9)N3B—C11B1.325 (7)
O1C—C1C1.205 (8)N3B—C15B1.353 (7)
N1C—C1C1.305 (9)C1B—C2B1.382 (8)
N1C—C3C1.430 (9)C1B—H1BA0.9300
N1C—C2C1.427 (9)C2B—C3B1.373 (8)
C1C—H1CA0.9300C2B—H2BA0.9300
C2C—H2CA0.9600C3B—C4B1.372 (8)
C2C—H2CB0.9600C3B—H3BA0.9300
C2C—H2CC0.9600C4B—C5B1.385 (8)
C3C—H3CA0.9600C4B—H4BA0.9300
C3C—H3CB0.9600C5B—C6B1.497 (8)
C3C—H3CC0.9600C6B—C7B1.365 (8)
N1A—C5A1.320 (7)C7B—C8B1.357 (8)
N1A—C1A1.324 (7)C7B—H7BA0.9300
N2A—C10A1.319 (6)C8B—C9B1.371 (9)
N2A—C6A1.362 (7)C8B—H8BA0.9300
N3A—C11A1.329 (7)C9B—C10B1.379 (8)
N3A—C15A1.354 (7)C9B—H9BA0.9300
C1A—C2A1.384 (9)C10B—C11B1.492 (8)
C1A—H1AA0.9300C11B—C12B1.391 (8)
C2A—C3A1.364 (9)C12B—C13B1.360 (9)
C2A—H2AA0.9300C12B—H12B0.9300
C3A—C4A1.349 (9)C13B—C14B1.369 (9)
C3A—H3AA0.9300C13B—H13B0.9300
C4A—C5A1.394 (8)C14B—C15B1.366 (8)
C4A—H4AA0.9300C14B—H14B0.9300
C5A—C6A1.483 (8)C15B—H15B0.9300
C6A—C7A1.385 (8)O1W—H1WA0.82 (9)
C7A—C8A1.373 (8)O1W—H1WB0.82 (3)
C7A—H7AA0.9300O2W—H2WA0.82 (2)
C8A—C9A1.391 (8)O2W—H2WB0.82 (5)
C8A—H8AA0.9300
N2A—Zn1—N2B173.7 (2)C9A—C8A—H8AA120.8
N2A—Zn1—N1A76.1 (2)C10A—C9A—C8A118.6 (7)
N2B—Zn1—N1A109.9 (2)C10A—C9A—H9AA120.7
N2A—Zn1—N3B106.9 (2)C8A—C9A—H9AA120.7
N2B—Zn1—N3B75.3 (3)N2A—C10A—C9A122.4 (6)
N1A—Zn1—N3B92.3 (2)N2A—C10A—C11A113.9 (6)
N2A—Zn1—N1B102.8 (2)C9A—C10A—C11A123.7 (7)
N2B—Zn1—N1B75.3 (2)N3A—C11A—C12A121.9 (6)
N1A—Zn1—N1B94.0 (2)N3A—C11A—C10A114.2 (6)
N3B—Zn1—N1B150.3 (2)C12A—C11A—C10A123.9 (7)
N2A—Zn1—N3A74.4 (2)C11A—C12A—C13A120.2 (7)
N2B—Zn1—N3A99.7 (2)C11A—C12A—H12A119.9
N1A—Zn1—N3A150.4 (2)C13A—C12A—H12A119.9
N3B—Zn1—N3A95.22 (19)C14A—C13A—C12A118.2 (8)
N1B—Zn1—N3A93.45 (19)C14A—C13A—H13A120.9
O2A—S1A—O3A118.0 (4)C12A—C13A—H13A120.9
O2A—S1A—O1A115.1 (5)C13A—C14A—C15A119.3 (7)
O3A—S1A—O1A109.8 (5)C13A—C14A—H14A120.3
O2A—S1A—O4A102.2 (4)C15A—C14A—H14A120.3
O3A—S1A—O4A108.1 (4)N3A—C15A—C14A122.7 (7)
O1A—S1A—O4A101.8 (5)N3A—C15A—H15A118.7
O4Ai—O4A—S1A114.1 (6)C14A—C15A—H15A118.7
O2B—S1B—O1B116.2 (5)C1B—N1B—C5B118.7 (6)
O2B—S1B—O3B112.2 (5)C1B—N1B—Zn1126.0 (5)
O1B—S1B—O3B116.1 (5)C5B—N1B—Zn1115.3 (4)
O2B—S1B—O4B110.6 (4)C6B—N2B—C10B119.9 (6)
O1B—S1B—O4B104.7 (5)C6B—N2B—Zn1120.7 (5)
O3B—S1B—O4B94.3 (4)C10B—N2B—Zn1119.0 (5)
O4Bii—O4B—S1B114.6 (10)C11B—N3B—C15B117.6 (6)
C1C—N1C—C3C119.4 (9)C11B—N3B—Zn1116.5 (5)
C1C—N1C—C2C120.0 (9)C15B—N3B—Zn1125.9 (5)
C3C—N1C—C2C120.6 (10)N1B—C1B—C2B122.4 (7)
O1C—C1C—N1C124.3 (10)N1B—C1B—H1BA118.8
O1C—C1C—H1CA117.8C2B—C1B—H1BA118.8
N1C—C1C—H1CA117.8C3B—C2B—C1B118.4 (7)
N1C—C2C—H2CA109.5C3B—C2B—H2BA120.8
N1C—C2C—H2CB109.5C1B—C2B—H2BA120.8
H2CA—C2C—H2CB109.5C2B—C3B—C4B120.1 (8)
N1C—C2C—H2CC109.5C2B—C3B—H3BA119.9
H2CA—C2C—H2CC109.5C4B—C3B—H3BA119.9
H2CB—C2C—H2CC109.5C5B—C4B—C3B118.7 (7)
N1C—C3C—H3CA109.5C5B—C4B—H4BA120.6
N1C—C3C—H3CB109.5C3B—C4B—H4BA120.6
H3CA—C3C—H3CB109.5N1B—C5B—C4B121.7 (6)
N1C—C3C—H3CC109.5N1B—C5B—C6B115.2 (6)
H3CA—C3C—H3CC109.5C4B—C5B—C6B123.0 (7)
H3CB—C3C—H3CC109.5N2B—C6B—C7B121.3 (7)
C5A—N1A—C1A119.9 (6)N2B—C6B—C5B113.1 (6)
C5A—N1A—Zn1115.5 (5)C7B—C6B—C5B125.6 (8)
C1A—N1A—Zn1124.6 (5)C8B—C7B—C6B118.5 (8)
C10A—N2A—C6A120.7 (6)C8B—C7B—H7BA120.7
C10A—N2A—Zn1121.1 (4)C6B—C7B—H7BA120.7
C6A—N2A—Zn1118.1 (5)C7B—C8B—C9B121.6 (9)
C11A—N3A—C15A117.6 (6)C7B—C8B—H8BA119.2
C11A—N3A—Zn1115.9 (4)C9B—C8B—H8BA119.2
C15A—N3A—Zn1126.4 (5)C8B—C9B—C10B117.7 (8)
N1A—C1A—C2A120.5 (8)C8B—C9B—H9BA121.1
N1A—C1A—H1AA119.7C10B—C9B—H9BA121.2
C2A—C1A—H1AA119.7N2B—C10B—C9B120.9 (8)
C3A—C2A—C1A119.0 (9)N2B—C10B—C11B114.7 (6)
C3A—C2A—H2AA120.5C9B—C10B—C11B124.4 (8)
C1A—C2A—H2AA120.5N3B—C11B—C12B123.1 (8)
C4A—C3A—C2A121.0 (9)N3B—C11B—C10B114.1 (6)
C4A—C3A—H3AA119.5C12B—C11B—C10B122.8 (8)
C2A—C3A—H3AA119.5C13B—C12B—C11B118.1 (8)
C3A—C4A—C5A117.0 (8)C13B—C12B—H12B120.9
C3A—C4A—H4AA121.5C11B—C12B—H12B121.0
C5A—C4A—H4AA121.5C12B—C13B—C14B119.7 (9)
N1A—C5A—C4A122.5 (8)C12B—C13B—H13B120.2
N1A—C5A—C6A115.4 (6)C14B—C13B—H13B120.1
C4A—C5A—C6A121.9 (8)C15B—C14B—C13B119.3 (8)
N2A—C6A—C7A118.7 (7)C15B—C14B—H14B120.3
N2A—C6A—C5A114.6 (6)C13B—C14B—H14B120.3
C7A—C6A—C5A126.7 (7)C14B—C15B—N3B122.2 (7)
C8A—C7A—C6A121.0 (7)C14B—C15B—H15B118.9
C8A—C7A—H7AA119.5N3B—C15B—H15B118.9
C6A—C7A—H7AA119.5H1WA—O1W—H1WB105 (9)
C7A—C8A—C9A118.4 (7)H2WA—O2W—H2WB105 (7)
C7A—C8A—H8AA120.8
Symmetry codes: (i) x+2, y+2, z; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1A—H1AA···O2W0.932.483.326 (11)152
C1B—H1BA···O2Aiii0.932.413.182 (9)140
C3B—H3BA···O1Ciii0.932.403.272 (10)157
C9B—H9BA···O2Biv0.932.293.144 (10)153
O1W—H1WA···O1A0.82 (7)2.01 (7)2.720 (10)145 (10)
O1W—H1WB···O2Av0.82 (3)2.25 (6)2.986 (10)149 (11)
O2W—H2WA···O1Bii0.82 (2)2.44 (10)2.816 (11)109 (9)
O2W—H2WB···O3Bvi0.82 (5)2.27 (7)2.866 (10)130 (8)
Symmetry codes: (ii) x, y+1, z+1; (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x+2, y+1, z; (vi) x, y+1, z.
