Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, 1,2-(SCH3)2-1,2-closo-C2B10H10 or C4H16B10S2, the methylsulfanyl groups are bonded to the C atoms of the 1,2-dicarba-closo-dodecaborane cage. The Ccage-Ccage distance is 1.8033 (18) Å and the S-Ccage-Ccage-S torsion angle is 1.07 (13)°. The Ccage-Ccage distance is compared with those in other 1,2-dicarba-closo-dodecaborane derivatives.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104013423/ga1059sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104013423/ga1059Isup2.hkl
Contains datablock I

CCDC reference: 245927

Comment top

The contribution of substituents at the cluster C atoms on the lengthening of the Ccage—Ccage or C1—C2 bond in 1,2-closo-C2B10H12 or o-carborane derivatives is well known (Kivekäs, Sillanpää et al., 1995 Original citation ambiguous - please check; Sillanpää et al., 1996). Different C1—C2 distances in icosahedral o-carborane derivatives can be achieved by modifying the substituents at the C atoms of the cluster compound. This is important from the theoretical point of view, and in order to understand the isomerization process that takes place from ortho-, meta- and para-carborane isomers.

The C1—C2 distance is strongly dependent on the number of substituents and the atomic species of the substituents connected to the cluster C atoms. Accordingly, shortest distances of 1.629 (6) and 1.630 (6) Å have been reported for two crystallographically independent molecules of the unsubstituted parent compound 1,2-closo-C2B10H12, carrying H atoms at both cluster C atoms (Davidson et al., 1996). Dealing with one atomic species, it is observed that a substituent at only one of the cluster C atoms does not increase the distance significantly, or affects the distance only slightly, but increased lengthening is observed if both cluster C atoms are substituted. Table 2 lists the C1—C2 bond lengths for a wide range of comparable compounds and the following observations have been noted. Firstly, the lengthening caused by aliphatic C substituents at both cluster C atoms is smaller than that of aromatic C. Secondly, in Si-substituted compounds, the C1—C2 distance is approximately comparable with that in the compound bearing two aliphatic C atoms at the cluster C atoms. Thirdly, the contribution of two P-substituents is comparable with that of two aryl groups. Finally, the longest C1—C2 distances (ca 1.80–1.86 Å) have been reported for 1,2-S2-disubstituted o-carborane derivatives (Llop et al., 2002; Teixidor, Viñas et al., 1990; Teixidor, Romerosa et al., 1990). As far as we know, no crystallographic data are available for 1,2-N2– and 1,2-O2-disubstituted o-carborane compounds. However, a C1—C2 distance as long as 2.001 (3) Å has been reported for the [1-O-2-C6H5-1,2-closo-C2B10H10] anion, containing a CO bond (Brown et al., 1987).

We have suggested an empirically derived equation (Kivekäs, Sillanpää et al., 1994 Original citation ambiguous - please check; Kivekäs, Teixidor et al., 1995 Original citation ambiguous - please check) to calculate the C1—C2 distance, as well as carried out computational analyses to understand the nature of the bond (Llop et al., 2002; Paavola, 2002). As this kind of lengthening is exceptional and unique Or rare? in chemistry, we have continued our research on this topic and now report the crystal structure of the title compound, (I), the preparation of which has been previously reported by Llop et al. (2001). Please check added text. \sch

In compound (I), the SCH3 groups are oriented in approximately the same direction from the cluster (Fig. 1). This is also indicated by the torsion angles of 101.13 (11) and −92.41 (11)° for C1—C2—S2—C14 and C2—C1—S1—C13, respectively. The molecule has approximately Cs symmetry, with the pseudo mirror plane passing through the midpoint of the C1—C2 bond and through atoms B3, B6, B8 and B10. The intramolecular S1···S2 distance of 3.4359 (6) Å is only 0.16 Å shorter than the sum of the corresponding van der Waals radii (Bondi, 1964), thus indicating only minor interaction between the atoms. The free electron pairs of the S atoms are oriented away from each other to avoid steric repulsion. The S1—C1—B6 and S2—C2—B6 angles of 112.05 (9) and 112.45 (9)°, respectively, are narrower than the mean S—CcageX (X is Ccage or B) angles of ca 119.5°, thus indicating that the S atoms are moved slightly from their ideal radial orientation towards atom B6.