(II) bis[2,4,6-tris(2-pyridyl)-1,3,5-triazine-κ2N2,N4]zinc(II) hexaoxo-µ-peroxo-disulfate(VI) dihydrate top
Crystal data top
[Zn(C18H12N6)2](S2O8)·2H2OF(000) = 1880
Mr = 918.19Dx = 1.621 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 212 reflections
a = 8.9490 (18) Åθ = 2.1–24.4°
b = 9.782 (2) ŵ = 0.84 mm1
c = 43.031 (9) ÅT = 293 K
β = 92.95 (3)°Needle, brown
V = 3761.9 (13) Å30.40 × 0.05 × 0.02 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
6601 independent reflections
Radiation source: fine-focus sealed tube2740 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
[SADABS (Sheldrick, 1996) in SAINT (Bruker, 2000)]
h = 1010
Tmin = 0.95, Tmax = 0.98k = 1011
21243 measured reflectionsl = 4950
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 0.83 w = 1/[σ2(Fo2) + (0.045P)2]
where P = (Fo2 + 2Fc2)/3
6597 reflections(Δ/σ)max = 0.011
553 parametersΔρmax = 0.86 e Å3
28 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Zn(C18H12N6)2](S2O8)·2H2OV = 3761.9 (13) Å3
Mr = 918.19Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.9490 (18) ŵ = 0.84 mm1
b = 9.782 (2) ÅT = 293 K
c = 43.031 (9) Å0.40 × 0.05 × 0.02 mm
β = 92.95 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6601 independent reflections
Absorption correction: multi-scan
[SADABS (Sheldrick, 1996) in SAINT (Bruker, 2000)]
2740 reflections with I > 2σ(I)
Tmin = 0.95, Tmax = 0.98Rint = 0.072
21243 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05128 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 0.83Δρmax = 0.86 e Å3
6597 reflectionsΔρmin = 0.53 e Å3
553 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.94937 (9)0.86113 (8)0.133163 (17)0.0453 (3)
S10.1564 (2)1.3490 (2)0.10042 (5)0.0606 (6)
O10.2867 (5)1.3206 (6)0.08437 (13)0.104 (2)
O20.0997 (8)1.2377 (5)0.11596 (12)0.147 (3)
O30.0501 (6)1.4212 (6)0.08231 (14)0.121 (2)
O40.1962 (8)1.4668 (6)0.12500 (16)0.148 (3)
O80.2945 (6)1.6008 (4)0.18121 (11)0.0955 (19)
S20.3631 (3)1.4799 (2)0.17427 (5)0.0824 (7)
O5A0.3621 (10)1.4488 (10)0.13704 (18)0.1036 (19)0.544 (4)
O6A0.2348 (9)1.3794 (8)0.1831 (2)0.1036 (19)0.544 (4)
O7A0.4877 (8)1.4269 (10)0.1882 (2)0.1036 (19)0.544 (4)
O5B0.2588 (12)1.3815 (10)0.1509 (2)0.1036 (19)0.456 (4)
O6B0.4171 (12)1.3943 (10)0.1987 (2)0.1036 (19)0.456 (4)
O7B0.4925 (9)1.5246 (11)0.1568 (2)0.1036 (19)0.456 (4)
N1A1.0513 (5)0.9336 (5)0.17650 (10)0.0404 (13)
N2A0.9370 (6)0.6983 (5)0.16286 (11)0.0414 (14)
N3A0.8319 (6)0.6919 (5)0.10556 (12)0.0448 (14)
N4A0.9847 (6)0.6060 (5)0.21281 (12)0.0460 (15)
N5A0.8553 (6)0.4759 (5)0.17256 (13)0.0451 (14)
N6A0.9907 (6)0.3750 (6)0.24906 (14)0.0586 (16)
C1A1.1066 (7)1.0584 (6)0.18245 (15)0.0448 (17)
H1AA1.09941.12410.16680.054*
C2A1.1743 (7)1.0936 (7)0.21099 (16)0.0533 (19)
H2AA1.21441.18050.21410.064*
C3A1.1817 (7)0.9995 (7)0.23456 (16)0.054 (2)
H3AA1.22741.02140.25380.065*
C4A1.1205 (7)0.8718 (7)0.22934 (15)0.0555 (19)
H4AA1.12020.80760.24530.067*
C5A1.0602 (7)0.8409 (6)0.20036 (14)0.0405 (16)
C6A0.9913 (6)0.7082 (6)0.19204 (14)0.0371 (16)
C7A0.9159 (7)0.4935 (6)0.20111 (16)0.0436 (17)
C8A0.8688 (7)0.5818 (7)0.15429 (15)0.0434 (17)
C9A0.8038 (7)0.5788 (7)0.12193 (15)0.0400 (16)
C10A0.7228 (7)0.4707 (7)0.11067 (17)0.055 (2)
H10A0.70560.39440.12290.066*
C11A0.6666 (8)0.4796 (8)0.07995 (18)0.063 (2)
H11A0.60700.40970.07150.075*
C12A0.6985 (8)0.5903 (7)0.06229 (17)0.057 (2)
H12A0.66510.59520.04150.068*
C13A0.7807 (7)0.6939 (6)0.07587 (15)0.0479 (18)
H13A0.80220.76960.06380.058*
C14A0.8982 (8)0.3770 (7)0.22306 (15)0.0465 (17)
C18A0.9763 (8)0.2666 (7)0.26806 (15)0.056 (2)
H18A1.03900.26080.28590.067*
C17A0.8739 (8)0.1649 (7)0.26226 (18)0.063 (2)
H17A0.86860.09180.27600.076*
C16A0.7799 (9)0.1708 (8)0.23648 (18)0.072 (2)
H16A0.70820.10330.23250.087*
C15A0.7934 (8)0.2788 (7)0.21640 (18)0.065 (2)
H15A0.73150.28480.19840.079*
C4B1.2751 (8)0.9376 (7)0.06435 (15)0.055 (2)
H4BA1.27280.99210.04660.066*
N4B0.9983 (6)1.0895 (5)0.05096 (12)0.0449 (14)
C15B0.9560 (9)1.2817 (8)0.00313 (17)0.072 (2)
H15B1.05281.25080.00780.087*
N2B0.9165 (6)0.9994 (5)0.09768 (11)0.0378 (13)
N5B0.7597 (6)1.1535 (5)0.06957 (12)0.0432 (14)
N3B0.7323 (5)0.9651 (5)0.14076 (12)0.0471 (15)
C3B1.4011 (8)0.8614 (8)0.07242 (18)0.066 (2)
H3BA1.48450.86460.06040.079*
C2B1.4010 (8)0.7822 (8)0.09815 (18)0.064 (2)
H2BA1.48390.72930.10410.077*
C1B1.2747 (8)0.7813 (6)0.11564 (16)0.0525 (19)
H1BA1.27510.72620.13330.063*
N1B1.1528 (5)0.8557 (5)0.10832 (11)0.0437 (13)
C5B1.1544 (7)0.9332 (6)0.08222 (15)0.0413 (17)
C6B1.0158 (7)1.0117 (6)0.07620 (16)0.0420 (17)
C8B0.7916 (7)1.0709 (6)0.09382 (14)0.0393 (16)
C7B0.8669 (7)1.1567 (6)0.04907 (14)0.0429 (17)
C14B0.8415 (8)1.2448 (6)0.02091 (14)0.0422 (17)
N6B0.7009 (7)1.2851 (6)0.01466 (13)0.0577 (16)
C18B0.6738 (8)1.3661 (8)0.01000 (16)0.070 (2)
H18B0.57621.39550.01440.084*
C17B0.7823 (9)1.4076 (7)0.02889 (17)0.066 (2)
H17B0.75861.46300.04600.080*
C16B0.9243 (9)1.3675 (9)0.02245 (17)0.081 (3)
H16B1.00051.39640.03480.097*
C9B0.6845 (7)1.0566 (6)0.11897 (14)0.0403 (17)
C13B0.6437 (8)0.9466 (8)0.16507 (16)0.061 (2)
H13B0.67220.88340.18040.074*
C12B0.5154 (9)1.0174 (8)0.16765 (17)0.071 (2)
H12B0.45871.00340.18490.085*
C11B0.4675 (8)1.1093 (7)0.14533 (17)0.063 (2)
H11B0.37901.15790.14710.075*
C10B0.5534 (7)1.1273 (6)0.12043 (15)0.0452 (17)
H10B0.52311.18710.10450.054*
O1W0.3238 (12)1.0800 (7)0.01898 (16)0.160 (3)
H1WA0.302 (15)1.006 (4)0.0272 (9)0.192*
O2W0.3992 (8)1.2420 (7)0.02787 (15)0.124 (2)
H2WA0.401 (4)1.167 (3)0.0199 (6)0.148*
H2WB0.363 (9)1.235 (5)0.0448 (11)0.148*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0509 (5)0.0407 (5)0.0444 (5)0.0016 (5)0.0019 (4)0.0102 (4)