The main interest of (I) is in its C1—C2 bond. The bond length of 1.8033 (18) Å is in line with the earlier observed distances in 1,2-disubstituted o-carborane derivatives. The bond is clearly longer than the relevant bond in the C–, Si- and P-1,2-disubstituted compounds and is comparable with the distances in the 1,2-S2-disubstituted compounds. Thus, the C1—C2 distance in (I) is equal to the distance of 1.799 (3) Å in 1,2-(SC6H5)2-1,2-closo-C2B10H10 (Llop et al., 2002), and is equal to or slightly shorter than the distances of 1.816 (6), 1.826 (5) and 1.858 (5) Å in 1,2-µ-SCH2CH2OCH2CH2S-1,2-closo-C2B10H10 (Teixidor, Romerosa et al., 1990) and 1,2-µ-SCH2(CH2OCH2)2CH2S-1,2-closo-C2B10H10 (Teixidor, Viñas et al., 1990). The C1—C2 distance in (I) also equals the distance of 1.792 (5) Å observed in the [2-CH3-1-S-1,2-closo-C2B10H10] anion (Kivekäs et al., 1999), thus indicating that the contribution of methyl and sulfide groups is comparable with that of two SCH3 groups. The C1—C2 distance found in (I) is a further confirmation that the S atoms in 1,2-disubstituted o-carborane derivatives lengthen the C1—C2 distance considerably.

In the [2-CH3-1-S-closo-C2B10H10] anion there is a short intramolecular distance of 2.68 Å between a methyl H atom and the sulfide group, indicating a hydrogen bond between the atoms (Kivekäs et al., 1999). In (I), containing neutral SCH3 substituents at the cluster C atoms, the shortest S···H(CH3) distance between different SCH3 substituents is intermolecular and as long as 3.24 Å, ca 0.2 Å longer than the sum of the corresponding van der Waals radii (Bondi, 1964). The shortest intermolecular (S2···H12) contact is 2.95 Å. These distances indicate that there are only weak van der Waals packing forces between the molecules.

Please check that all references have been correctly cited. There are, for instance, 4 separate Kivekäs et al. (1994) references but only two apparent citations (and only two of these have the correct page ranges in the list below). Each reference must be uniquely cited.

Experimental top

Please provide brief details of the source of the compound and the crystallization process.