S10.0711 (15)0.0473 (13)0.0620 (13)0.0010 (12)0.0107 (12)0.0055 (12)
O10.077 (4)0.122 (5)0.114 (5)0.045 (4)0.014 (4)0.011 (4)
O20.290 (9)0.076 (4)0.077 (4)0.083 (6)0.016 (5)0.013 (4)
O30.089 (4)0.158 (6)0.116 (5)0.059 (4)0.016 (4)0.046 (4)
O40.195 (7)0.085 (5)0.157 (7)0.010 (5)0.043 (6)0.049 (5)
O80.129 (5)0.062 (4)0.094 (4)0.035 (4)0.005 (4)0.029 (3)
S20.118 (2)0.0796 (18)0.0482 (13)0.0318 (16)0.0086 (13)0.0096 (12)
O5A0.111 (5)0.119 (5)0.080 (4)0.037 (4)0.002 (3)0.015 (3)
O6A0.111 (5)0.119 (5)0.080 (4)0.037 (4)0.002 (3)0.015 (3)
O7A0.111 (5)0.119 (5)0.080 (4)0.037 (4)0.002 (3)0.015 (3)
O5B0.111 (5)0.119 (5)0.080 (4)0.037 (4)0.002 (3)0.015 (3)
O6B0.111 (5)0.119 (5)0.080 (4)0.037 (4)0.002 (3)0.015 (3)
O7B0.111 (5)0.119 (5)0.080 (4)0.037 (4)0.002 (3)0.015 (3)
N1A0.045 (3)0.031 (3)0.045 (3)0.001 (3)0.004 (3)0.006 (3)
N2A0.047 (4)0.036 (3)0.041 (4)0.002 (3)0.002 (3)0.000 (3)
N3A0.054 (4)0.045 (4)0.035 (3)0.004 (3)0.003 (3)0.003 (3)
N4A0.059 (4)0.036 (4)0.043 (3)0.004 (3)0.007 (3)0.011 (3)
N5A0.058 (4)0.033 (4)0.044 (4)0.002 (3)0.003 (3)0.008 (3)
N6A0.066 (4)0.051 (4)0.059 (4)0.000 (3)0.003 (3)0.012 (3)
C1A0.059 (5)0.034 (4)0.041 (4)0.007 (4)0.004 (4)0.001 (3)
C2A0.051 (5)0.041 (5)0.068 (5)0.007 (4)0.004 (4)0.004 (4)
C3A0.063 (5)0.048 (5)0.051 (5)0.002 (4)0.009 (4)0.014 (4)
C4A0.067 (5)0.052 (5)0.046 (5)0.003 (4)0.007 (4)0.000 (4)
C5A0.051 (4)0.035 (4)0.035 (4)0.003 (4)0.000 (3)0.000 (3)
C6A0.037 (4)0.038 (4)0.037 (4)0.008 (3)0.002 (3)0.003 (3)
C7A0.043 (4)0.030 (4)0.058 (5)0.007 (3)0.009 (4)0.006 (4)
C8A0.044 (4)0.036 (4)0.050 (5)0.007 (4)0.002 (4)0.001 (4)
C9A0.039 (4)0.034 (4)0.047 (5)0.005 (3)0.000 (3)0.001 (4)
C10A0.059 (5)0.044 (5)0.062 (5)0.000 (4)0.005 (4)0.012 (4)
C11A0.063 (5)0.053 (5)0.071 (6)0.005 (4)0.006 (5)0.007 (5)
C12A0.059 (5)0.056 (5)0.053 (5)0.005 (4)0.010 (4)0.002 (4)
C13A0.065 (5)0.036 (4)0.043 (5)0.006 (4)0.007 (4)0.001 (4)
C14A0.058 (5)0.037 (5)0.045 (4)0.001 (4)0.008 (4)0.009 (4)
C18A0.077 (6)0.049 (5)0.042 (4)0.011 (4)0.009 (4)0.018 (4)
C17A0.073 (5)0.043 (5)0.075 (6)0.008 (4)0.013 (5)0.017 (4)
C16A0.076 (6)0.061 (6)0.080 (6)0.023 (4)0.012 (5)0.022 (5)
C15A0.067 (5)0.051 (5)0.078 (6)0.013 (4)0.003 (5)0.022 (5)
C4B0.064 (5)0.051 (5)0.049 (5)0.006 (4)0.011 (4)0.003 (4)
N4B0.051 (4)0.039 (4)0.046 (4)0.004 (3)0.015 (3)0.009 (3)
C15B0.075 (6)0.075 (6)0.067 (6)0.012 (5)0.007 (5)0.033 (5)
N2B0.032 (3)0.036 (3)0.045 (3)0.005 (3)0.007 (3)0.006 (3)
N5B0.053 (4)0.036 (3)0.040 (3)0.002 (3)0.004 (3)0.010 (3)
N3B0.049 (4)0.050 (4)0.043 (3)0.011 (3)0.004 (3)0.015 (3)
C3B0.046 (5)0.070 (6)0.083 (6)0.017 (5)0.014 (4)0.003 (5)
C2B0.057 (5)0.066 (6)0.071 (6)0.020 (4)0.015 (5)0.011 (5)
C1B0.069 (5)0.034 (4)0.052 (5)0.004 (4)0.012 (4)0.000 (4)
N1B0.044 (3)0.032 (3)0.054 (4)0.006 (3)0.002 (3)0.005 (3)
C5B0.046 (5)0.039 (4)0.039 (4)0.004 (4)0.000 (4)0.005 (3)
C6B0.042 (4)0.030 (4)0.054 (5)0.002 (3)0.004 (4)0.003 (4)
C8B0.046 (5)0.030 (4)0.041 (4)0.001 (3)0.001 (4)0.000 (3)
C7B0.052 (5)0.031 (4)0.046 (4)0.001 (4)0.004 (4)0.003 (4)
C14B0.045 (5)0.043 (4)0.039 (4)0.003 (4)0.001 (4)0.002 (3)
N6B0.065 (4)0.063 (4)0.044 (4)0.005 (3)0.009 (3)0.017 (3)
C18B0.062 (5)0.101 (7)0.046 (5)0.023 (5)0.002 (4)0.014 (5)
C17B0.087 (6)0.065 (6)0.046 (5)0.017 (5)0.003 (5)0.017 (4)
C16B0.082 (6)0.093 (7)0.069 (6)0.013 (6)0.026 (5)0.039 (5)
C9B0.038 (4)0.034 (4)0.049 (4)0.001 (3)0.004 (4)0.001 (3)
C13B0.055 (5)0.072 (6)0.059 (5)0.017 (4)0.015 (4)0.023 (4)
C12B0.077 (6)0.080 (6)0.058 (5)0.012 (5)0.027 (5)0.017 (5)
C11B0.058 (5)0.064 (6)0.068 (5)0.023 (4)0.019 (5)0.012 (4)
C10B0.048 (4)0.034 (4)0.054 (4)0.000 (4)0.002 (4)0.007 (4)
O1W0.241 (9)0.131 (7)0.107 (5)0.061 (7)0.002 (6)0.011 (5)
O2W0.121 (5)0.153 (6)0.099 (5)0.050 (5)0.033 (4)0.027 (5)
Geometric parameters (Å, º) top
Zn1—N2A2.049 (4)C14A—C15A1.363 (8)
Zn1—N2B2.050 (4)C18A—C17A1.367 (8)
Zn1—N1A2.153 (5)C18A—H18A0.9300
Zn1—N1B2.159 (5)C17A—C16A1.359 (8)
Zn1—N3B2.232 (5)C17A—H17A0.9300
Zn1—N3A2.264 (5)C16A—C15A1.374 (9)
S1—O21.387 (4)C16A—H16A0.9300
S1—O31.391 (4)C15A—H15A0.9300
S1—O11.413 (4)C4B—C5B1.358 (7)
S1—O41.592 (5)C4B—C3B1.381 (8)
O4—O5B1.480 (8)C4B—H4BA0.9300
O4—O5A1.558 (8)N4B—C6B1.329 (7)
O8—S21.372 (4)N4B—C7B1.347 (7)
S2—O7A1.344 (6)C15B—C14B1.359 (8)
S2—O6B1.410 (6)C15B—C16B1.402 (9)
S2—O7B1.478 (7)C15B—H15B0.9300
S2—O6A1.573 (6)N2B—C8B1.322 (7)
S2—O5A1.630 (7)N2B—C6B1.320 (7)
S2—O5B1.646 (8)N5B—C7B1.336 (7)
N1A—C1A1.337 (7)N5B—C8B1.339 (7)
N1A—C5A1.369 (7)N3B—C9B1.349 (7)
N2A—C6A1.326 (7)N3B—C13B1.356 (7)
N2A—C8A1.335 (7)C3B—C2B1.351 (8)
N3A—C13A1.335 (7)C3B—H3BA0.9300
N3A—C9A1.342 (7)C2B—C1B1.390 (8)
N4A—C6A1.344 (7)C2B—H2BA0.9300
N4A—C7A1.346 (7)C1B—N1B1.335 (7)
N5A—C8A1.310 (7)C1B—H1BA0.9300
N5A—C7A1.329 (7)N1B—C5B1.356 (7)
N6A—C18A1.350 (7)C5B—C6B1.470 (8)
N6A—C14A1.357 (7)C8B—C9B1.488 (8)
C1A—C2A1.385 (8)C7B—C14B1.494 (8)
C1A—H1AA0.9300C14B—N6B1.333 (7)
C2A—C3A1.369 (8)N6B—C18B1.337 (8)
C2A—H2AA0.9300C18B—C17B1.360 (8)
C3A—C4A1.377 (8)C18B—H18B0.9300
C3A—H3AA0.9300C17B—C16B1.345 (8)
C4A—C5A1.367 (7)C17B—H17B0.9300
C4A—H4AA0.9300C16B—H16B0.9300
C5A—C6A1.473 (7)C9B—C10B1.366 (7)
C7A—C14A1.493 (8)C13B—C12B1.350 (8)
C8A—C9A1.482 (8)C13B—H13B0.9300
C9A—C10A1.357 (8)C12B—C11B1.369 (8)
C10A—C11A1.393 (8)C12B—H12B0.9300
C10A—H10A0.9300C11B—C10B1.362 (8)
C11A—C12A1.362 (8)C11B—H11B0.9300
C11A—H11A0.9300C10B—H10B0.9300
C12A—C13A1.366 (8)O1W—H1WA0.83 (4)
C12A—H12A0.9300O2W—H2WA0.81 (3)
C13A—H13A0.9300O2W—H2WB0.82 (5)
N2A—Zn1—N2B165.3 (2)N3A—C13A—C12A123.3 (6)
N2A—Zn1—N1A75.5 (2)N3A—C13A—H13A118.3