Refinement top

Methyl groups were refined as rotating groups, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C). The other H atoms were refined using a riding model, with B—H = 1.12 Å and Uiso(H) = 1.2Ueq(B), starting from idealized positions.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990b); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii.
1,2-Bis(thiomethyl)-1,2-dicarba-closo-dodecaborane(12) top
Crystal data top
C4H16B10S2F(000) = 488
Mr = 236.39Dx = 1.216 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2472 reflections
a = 7.1667 (1) Åθ = 2.9–25.7°
b = 15.1733 (2) ŵ = 0.37 mm1
c = 11.8894 (2) ÅT = 173 K
β = 92.976 (1)°Prism, colourless
V = 1291.14 (3) Å30.22 × 0.20 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
2208 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590Rint = 0.013
Horizonally mounted graphite crystal monochromatorθmax = 25.7°, θmin = 3.2°
Detector resolution: 9 pixels mm-1h = 88
ϕ scans, and ω scans with κ offsetsk = 1816
4565 measured reflectionsl = 1414
2397 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.5289P]
where P = (Fo2 + 2Fc2)/3
2397 reflections(Δ/σ)max = 0.001
147 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C4H16B10S2V = 1291.14 (3) Å3
Mr = 236.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1667 (1) ŵ = 0.37 mm1
b = 15.1733 (2) ÅT = 173 K
c = 11.8894 (2) Å0.22 × 0.20 × 0.10 mm
β = 92.976 (1)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2208 reflections with I > 2σ(I)
4565 measured reflectionsRint = 0.013
2397 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.07Δρmax = 0.20 e Å3
2397 reflectionsΔρmin = 0.24 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.09815 (5)0.10846 (3)0.48976 (3)0.03685 (14)
S20.81334 (6)0.09893 (3)0.71317 (3)0.04101 (15)
C11.06957 (18)0.20545 (9)0.56839 (11)0.0238 (3)
C20.91855 (18)0.20105 (9)0.68494 (11)0.0247 (3)
B31.1564 (2)0.21644 (10)0.70533 (12)0.0251 (3)
H31.25000.16570.74710.030*
B41.2316 (2)0.28472 (11)0.59328 (13)0.0298 (3)
H41.37690.28160.56310.036*
B51.0332 (2)0.30198 (11)0.49946 (13)0.0314 (4)
H51.04570.31040.40660.038*
B60.8429 (2)0.24366 (11)0.55724 (12)0.0263 (3)
H60.73240.21030.50250.032*
B70.9887 (2)0.27737 (11)0.78095 (13)0.0283 (3)
H70.97520.26930.87380.034*
B81.1838 (2)0.33137 (11)0.72558 (13)0.0294 (3)
H81.29890.35880.78250.035*
B91.1045 (3)0.38500 (11)0.59791 (15)0.0370 (4)
H91.16550.44900.57050.044*
B100.8619 (3)0.35929 (12)0.57317 (14)0.0355 (4)
H100.76160.40540.52790.043*
B110.7912 (2)0.29513 (11)0.68763 (14)0.0316 (4)
H110.64600.29920.71770.038*
B120.9568 (3)0.38048 (11)0.71272 (15)0.0354 (4)
H120.92190.44150.76020.043*
C131.2998 (3)0.05695 (13)0.55561 (19)0.0581 (6)
H13A1.40300.09940.56130.087*
H13B1.33590.00630.51040.087*
H13C1.27110.03700.63120.087*
C140.9520 (3)0.05539 (14)0.83013 (17)0.0604 (6)
H14A1.07520.03840.80510.091*
H14B0.88980.00360.86010.091*
H14C0.96690.10040.88910.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0346 (2)0.0362 (2)0.0391 (2)0.00712 (15)0.00376 (16)0.01648 (15)
S20.0414 (2)0.0428 (3)0.0380 (2)0.01989 (17)0.00580 (17)0.00984 (16)
C10.0224 (6)0.0265 (7)0.0225 (6)0.0008 (5)0.0017 (5)0.0021 (5)
C20.0217 (6)0.0307 (7)0.0215 (6)0.0020 (5)0.0004 (5)0.0009 (5)
B30.0220 (7)0.0287 (8)0.0242 (7)0.0015 (6)0.0022 (6)0.0008 (6)
B40.0281 (8)0.0348 (8)0.0267 (8)0.0072 (7)0.0034 (6)0.0016 (6)
B50.0375 (9)0.0324 (9)0.0241 (7)0.0021 (7)0.0001 (6)0.0047 (6)
B60.0238 (7)0.0325 (8)0.0222 (7)0.0041 (6)0.0031 (6)0.0009 (6)
B70.0259 (7)0.0372 (9)0.0215 (7)0.0008 (6)0.0001 (6)0.0044 (6)
B80.0306 (8)0.0296 (8)0.0278 (8)0.0052 (6)0.0010 (6)0.0048 (6)
B90.0487 (11)0.0266 (8)0.0353 (9)0.0060 (7)0.0017 (8)0.0027 (7)
B100.0431 (9)0.0304 (9)0.0322 (8)0.0097 (7)0.0073 (7)0.0002 (7)
B110.0257 (7)0.0411 (9)0.0278 (8)0.0080 (7)0.0008 (6)0.0080 (7)
B120.0413 (9)0.0296 (8)0.0348 (9)0.0068 (7)0.0037 (7)0.0089 (7)
C130.0395 (9)0.0535 (11)0.0799 (14)0.0236 (8)0.0123 (9)0.0305 (10)
C140.0630 (12)0.0551 (12)0.0614 (12)0.0202 (10)0.0132 (10)0.0331 (10)
Geometric parameters (Å, º) top
S1—C11.7610 (13)B6—B101.769 (2)
S1—C131.7876 (18)B6—B111.792 (2)
S2—C21.7630 (14)B6—H61.1200
S2—C141.7929 (18)B7—B121.772 (2)
C1—B41.687 (2)B7—B111.773 (2)
C1—B51.692 (2)B7—B81.776 (2)
C1—B31.7208 (19)B7—H71.1200
C1—B61.7233 (19)B8—B121.789 (2)
C1—C21.8033 (18)B8—B91.789 (2)
C2—B71.684 (2)B8—H81.1200
C2—B111.695 (2)B9—B121.772 (3)
C2—B61.7121 (19)B9—B101.792 (3)
C2—B31.7255 (19)B9—H91.1200
B3—B81.770 (2)B10—B111.769 (3)
B3—B41.792 (2)B10—B121.789 (2)
B3—B71.795 (2)B10—H101.1200
B3—H31.1200B11—B121.771 (2)
B4—B81.774 (2)B11—H111.1200
B4—B91.775 (2)B12—H121.1200
B4—B51.780 (2)C13—H13A0.9800
B4—H41.1200C13—H13B0.9800
B5—B101.773 (2)C13—H13C0.9800
B5—B91.776 (2)C14—H14A0.9800
B5—B61.792 (2)C14—H14B0.9800
B5—H51.1200C14—H14C0.9800
C1—S1—C13104.27 (7)B11—B7—B8108.43 (11)
C2—S2—C14104.25 (8)C2—B7—B359.37 (8)
B4—C1—B563.57 (9)B12—B7—B3107.42 (11)
B4—C1—B363.45 (9)B11—B7—B3107.37 (10)
B5—C1—B3114.42 (11)B8—B7—B359.42 (9)
B4—C1—B6114.26 (11)C2—B7—H7123.7
B5—C1—B663.31 (9)B12—B7—H7122.2
B3—C1—B6109.48 (10)B11—B7—H7121.8
B4—C1—S1126.22 (9)B8—B7—H7121.7
B5—C1—S1119.05 (9)B3—B7—H7122.1
B3—C1—S1122.47 (9)B3—B8—B460.76 (9)
B6—C1—S1112.05 (9)B3—B8—B760.80 (9)