N2B—Zn1—N1A117.8 (2)C12A—C13A—H13A118.3
N2A—Zn1—N1B111.3 (2)N6A—C14A—C15A123.2 (6)
N2B—Zn1—N1B74.9 (2)N6A—C14A—C7A116.9 (6)
N1A—Zn1—N1B96.11 (18)C15A—C14A—C7A119.9 (6)
N2A—Zn1—N3B100.8 (2)N6A—C18A—C17A123.0 (7)
N2B—Zn1—N3B73.5 (2)N6A—C18A—H18A118.5
N1A—Zn1—N3B93.22 (19)C17A—C18A—H18A118.5
N1B—Zn1—N3B147.8 (2)C16A—C17A—C18A120.0 (7)
N2A—Zn1—N3A73.8 (2)C16A—C17A—H17A120.0
N2B—Zn1—N3A92.68 (19)C18A—C17A—H17A120.0
N1A—Zn1—N3A149.25 (19)C17A—C16A—C15A118.4 (7)
N1B—Zn1—N3A95.91 (19)C17A—C16A—H16A120.8
N3B—Zn1—N3A91.49 (19)C15A—C16A—H16A120.8
O2—S1—O3114.3 (4)C14A—C15A—C16A119.4 (7)
O2—S1—O1114.3 (4)C14A—C15A—H15A120.3
O3—S1—O1112.6 (3)C16A—C15A—H15A120.3
O2—S1—O4108.8 (4)C5B—C4B—C3B120.2 (7)
O3—S1—O497.3 (4)C5B—C4B—H4BA119.9
O1—S1—O4107.8 (4)C3B—C4B—H4BA119.9
O5B—O4—O5A50.8 (5)C6B—N4B—C7B113.3 (5)
O5B—O4—S199.0 (5)C14B—C15B—C16B118.3 (7)
O5A—O4—S1108.4 (5)C14B—C15B—H15B120.9
O7A—S2—O8127.3 (5)C16B—C15B—H15B120.9
O8—S2—O6B119.3 (5)C8B—N2B—C6B117.3 (5)
O8—S2—O7B103.1 (4)C8B—N2B—Zn1122.0 (4)
O6B—S2—O7B107.9 (5)C6B—N2B—Zn1120.4 (4)
O7A—S2—O6A104.5 (5)C7B—N5B—C8B113.4 (5)
O8—S2—O6A98.4 (4)C9B—N3B—C13B116.6 (5)
O7A—S2—O5A109.3 (5)C9B—N3B—Zn1116.6 (4)
O8—S2—O5A113.3 (4)C13B—N3B—Zn1126.8 (4)
O6A—S2—O5A98.9 (4)C2B—C3B—C4B118.7 (7)
O8—S2—O5B113.0 (4)C2B—C3B—H3BA120.7
O6B—S2—O5B105.6 (5)C4B—C3B—H3BA120.7
O7B—S2—O5B107.3 (5)C3B—C2B—C1B118.9 (7)
O4—O5A—S2105.2 (5)C3B—C2B—H2BA120.6
O4—O5B—S2108.1 (6)C1B—C2B—H2BA120.6
C1A—N1A—C5A117.0 (5)N1B—C1B—C2B123.1 (6)
C1A—N1A—Zn1127.1 (4)N1B—C1B—H1BA118.5
C5A—N1A—Zn1115.9 (4)C2B—C1B—H1BA118.5
C6A—N2A—C8A117.6 (5)C1B—N1B—C5B117.2 (6)
C6A—N2A—Zn1120.3 (4)C1B—N1B—Zn1126.6 (5)
C8A—N2A—Zn1122.0 (4)C5B—N1B—Zn1116.2 (4)
C13A—N3A—C9A116.7 (5)N1B—C5B—C4B121.9 (6)
C13A—N3A—Zn1128.2 (4)N1B—C5B—C6B113.2 (6)
C9A—N3A—Zn1115.0 (4)C4B—C5B—C6B124.9 (6)
C6A—N4A—C7A113.3 (5)N2B—C6B—N4B124.7 (6)
C8A—N5A—C7A114.0 (6)N2B—C6B—C5B114.9 (6)
C18A—N6A—C14A115.9 (6)N4B—C6B—C5B120.4 (6)
N1A—C1A—C2A122.5 (6)N2B—C8B—N5B124.2 (6)
N1A—C1A—H1AA118.7N2B—C8B—C9B115.5 (6)
C2A—C1A—H1AA118.7N5B—C8B—C9B120.3 (6)
C3A—C2A—C1A119.5 (6)N5B—C7B—N4B127.1 (6)
C3A—C2A—H2AA120.3N5B—C7B—C14B117.7 (6)
C1A—C2A—H2AA120.3N4B—C7B—C14B115.2 (6)
C2A—C3A—C4A119.0 (6)N6B—C14B—C15B122.6 (6)
C2A—C3A—H3AA120.5N6B—C14B—C7B115.9 (6)
C4A—C3A—H3AA120.5C15B—C14B—C7B121.5 (6)
C5A—C4A—C3A119.0 (7)C14B—N6B—C18B117.8 (6)
C5A—C4A—H4AA120.5N6B—C18B—C17B123.1 (7)
C3A—C4A—H4AA120.5N6B—C18B—H18B118.4
C4A—C5A—N1A122.9 (6)C17B—C18B—H18B118.5
C4A—C5A—C6A123.9 (6)C16B—C17B—C18B119.0 (7)
N1A—C5A—C6A113.2 (5)C16B—C17B—H17B120.5
N2A—C6A—N4A123.2 (6)C18B—C17B—H17B120.5
N2A—C6A—C5A115.0 (6)C17B—C16B—C15B119.2 (7)
N4A—C6A—C5A121.7 (6)C17B—C16B—H16B120.4
N5A—C7A—N4A127.5 (6)C15B—C16B—H16B120.4
N5A—C7A—C14A115.8 (6)N3B—C9B—C10B123.1 (6)
N4A—C7A—C14A116.7 (6)N3B—C9B—C8B112.0 (5)
N5A—C8A—N2A124.3 (6)C10B—C9B—C8B124.9 (6)
N5A—C8A—C9A120.3 (6)C12B—C13B—N3B121.9 (7)
N2A—C8A—C9A115.4 (6)C12B—C13B—H13B119.1
N3A—C9A—C10A124.5 (6)N3B—C13B—H13B119.1
N3A—C9A—C8A113.7 (6)C13B—C12B—C11B121.1 (7)
C10A—C9A—C8A121.9 (6)C13B—C12B—H12B119.5
C9A—C10A—C11A116.8 (7)C11B—C12B—H12B119.5
C9A—C10A—H10A121.6C10B—C11B—C12B117.9 (7)
C11A—C10A—H10A121.6C10B—C11B—H11B121.1
C12A—C11A—C10A120.2 (7)C12B—C11B—H11B121.1
C12A—C11A—H11A119.9C11B—C10B—C9B119.5 (6)
C10A—C11A—H11A119.9C11B—C10B—H10B120.3
C11A—C12A—C13A118.4 (7)C9B—C10B—H10B120.3
C11A—C12A—H12A120.8H2WA—O2W—H2WB109 (2)
C13A—C12A—H12A120.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1A—H1AA···O2i0.932.453.354 (8)163
C2A—H2AA···O6Ai0.932.373.101 (10)135
C1B—H1BA···O8ii0.932.403.326 (9)174
O1W—H1WA···N5Biii0.83 (4)2.44 (3)3.217 (9)157 (5)
O2W—H2WA···O1W0.81 (3)1.97 (3)2.625 (9)137 (3)
O2W—H2WB···O10.82 (5)2.05 (7)2.787 (8)151 (5)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z; (iii) x+1, y+2, z.
(III) bis[2,6-bis(2-benzimidazolyl)pyridine-κ2N2,N6]zinc(II) hexaoxo-µ-peroxo-disulfate(VI) N,N-dimethylformamide trisolvate top
Crystal data top
[Zn(C19H13N5)2](S2O8)·3C3H7NOZ = 2
Mr = 1099.45F(000) = 1140
Triclinic, P1Dx = 1.430 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.301 (3) ÅCell parameters from 234 reflections
b = 13.984 (3) Åθ = 2.5–24.0°
c = 16.183 (3) ŵ = 0.64 mm1
α = 102.83 (3)°T = 293 K
β = 105.49 (3)°Prism, colourless
γ = 98.69 (3)°0.50 × 0.25 × 0.15 mm
V = 2549.2 (12) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
8987 independent reflections
Radiation source: fine-focus sealed tube3809 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
[SADABS (Sheldrick, 1996) in SAINT (Bruker, 2000)]
h = 1413
Tmin = 0.83, Tmax = 0.91k = 1616
31134 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
8993 reflections(Δ/σ)max = 0.002
677 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
[Zn(C19H13N5)2](S2O8)·3C3H7NOγ = 98.69 (3)°
Mr = 1099.45V = 2549.2 (12) Å3
Triclinic, P1Z = 2
a = 12.301 (3) ÅMo Kα radiation
b = 13.984 (3) ŵ = 0.64 mm1
c = 16.183 (3) ÅT = 293 K
α = 102.83 (3)°0.50 × 0.25 × 0.15 mm
β = 105.49 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
8987 independent reflections
Absorption correction: multi-scan
[SADABS (Sheldrick, 1996) in SAINT (Bruker, 2000)]
3809 reflections with I > 2σ(I)
Tmin = 0.83, Tmax = 0.91Rint = 0.083
31134 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.198H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.47 e Å3
8993 reflectionsΔρmin = 0.74 e Å3
677 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.03286 (7)0.19911 (5)0.79531 (5)0.0518 (3)
S1C0.73584 (19)0.67031 (14)0.80941 (15)0.0750 (6)
S2C0.9022 (2)0.73556 (18)0.65393 (16)0.0884 (7)
O1C0.8044 (5)0.7676 (3)0.8593 (3)0.0854 (17)