B4—C1—C2109.06 (10)B4—B8—B7109.65 (11)
B5—C1—C2108.71 (10)B3—B8—B12107.75 (11)
B3—C1—C258.57 (7)B4—B8—B12107.87 (11)
B6—C1—C258.04 (7)B7—B8—B1259.59 (9)
S1—C1—C2117.90 (8)B3—B8—B9107.74 (11)
B7—C2—B1163.28 (9)B4—B8—B959.77 (9)
B7—C2—B6114.26 (11)B7—B8—B9107.63 (12)
B11—C2—B663.44 (9)B12—B8—B959.37 (10)
B7—C2—B363.50 (9)B3—B8—H8121.4
B11—C2—B3114.35 (11)B4—B8—H8120.9
B6—C2—B3109.78 (10)B7—B8—H8121.1
B7—C2—S2126.21 (9)B12—B8—H8122.4
B11—C2—S2120.03 (10)B9—B8—H8122.4
B6—C2—S2112.45 (9)B12—B9—B4108.58 (12)
B3—C2—S2121.43 (9)B12—B9—B5108.50 (12)
B7—C2—C1108.99 (10)B4—B9—B560.16 (9)
B11—C2—C1109.17 (10)B12—B9—B860.31 (10)
B6—C2—C158.64 (7)B4—B9—B859.71 (9)
B3—C2—C158.32 (7)B5—B9—B8107.72 (11)
S2—C2—C1117.29 (9)B12—B9—B1060.28 (10)
C1—B3—C263.11 (8)B4—B9—B10107.66 (12)
C1—B3—B8104.85 (10)B5—B9—B1059.60 (10)
C2—B3—B8104.72 (11)B8—B9—B10107.65 (12)
C1—B3—B457.36 (8)B12—B9—H9121.0
C2—B3—B4107.85 (10)B4—B9—H9121.7
B8—B3—B459.74 (9)B5—B9—H9121.7
C1—B3—B7107.76 (10)B8—B9—H9122.0
C2—B3—B757.13 (8)B10—B9—H9122.1
B8—B3—B759.78 (9)B11—B10—B660.85 (9)
B4—B3—B7108.03 (11)B11—B10—B5110.10 (12)
C1—B3—H3122.2B6—B10—B560.79 (9)
C2—B3—H3122.3B11—B10—B1259.71 (10)
B8—B3—H3123.9B6—B10—B12107.50 (11)
B4—B3—H3122.1B5—B10—B12107.86 (12)
B7—B3—H3122.2B11—B10—B9107.93 (12)
C1—B4—B8106.09 (11)B6—B10—B9107.57 (11)
C1—B4—B9105.49 (11)B5—B10—B959.77 (10)
B8—B4—B960.52 (9)B12—B10—B959.31 (10)
C1—B4—B558.34 (8)B11—B10—H10120.8
B8—B4—B5108.20 (12)B6—B10—H10121.6
B9—B4—B559.95 (10)B5—B10—H10120.8
C1—B4—B359.18 (8)B12—B10—H10122.5
B8—B4—B359.50 (9)B9—B10—H10122.4
B9—B4—B3107.34 (11)C2—B11—B10105.85 (11)
B5—B4—B3106.85 (11)C2—B11—B12105.20 (11)
C1—B4—H4123.8B10—B11—B1260.73 (10)
B8—B4—H4121.7C2—B11—B758.05 (8)
B9—B4—H4122.2B10—B11—B7108.30 (12)
B5—B4—H4122.1B12—B11—B759.98 (9)
B3—B4—H4122.3C2—B11—B658.73 (8)
C1—B5—B10106.16 (11)B10—B11—B659.59 (9)
C1—B5—B9105.24 (11)B12—B11—B6107.31 (12)
B10—B5—B960.63 (10)B7—B11—B6106.32 (11)
C1—B5—B458.08 (8)C2—B11—H11124.2
B10—B5—B4108.27 (11)B10—B11—H11121.6
B9—B5—B459.90 (10)B12—B11—H11122.1
C1—B5—B659.20 (8)B7—B11—H11122.2
B10—B5—B659.49 (10)B6—B11—H11122.5
B9—B5—B6107.22 (12)B9—B12—B11108.69 (12)
B4—B5—B6106.61 (11)B9—B12—B7108.60 (12)
C1—B5—H5124.0B11—B12—B760.06 (9)
B10—B5—H5121.6B9—B12—B860.32 (10)
B9—B5—H5122.3B11—B12—B8107.95 (11)
B4—B5—H5122.2B7—B12—B859.85 (9)
B6—B5—H5122.4B9—B12—B1060.41 (10)
C2—B6—C163.33 (8)B11—B12—B1059.56 (10)
C2—B6—B10105.10 (11)B7—B12—B10107.44 (11)
C1—B6—B10104.99 (11)B8—B12—B10107.75 (12)
C2—B6—B1157.82 (8)B9—B12—H12120.9
C1—B6—B11108.46 (10)B11—B12—H12121.6
B10—B6—B1159.56 (9)B7—B12—H12121.8
C2—B6—B5108.31 (10)B8—B12—H12121.8