O2C0.6185 (4)0.6696 (5)0.7691 (4)0.110 (2)
O3C0.7560 (4)0.5930 (4)0.8522 (4)0.0929 (18)
O4C0.7883 (5)0.6366 (4)0.7272 (4)0.107 (2)
O5C0.7777 (5)0.7027 (4)0.6725 (4)0.104 (2)
O6C0.9198 (8)0.6454 (5)0.6057 (5)0.173 (4)
O7C0.8710 (5)0.8028 (5)0.6014 (4)0.116 (2)
O8C0.9829 (5)0.7823 (5)0.7395 (4)0.111 (2)
N1A0.1214 (5)0.0814 (3)0.7693 (3)0.0513 (14)
N2A0.0926 (4)0.1088 (3)0.8799 (3)0.0423 (12)
N3A0.2190 (5)0.2700 (4)0.8639 (3)0.0560 (14)
N4A0.1869 (5)0.0623 (3)0.7931 (4)0.0564 (15)
H4NA0.18860.11210.81620.068*
N5A0.3820 (6)0.2568 (5)0.9572 (4)0.0771 (18)
H5NA0.42810.23490.99490.093*
C1A0.2350 (5)0.0488 (5)0.7184 (4)0.0541 (17)
C2A0.3084 (7)0.0891 (6)0.6612 (5)0.078 (2)
H2AA0.28300.15080.65210.094*
C3A0.4178 (7)0.0354 (8)0.6195 (5)0.095 (3)
H3AA0.46890.05990.58020.114*
C4A0.4555 (8)0.0574 (8)0.6347 (7)0.108 (3)
H4AA0.53140.09180.60310.129*
C5A0.3934 (7)0.1004 (7)0.6897 (6)0.091 (3)
H5AA0.42280.16060.69970.109*
C6A0.2779 (6)0.0455 (5)0.7317 (5)0.068 (2)
C7A0.0947 (6)0.0131 (4)0.8108 (5)0.0602 (19)
C8A0.0225 (6)0.0209 (5)0.8733 (4)0.0583 (18)
C9A0.0581 (6)0.0471 (5)0.9200 (4)0.064 (2)
H9AA0.00760.10610.91560.076*
C10A0.1707 (6)0.0230 (6)0.9725 (5)0.075 (2)
H10A0.19830.06681.00440.090*
C11A0.2445 (7)0.0651 (6)0.9792 (4)0.071 (2)
H11A0.32060.08161.01650.085*
C12A0.2035 (6)0.1296 (4)0.9292 (4)0.0471 (16)
C13A0.2676 (6)0.2222 (5)0.9195 (4)0.0566 (18)
C14A0.4102 (7)0.3355 (6)0.9224 (5)0.079 (2)
C15A0.5147 (7)0.4009 (7)0.9312 (7)0.113 (4)
H15A0.58300.40040.97310.136*
C16A0.5158 (11)0.4633 (9)0.8797 (9)0.146 (5)
H16A0.58620.50070.88170.175*
C17A0.4119 (10)0.4739 (7)0.8221 (8)0.127 (4)
H17A0.41380.52100.78970.152*
C18A0.3095 (7)0.4147 (5)0.8144 (5)0.073 (2)
H18A0.24100.42120.77670.088*
C19A0.3071 (6)0.3439 (5)0.8633 (5)0.068 (2)
N1B0.0358 (4)0.3125 (3)0.8678 (3)0.0505 (14)
N2B0.0077 (5)0.2939 (4)0.7100 (3)0.0573 (15)
N3B0.0710 (5)0.1304 (4)0.6732 (3)0.0516 (14)
N4B0.1246 (4)0.4396 (4)0.8670 (4)0.0545 (14)
H4NB0.15240.48680.84880.065*
N5B0.1044 (5)0.1512 (4)0.5472 (4)0.0704 (17)
H5NB0.10750.17820.50480.084*
C1B0.0676 (6)0.3351 (5)0.9440 (4)0.0578 (18)
C2B0.0499 (6)0.2963 (5)1.0179 (4)0.062 (2)
H2BA0.01010.24511.02120.074*
C3B0.0916 (7)0.3343 (6)1.0844 (4)0.082 (3)
H3BA0.08160.30761.13300.098*
C4B0.1492 (6)0.4129 (5)1.0818 (5)0.071 (2)
H4BA0.17600.43681.12930.085*
C5B0.1678 (6)0.4556 (5)1.0139 (4)0.0559 (17)
H5BA0.20500.50881.01360.067*
C6B0.1273 (5)0.4145 (4)0.9434 (4)0.0485 (16)
C7B0.0709 (5)0.3773 (4)0.8251 (4)0.0518 (16)
C8B0.0502 (6)0.3744 (5)0.7381 (4)0.0563 (18)
C9B0.0705 (9)0.4417 (6)0.6870 (5)0.107 (3)
H9BA0.10030.49710.70550.129*
C10B0.0450 (9)0.4231 (7)0.6089 (5)0.109 (3)
H10B0.05980.46630.57320.131*
C11B0.0013 (8)0.3439 (5)0.5805 (5)0.093 (3)
H11B0.02070.33460.52800.112*
C12B0.0185 (6)0.2775 (5)0.6330 (4)0.062 (2)
C13B0.0657 (5)0.1853 (4)0.6163 (5)0.0596 (19)
C14B0.1378 (5)0.0647 (5)0.5589 (4)0.0539 (17)
C15B0.1843 (6)0.0015 (6)0.5078 (5)0.068 (2)
H15B0.20150.00970.45770.082*
C16B0.2023 (6)0.0835 (6)0.5366 (5)0.074 (2)
H16B0.23240.13090.50480.089*
C17B0.1771 (7)0.0992 (6)0.6125 (5)0.077 (2)
H17B0.18880.15780.62820.093*
C18B0.1363 (6)0.0328 (5)0.6644 (5)0.069 (2)
H18B0.12250.04370.71570.083*
C19B0.1160 (5)0.0522 (5)0.6375 (4)0.0550 (18)
N1L0.5050 (9)0.1175 (8)0.8126 (6)0.187 (4)
O1L0.6798 (11)0.1385 (12)0.9214 (8)0.218 (6)0.60
O2L0.5235 (18)0.0064 (17)0.8987 (10)0.191 (7)0.40
C1L0.6169 (10)0.1659 (9)0.8592 (8)0.197 (5)
H1LA0.64860.22210.84460.236*
C2L0.4574 (12)0.0302 (9)0.8367 (8)0.196 (5)
H2LA0.38180.00640.80760.235*
C3L0.4315 (10)0.1445 (10)0.7432 (7)0.184 (5)
H3LA0.35580.13900.75000.276*
H3LB0.42650.10050.68690.276*
H3LC0.46200.21270.74510.276*
N1M0.5239 (11)0.3500 (7)0.5900 (9)0.287 (6)
O1M0.6704 (12)0.2871 (10)0.5481 (10)0.297 (6)
C1M0.5654 (13)0.2997 (9)0.5263 (10)0.300 (6)
H1MA0.51800.27460.46740.360*
C2M0.6051 (14)0.3865 (15)0.6803 (10)0.301 (7)
H2MA0.61550.45810.70110.452*
H2MB0.67820.37030.68020.452*
H2MC0.57500.35500.71910.452*
C3M0.4127 (12)0.3699 (13)0.5777 (12)0.295 (7)
H3MA0.38890.36540.62890.442*
H3MB0.35890.32160.52550.442*
H3MC0.41440.43640.57050.442*
N1P0.3393 (10)0.2542 (8)0.7901 (7)0.254 (5)
O1P0.4567 (9)0.1866 (8)0.9377 (7)0.234 (5)
C1P0.4376 (11)0.2433 (9)0.8591 (9)0.249 (5)
H1PA0.49290.27860.84830.298*
C2P0.2527 (13)0.1995 (13)0.8059 (10)0.262 (7)
H2PA0.17860.24550.78650.393*
H2PB0.24910.14990.77330.393*
H2PC0.27280.16690.86850.393*
C3P0.3131 (14)0.3173 (11)0.7004 (9)0.264 (6)
H3PA0.24000.36380.68410.396*
H3PB0.37260.35390.69750.396*
H3PC0.30920.27610.66000.396*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0724 (6)0.0361 (4)0.0518 (5)0.0087 (4)0.0245 (4)0.0180 (3)
S1C0.0901 (16)0.0531 (12)0.1055 (17)0.0196 (11)0.0516 (14)0.0406 (11)
S2C0.127 (2)0.0790 (15)0.0732 (16)0.0154 (14)0.0464 (15)0.0363 (13)
O1C0.140 (5)0.042 (3)0.091 (4)0.013 (3)0.053 (4)0.034 (3)
O2C0.074 (4)0.140 (6)0.139 (6)0.035 (4)0.039 (4)0.069 (5)
O3C0.098 (4)0.068 (3)0.148 (5)0.035 (3)0.060 (4)0.063 (4)
O4C0.165 (6)0.074 (4)0.110 (5)0.016 (4)0.084 (4)0.040 (3)
O5C0.128 (5)0.092 (4)0.096 (4)0.004 (4)0.039 (4)0.045 (4)
O6C0.297 (11)0.096 (5)0.173 (7)0.059 (6)0.147 (8)0.030 (5)
O7C0.157 (6)0.150 (6)0.087 (4)0.062 (5)0.054 (4)0.086 (4)
O8C0.109 (5)0.131 (5)0.089 (5)0.009 (4)0.024 (4)0.045 (4)
N1A0.081 (4)0.027 (3)0.068 (4)0.019 (3)0.047 (3)0.022 (3)
N2A0.053 (3)0.038 (3)0.033 (3)0.009 (3)0.012 (3)0.006 (2)
N3A0.075 (4)0.043 (3)0.053 (3)0.000 (3)0.029 (3)0.016 (3)
N4A0.072 (4)0.033 (3)0.071 (4)0.002 (3)0.029 (3)0.025 (3)
N5A0.084 (5)0.075 (4)0.062 (4)0.002 (4)0.013 (4)0.023 (3)
C1A0.035 (4)0.065 (5)0.054 (4)0.003 (3)0.008 (3)0.014 (4)
C2A0.104 (7)0.083 (6)0.065 (5)0.044 (5)0.021 (5)0.045 (4)
C3A0.046 (5)0.146 (9)0.055 (5)0.027 (6)0.023 (4)0.002 (5)
C4A0.058 (6)0.101 (8)0.128 (9)0.009 (6)0.002 (6)0.011 (7)
C5A0.048 (5)0.083 (6)0.108 (7)0.001 (5)0.008 (5)0.008 (5)
C6A0.084 (6)0.053 (4)0.069 (5)0.025 (4)0.013 (5)0.025 (4)
C7A0.078 (5)0.031 (3)0.089 (5)0.009 (4)0.052 (5)0.020 (3)
C8A0.052 (4)0.066 (5)0.058 (4)0.013 (4)0.018 (4)0.019 (4)
C9A0.081 (6)0.042 (4)0.054 (4)0.011 (4)0.009 (4)0.026 (3)
C10A0.078 (6)0.072 (5)0.076 (5)0.012 (4)0.008 (5)0.047 (4)
C11A0.079 (5)0.088 (6)0.040 (4)0.024 (5)0.003 (4)0.022 (4)
C12A0.065 (5)0.045 (4)0.033 (3)0.026 (3)0.013 (3)0.009 (3)
C13A0.077 (6)0.052 (4)0.042 (4)0.017 (4)0.019 (4)0.015 (3)
C14A0.062 (6)0.070 (5)0.087 (6)0.005 (4)0.015 (5)0.008 (5)
C15A0.065 (6)0.110 (8)0.121 (8)0.047 (6)0.035 (6)0.014 (6)
C16A0.123 (10)0.121 (10)0.172 (13)0.051 (9)0.056 (10)0.042 (9)
C17A0.152 (11)0.079 (7)0.149 (11)0.031 (8)0.096 (9)0.009 (7)
C18A0.099 (6)0.042 (4)0.072 (5)0.004 (4)0.030 (5)0.012 (4)
C19A0.061 (5)0.033 (4)0.098 (6)0.006 (4)0.032 (5)0.010 (4)
N1B0.069 (4)0.033 (3)0.053 (3)0.007 (3)0.014 (3)0.028 (2)
N2B0.087 (4)0.038 (3)0.044 (3)0.014 (3)0.008 (3)0.020 (3)
N3B0.071 (4)0.036 (3)0.047 (3)0.005 (3)0.022 (3)0.009 (2)
N4B0.060 (4)0.045 (3)0.078 (4)0.027 (3)0.031 (3)0.033 (3)
N5B0.106 (5)0.062 (4)0.056 (4)0.011 (4)0.049 (4)0.016 (3)
C1B0.060 (5)0.045 (4)0.054 (4)0.005 (3)0.009 (4)0.008 (3)
C2B0.068 (5)0.055 (4)0.061 (5)0.015 (4)0.000 (4)0.035 (4)
C3B0.141 (8)0.078 (5)0.031 (4)0.009 (5)0.050 (5)0.008 (4)
C4B0.064 (5)0.062 (5)0.089 (6)0.020 (4)0.031 (4)0.016 (4)
C5B0.064 (5)0.040 (4)0.060 (5)0.014 (3)0.016 (4)0.009 (3)
C6B0.066 (4)0.019 (3)0.056 (4)0.007 (3)0.021 (4)0.001 (3)
C7B0.047 (4)0.034 (3)0.066 (4)0.002 (3)0.019 (4)0.003 (3)
C8B0.073 (5)0.048 (4)0.052 (4)0.011 (4)0.025 (4)0.016 (3)
C9B0.217 (11)0.065 (5)0.058 (5)0.027 (6)0.064 (6)0.031 (4)
C10B0.167 (10)0.107 (7)0.070 (6)0.063 (7)0.023 (6)0.056 (6)
C11B0.193 (10)0.055 (5)0.083 (6)0.060 (6)0.097 (6)0.035 (4)
C12B0.095 (6)0.048 (4)0.041 (4)0.002 (4)0.023 (4)0.016 (3)
C13B0.047 (4)0.032 (4)0.089 (6)0.003 (3)0.013 (4)0.010 (4)
C14B0.046 (4)0.056 (4)0.073 (5)0.017 (3)0.036 (4)0.020 (4)
C15B0.070 (5)0.084 (6)0.066 (5)0.034 (4)0.035 (4)0.023 (4)
C16B0.073 (6)0.061 (5)0.073 (6)0.019 (4)0.013 (4)0.004 (4)
C17B0.090 (6)0.073 (5)0.079 (6)0.039 (5)0.029 (5)0.022 (5)
C18B0.084 (6)0.059 (5)0.070 (5)0.017 (4)0.027 (4)0.025 (4)
C19B0.044 (4)0.074 (5)0.050 (4)0.003 (4)0.026 (3)0.021 (4)
N1L0.186 (9)0.209 (8)0.163 (8)0.059 (7)0.056 (7)0.031 (7)
O1L0.210 (12)0.225 (11)0.192 (12)0.047 (10)0.043 (10)0.027 (10)
O2L0.187 (13)0.209 (13)0.169 (13)0.044 (11)0.050 (11)0.042 (11)
C1L0.198 (11)0.210 (9)0.172 (10)0.059 (9)0.054 (8)0.029 (8)
C2L0.189 (10)0.211 (10)0.177 (10)0.038 (9)0.059 (8)0.034 (9)
C3L0.186 (10)0.216 (10)0.151 (10)0.090 (9)0.051 (8)0.025 (8)
N1M0.298 (15)0.284 (11)0.280 (11)0.066 (12)0.099 (12)0.066 (10)
O1M0.296 (15)0.274 (11)0.320 (11)0.063 (11)0.106 (12)0.069 (10)
C1M0.307 (16)0.285 (11)0.303 (11)0.062 (12)0.101 (12)0.064 (10)
C2M0.305 (17)0.290 (13)0.294 (15)0.053 (13)0.095 (13)0.057 (13)
C3M0.311 (17)0.291 (13)0.271 (13)0.056 (14)0.083 (13)0.070 (12)
N1P0.256 (10)0.264 (11)0.233 (10)0.076 (9)0.038 (10)0.085 (9)
O1P0.215 (9)0.243 (11)0.225 (10)0.043 (8)0.031 (9)0.078 (9)
C1P0.237 (10)0.258 (11)0.235 (12)0.061 (9)0.033 (10)0.079 (10)
C2P0.266 (13)0.273 (14)0.236 (12)0.065 (11)0.042 (12)0.092 (11)
C3P0.269 (12)0.268 (14)0.247 (13)0.085 (11)0.040 (12)0.087 (11)
Geometric parameters (Å, º) top
Zn1—N2A2.127 (5)N5B—C13B1.349 (7)
Zn1—N2B2.134 (5)N5B—C14B1.371 (7)
Zn1—N1B2.170 (5)N5B—H5NB0.8600
Zn1—N1A2.193 (5)C1B—C2B1.399 (7)
Zn1—N3B2.199 (5)C1B—C6B1.421 (8)
Zn1—N3A2.219 (6)C2B—C3B1.352 (8)
S1C—O2C1.414 (5)C2B—H2BA0.9300
S1C—O1C1.420 (5)C3B—C4B1.396 (9)
S1C—O3C1.425 (4)C3B—H3BA0.9300
S1C—O4C1.637 (5)C4B—C5B1.349 (8)
S2C—O6C1.407 (5)C4B—H4BA0.9300
S2C—O8C1.414 (5)C5B—C6B1.406 (8)
S2C—O7C1.430 (5)C5B—H5BA0.9300
S2C—O5C1.656 (5)C7B—C8B1.490 (8)
O4C—O5C1.412 (6)C8B—C9B1.392 (8)
N1A—C7A1.317 (7)C9B—C10B1.362 (9)
N1A—C1A1.366 (7)C9B—H9BA0.9300
N2A—C12A1.333 (7)C10B—C11B1.367 (9)
N2A—C8A1.355 (7)C10B—H10B0.9300
N3A—C13A1.310 (7)C11B—C12B1.393 (8)
N3A—C19A1.384 (7)C11B—H11B0.9300
N4A—C7A1.346 (7)C12B—C13B1.494 (8)
N4A—C6A1.374 (7)C14B—C15B1.393 (8)
N4A—H4NA0.8600C14B—C19B1.409 (7)
N5A—C13A1.339 (7)C15B—C16B1.357 (8)
N5A—C14A1.382 (8)C15B—H15B0.9300
N5A—H5NA0.8600C16B—C17B1.399 (9)
C1A—C2A1.388 (8)C16B—H16B0.9300
C1A—C6A1.429 (8)C17B—C18B1.355 (8)
C2A—C3A1.347 (9)C17B—H17B0.9300
C2A—H2AA0.9300C18B—C19B1.388 (8)
C3A—C4A1.409 (10)C18B—H18B0.9300
C3A—H3AA0.9300N1L—C3L1.404 (18)
C4A—C5A1.322 (10)N1L—C1L1.364 (19)
C4A—H4AA0.9300N1L—C2L1.449 (19)
C5A—C6A1.411 (9)O1L—C1L1.267 (18)
C5A—H5AA0.9300O2L—C2L1.254 (19)
C7A—C8A1.495 (8)C1L—H1LA0.9300
C8A—C9A1.392 (7)C2L—H2LA0.9300
C9A—C10A1.362 (8)C3L—H3LA0.9600
C9A—H9AA0.9300C3L—H3LB0.9600
C10A—C11A1.381 (8)C3L—H3LC0.9600
C10A—H10A0.9300N1M—C3M1.408 (19)
C11A—C12A1.402 (7)N1M—C2M1.460 (18)
C11A—H11A0.9300N1M—C1M1.373 (18)
C12A—C13A1.473 (8)O1M—C1M1.294 (18)
C14A—C15A1.414 (9)C1M—H1MA0.9300
C14A—C19A1.410 (9)C2M—H2MA0.9600
C15A—C16A1.335 (11)C2M—H2MB0.9600
C15A—H15A0.9300C2M—H2MC0.9600
C16A—C17A1.417 (11)C3M—H3MA0.9600
C16A—H16A0.9300C3M—H3MB0.9600
C17A—C18A1.357 (10)C3M—H3MC0.9600
C17A—H17A0.9300N1P—C2P1.446 (19)
C18A—C19A1.399 (8)N1P—C3P1.444 (19)
C18A—H18A0.9300N1P—C1P1.370 (17)
N1B—C7B1.313 (7)O1P—C1P1.280 (18)
N1B—C1B1.378 (7)C1P—H1PA0.9300
N4B—H4NB0.8600C2P—H2PA0.9600
N2B—C12B1.349 (7)C2P—H2PB0.9600
N2B—C8B1.350 (7)C2P—H2PC0.9600
N3B—C13B1.319 (7)C3P—H3PA0.9600
N3B—C19B1.382 (7)C3P—H3PB0.9600
N4B—C7B1.344 (7)C3P—H3PC0.9600
N4B—C6B1.366 (7)
N2A—Zn1—N2B173.6 (2)C14B—N5B—H5NB127.2
N2A—Zn1—N1B108.04 (17)C13B—N3B—C19B103.2 (5)
N2B—Zn1—N1B75.26 (19)C13B—N3B—Zn1114.6 (4)
N2A—Zn1—N1A76.52 (19)C19B—N3B—Zn1141.4 (4)
N2B—Zn1—N1A109.1 (2)N1B—C1B—C2B132.2 (6)
N1B—Zn1—N1A92.18 (18)N1B—C1B—C6B109.9 (5)
N2A—Zn1—N3B102.29 (18)C2B—C1B—C6B117.9 (6)
N2B—Zn1—N3B74.6 (2)C3B—C2B—C1B119.0 (6)
N1B—Zn1—N3B149.67 (18)C3B—C2B—H2BA120.5
N1A—Zn1—N3B94.68 (18)C1B—C2B—H2BA120.5
N2A—Zn1—N3A74.86 (19)C2B—C3B—C4B121.4 (7)
N2B—Zn1—N3A99.4 (2)C2B—C3B—H3BA119.3
N1B—Zn1—N3A97.14 (19)C4B—C3B—H3BA119.3
N1A—Zn1—N3A151.37 (19)C5B—C4B—C3B123.2 (7)
N3B—Zn1—N3A90.81 (19)C5B—C4B—H4BA118.4
O2C—S1C—O1C113.6 (4)C3B—C4B—H4BA118.4
O2C—S1C—O3C115.9 (3)C4B—C5B—C6B115.6 (6)
O1C—S1C—O3C114.6 (3)C4B—C5B—H5BA122.2
O2C—S1C—O4C105.8 (4)C6B—C5B—H5BA122.2
O1C—S1C—O4C104.9 (3)N4B—C6B—C5B132.9 (5)
O3C—S1C—O4C100.0 (3)N4B—C6B—C1B104.1 (5)
O6C—S2C—O8C116.7 (5)C5B—C6B—C1B122.8 (6)
O6C—S2C—O7C113.9 (4)N1B—C7B—N4B113.6 (6)
O8C—S2C—O7C114.7 (4)N1B—C7B—C8B119.0 (6)
O6C—S2C—O5C104.8 (4)N4B—C7B—C8B127.3 (6)
O8C—S2C—O5C104.8 (3)N2B—C8B—C9B120.7 (6)
O7C—S2C—O5C99.1 (3)N2B—C8B—C7B111.5 (5)
O5C—O4C—S1C111.4 (4)C9B—C8B—C7B127.8 (6)
O4C—O5C—S2C109.7 (4)C10B—C9B—C8B117.3 (8)
C7A—N1A—C1A107.5 (5)C10B—C9B—H9BA121.4
C7A—N1A—Zn1110.4 (4)C8B—C9B—H9BA121.4
C1A—N1A—Zn1141.7 (4)C9B—C10B—C11B123.1 (7)
C12A—N2A—C8A119.2 (5)C9B—C10B—H10B118.5
C12A—N2A—Zn1120.4 (4)C11B—C10B—H10B118.5
C8A—N2A—Zn1119.6 (4)C10B—C11B—C12B117.6 (6)
C13A—N3A—C19A106.2 (6)C10B—C11B—H11B121.2
C13A—N3A—Zn1111.9 (4)C12B—C11B—H11B121.2
C19A—N3A—Zn1141.6 (5)N2B—C12B—C11B120.1 (6)
C7A—N4A—C6A107.8 (5)N2B—C12B—C13B111.8 (5)
C7A—N4A—H4NA126.1C11B—C12B—C13B128.1 (6)
C6A—N4A—H4NA126.1N3B—C13B—N5B115.5 (5)
C13A—N5A—C14A105.2 (6)N3B—C13B—C12B118.4 (6)
C13A—N5A—H5NA127.4N5B—C13B—C12B126.1 (6)
C14A—N5A—H5NA127.4N5B—C14B—C15B130.4 (6)
N1A—C1A—C2A132.9 (6)N5B—C14B—C19B105.8 (5)
N1A—C1A—C6A107.6 (5)C15B—C14B—C19B123.8 (6)
C2A—C1A—C6A119.5 (6)C16B—C15B—C14B114.9 (7)
C3A—C2A—C1A117.5 (7)C16B—C15B—H15B122.6
C3A—C2A—H2AA121.2C14B—C15B—H15B122.6
C1A—C2A—H2AA121.2C15B—C16B—C17B122.2 (7)
C2A—C3A—C4A120.6 (8)C15B—C16B—H16B118.9
C2A—C3A—H3AA119.7C17B—C16B—H16B118.9
C4A—C3A—H3AA119.7C18B—C17B—C16B123.0 (7)
C5A—C4A—C3A126.3 (9)C18B—C17B—H17B118.5
C5A—C4A—H4AA116.9C16B—C17B—H17B118.5
C3A—C4A—H4AA116.9C17B—C18B—C19B117.0 (7)
C4A—C5A—C6A113.1 (8)C17B—C18B—H18B121.5
C4A—C5A—H5AA123.5C19B—C18B—H18B121.5
C6A—C5A—H5AA123.5N3B—C19B—C18B130.8 (6)
N4A—C6A—C5A131.8 (7)N3B—C19B—C14B110.1 (6)
N4A—C6A—C1A105.2 (6)C18B—C19B—C14B119.1 (6)
C5A—C6A—C1A122.9 (7)C3L—N1L—C1L125.8 (10)
N1A—C7A—N4A111.7 (6)C3L—N1L—C2L117.0 (9)
N1A—C7A—C8A124.0 (5)C1L—N1L—C2L117.2 (8)
N4A—C7A—C8A124.3 (5)O1L—C1L—N1L123.5 (11)
N2A—C8A—C9A123.4 (6)O1L—C1L—H1LA118.3
N2A—C8A—C7A108.8 (5)N1L—C1L—H1LA118.3
C9A—C8A—C7A127.8 (6)O2L—C2L—N1L116.7 (18)
C10A—C9A—C8A116.6 (6)O2L—C2L—H2LA121.7
C10A—C9A—H9AA121.7N1L—C2L—H2LA121.7
C8A—C9A—H9AA121.7N1L—C3L—H3LA109.5
C9A—C10A—C11A121.2 (6)N1L—C3L—H3LB109.5
C9A—C10A—H10A119.4H3LA—C3L—H3LB109.5
C11A—C10A—H10A119.4N1L—C3L—H3LC109.5
C10A—C11A—C12A119.3 (6)H3LA—C3L—H3LC109.5
C10A—C11A—H11A120.4H3LB—C3L—H3LC109.5
C12A—C11A—H11A120.4C3M—N1M—C2M116.9 (10)
N2A—C12A—C11A120.2 (6)C3M—N1M—C1M127.4 (11)
N2A—C12A—C13A110.7 (5)C2M—N1M—C1M115.7 (9)
C11A—C12A—C13A129.0 (6)O1M—C1M—N1M120.2 (11)
N3A—C13A—N5A114.3 (6)O1M—C1M—H1MA119.9
N3A—C13A—C12A121.9 (6)N1M—C1M—H1MA119.9
N5A—C13A—C12A123.2 (6)N1M—C2M—H2MA109.5
N5A—C14A—C15A134.5 (9)N1M—C2M—H2MB109.5
N5A—C14A—C19A107.3 (6)H2MA—C2M—H2MB109.5
C15A—C14A—C19A118.1 (8)N1M—C2M—H2MC109.5
C16A—C15A—C14A120.3 (10)H2MA—C2M—H2MC109.5
C16A—C15A—H15A119.8H2MB—C2M—H2MC109.5
C14A—C15A—H15A119.8N1M—C3M—H3MA109.5
C15A—C16A—C17A121.4 (11)N1M—C3M—H3MB109.5
C15A—C16A—H16A119.3H3MA—C3M—H3MB109.5
C17A—C16A—H16A119.3N1M—C3M—H3MC109.5
C18A—C17A—C16A119.5 (10)H3MA—C3M—H3MC109.5
C18A—C17A—H17A120.2H3MB—C3M—H3MC109.5
C16A—C17A—H17A120.2C2P—N1P—C3P115.6 (9)
C17A—C18A—C19A120.0 (9)C2P—N1P—C1P119.1 (9)
C17A—C18A—H18A120.0C3P—N1P—C1P125.3 (10)
C19A—C18A—H18A120.0O1P—C1P—N1P123.0 (11)
N3A—C19A—C18A132.6 (7)O1P—C1P—H1PA118.5
N3A—C19A—C14A107.0 (6)N1P—C1P—H1PA118.5
C18A—C19A—C14A120.3 (7)N1P—C2P—H2PA109.5
C7B—N1B—C1B104.5 (5)N1P—C2P—H2PB109.5
C7B—N1B—Zn1114.9 (4)H2PA—C2P—H2PB109.5
C1B—N1B—Zn1140.2 (4)N1P—C2P—H2PC109.5
C7B—N4B—C6B107.9 (5)H2PA—C2P—H2PC109.5
C7B—N4B—H4NB126.1H2PB—C2P—H2PC109.5
C6B—N4B—H4NB126.1N1P—C3P—H3PA109.5
C12B—N2B—C8B121.2 (5)N1P—C3P—H3PB109.5
C12B—N2B—Zn1119.6 (4)H3PA—C3P—H3PB109.5
C8B—N2B—Zn1119.0 (4)N1P—C3P—H3PC109.5
C13B—N5B—C14B105.5 (5)H3PA—C3P—H3PC109.5
C13B—N5B—H5NB127.2H3PB—C3P—H3PC109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4A—H4NA···O1Ci0.861.962.817 (6)176
N5A—H5NA···O1Pii0.861.862.706 (12)170
N4B—H4NB···O3Ciii0.861.992.794 (7)154
N5B—H5NB···O7Civ0.861.882.703 (7)161
C10A—H10A···O1Lii0.932.173.063 (15)160
C16A—H16A···O3C0.932.503.414 (12)168
C10B—H10B···O6Ciii0.932.513.213 (10)133
C11B—H11B···O6Civ0.932.523.430 (10)166
C1P—H1PA···O2Cv0.932.353.213 (15)154
Symmetry codes: (i) x1, y1, z; (ii) x+1, y, z+2; (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x, y1, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[Zn(C15H11N3)2](S2O8)·2H2O·C3H7NO[Zn(C18H12N6)2](S2O8)·2H2O[Zn(C19H13N5)2](S2O8)·3C3H7NO
Mr833.15918.191099.45
Crystal system, space groupTriclinic, P1Monoclinic, P21/nTriclinic, P1
Temperature (K)293293293
a, b, c (Å)8.7932 (18), 9.4508 (19), 22.629 (5)8.9490 (18), 9.782 (2), 43.031 (9)12.301 (3), 13.984 (3), 16.183 (3)
α, β, γ (°)89.95 (3), 82.97 (3), 82.84 (3)90, 92.95 (3), 90102.83 (3), 105.49 (3), 98.69 (3)
V3)1851.7 (7)3761.9 (13)2549.2 (12)
Z242
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.850.840.64
Crystal size (mm)0.20 × 0.10 × 0.050.40 × 0.05 × 0.020.50 × 0.25 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
[SADABS (Sheldrick, 1996) in SAINT (Bruker, 2000)]
Multi-scan
[SADABS (Sheldrick, 1996) in SAINT (Bruker, 2000)]
Multi-scan
[SADABS (Sheldrick, 1996) in SAINT (Bruker, 2000)]
Tmin, Tmax0.90, 0.960.95, 0.980.83, 0.91
No. of measured, independent and
observed [I > 2σ(I)] reflections
18342, 6389, 2422 21243, 6601, 2740 31134, 8987, 3809
Rint0.0720.0720.083
(sin θ/λ)max1)0.5950.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.155, 0.81 0.051, 0.120, 0.83 0.058, 0.198, 0.98
No. of reflections639165978993
No. of parameters493553677
No. of restraints6280
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.400.86, 0.530.47, 0.74

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP in SHELXTL/PC (Sheldrick, 1994), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
Zn1—N2A2.066 (5)Zn1—N3B2.183 (5)
Zn1—N2B2.068 (5)Zn1—N1B2.186 (5)
Zn1—N1A2.178 (5)Zn1—N3A2.191 (5)
N2A—Zn1—N2B173.7 (2)N1A—Zn1—N1B94.0 (2)
N2A—Zn1—N1A76.1 (2)N3B—Zn1—N1B150.3 (2)
N2B—Zn1—N1A109.9 (2)N2A—Zn1—N3A74.4 (2)
N2A—Zn1—N3B106.9 (2)N2B—Zn1—N3A99.7 (2)
N2B—Zn1—N3B75.3 (3)N1A—Zn1—N3A150.4 (2)
N1A—Zn1—N3B92.3 (2)N3B—Zn1—N3A95.22 (19)
N2A—Zn1—N1B102.8 (2)N1B—Zn1—N3A93.45 (19)
N2B—Zn1—N1B75.3 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C1A—H1AA···O2W0.932.483.326 (11)152
C1B—H1BA···O2Ai0.932.413.182 (9)140
C3B—H3BA···O1Ci0.932.403.272 (10)157
C9B—H9BA···O2Bii0.932.293.144 (10)153
O1W—H1WA···O1A0.82 (7)2.01 (7)2.720 (10)145 (10)
O1W—H1WB···O2Aiii0.82 (3)2.25 (6)2.986 (10)149 (11)
O2W—H2WA···O1Biv0.82 (2)2.44 (10)2.816 (11)109 (9)
O2W—H2WB···O3Bv0.82 (5)2.27 (7)2.866 (10)130 (8)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z; (iv) x, y+1, z+1; (v) x, y+1, z.
Selected geometric parameters (Å, º) for (II) top
Zn1—N2A2.049 (4)Zn1—N1B2.159 (5)
Zn1—N2B2.050 (4)Zn1—N3B2.232 (5)
Zn1—N1A2.153 (5)Zn1—N3A2.264 (5)
N2A—Zn1—N2B165.3 (2)N1A—Zn1—N3B93.22 (19)
N2A—Zn1—N1A75.5 (2)N1B—Zn1—N3B147.8 (2)
N2B—Zn1—N1A117.8 (2)N2A—Zn1—N3A73.8 (2)
N2A—Zn1—N1B111.3 (2)N2B—Zn1—N3A92.68 (19)
N2B—Zn1—N1B74.9 (2)N1A—Zn1—N3A149.25 (19)
N1A—Zn1—N1B96.11 (18)N1B—Zn1—N3A95.91 (19)
N2A—Zn1—N3B100.8 (2)N3B—Zn1—N3A91.49 (19)
N2B—Zn1—N3B73.5 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C1A—H1AA···O2i0.932.453.354 (8)163
C2A—H2AA···O6Ai0.932.373.101 (10)135
C1B—H1BA···O8ii0.932.403.326 (9)174
O1W—H1WA···N5Biii0.83 (4)2.44 (3)3.217 (9)157 (5)
O2W—H2WA···O1W0.81 (3)1.97 (3)2.625 (9)137 (3)
O2W—H2WB···O10.82 (5)2.05 (7)2.787 (8)151 (5)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z; (iii) x+1, y+2, z.
Selected geometric parameters (Å, º) for (III) top
Zn1—N2A2.127 (5)Zn1—N1A2.193 (5)
Zn1—N2B2.134 (5)Zn1—N3B2.199 (5)
Zn1—N1B2.170 (5)Zn1—N3A2.219 (6)
N2A—Zn1—N2B173.6 (2)N1B—Zn1—N3B149.67 (18)
N2A—Zn1—N1B108.04 (17)N1A—Zn1—N3B94.68 (18)
N2B—Zn1—N1B75.26 (19)N2A—Zn1—N3A74.86 (19)
N2A—Zn1—N1A76.52 (19)N2B—Zn1—N3A99.4 (2)
N2B—Zn1—N1A109.1 (2)N1B—Zn1—N3A97.14 (19)
N1B—Zn1—N1A92.18 (18)N1A—Zn1—N3A151.37 (19)
N2A—Zn1—N3B102.29 (18)N3B—Zn1—N3A90.81 (19)
N2B—Zn1—N3B74.6 (2)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N4A—H4NA···O1Ci0.861.962.817 (6)176
N5A—H5NA···O1Pii0.861.862.706 (12)170
N4B—H4NB···O3Ciii0.861.992.794 (7)154
N5B—H5NB···O7Civ0.861.882.703 (7)161
C10A—H10A···O1Lii0.932.173.063 (15)160
C16A—H16A···O3C0.932.503.414 (12)168
C10B—H10B···O6Ciii0.932.513.213 (10)133
C11B—H11B···O6Civ0.932.523.430 (10)166
C1P—H1PA···O2Cv0.932.353.213 (15)154
Symmetry codes: (i) x1, y1, z; (ii) x+1, y, z+2; (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x, y1, z.
Selected angles and torsion angles (°) for the pds2− anion in structures (I) and (III) top
Angle-torsion angle pair(I), x = A(I), x = B(III), x = CHarvey Baggio Garland Burton & Baggio (2001)
O1x-S1x-O4x101.8 (5)104.7 (5)
O1x-S1x-O4x-O4xi68.5 (8)101.9 (10)
O2x-S1x-O4x102.2 (4) a110.6 (4)
O2x-S1x-O4x-O4xi-172.3 (8) a-24.0 (11)
O3x-S1x-O4x108.1 (4)94.3 (4) a
O3x-S1x-O4x-O4xi-47.2 (8)139.6 (10) a
O1x-S1x-O4x104.9 (3)98.3 (3) a
O1x-S1x-O4x-O5x-61.6 (6)172.9 (4) a
O2x-S1x-O4x105.8 (4)106.8 (3)
O2x-S1x-O4x-O5x58.8 (7)53.2 (5)
O3x-S1x-O4x100.0 (3) a105.7 (2)
O3x-S1x-O4x-O5x179.5 (5) a-68.3 (4)
O6x-S2x-O5x104.8 (4)97.2 (3) a
O6x-S2x-O5x-O4x64.0 (7)176.2 (4) a
O7x-S2x-O5x99.1 (3) a103.9 (3)
O7x-S2x-O5x-O4x-178.2 (6) a56.0 (5)
O8x-S2x-O5x104.8 (3)106.3 (3)
O8x-S2x-O5x-O4x-59.5 (6)-64.4 (5)
Symmetry code: (i) 2 − x, 2 − y, −z. The symbol a denotes the angle-torsion angle pairs most nearly fulfilling the correlating conditions (see text).
Intercationic contacts (Å, °) for (I), (II) and (III). top
CompoundGroup 1/Group 2Contact typeipd (Å)ccd (Å)sa (°)ecd (Å)ipa (°)
(I)N3B,C11B-C15B/N1B',C1B'-C5Bππ3.48 (1)3.67 (1)22.1 (1)
(I)C13B-C14B/N1A',C1A'-C5A'CC···π4.00 (1)97.0 (1)
(II)N1B,C1B-C5B/N3B',C9B'-C13B'ππ3.53 (1)3.99 (1)22.6 (1)
(II)C2B-C3B/N3A',C9A'-C15A'CC···π3.90 (1)100.9 (1)
(III)N3B,N5B,C13B-C19B/N3B',N5B',C13B'-C19B'ππ3.37 (1)3.65 (1)22.6 (1)
(III)C15B-C16B/C1A'-C6A'CC···π4.25 (1)94.6 (1)
See Figs. 1–3 and Fig. 7 for details of the atom labelling. ipd is the interplanar distance, ccd the centre-to-centre distance, sa the slippage angle, ecd the edge-to-centre distance and ipa the interplanar angle.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds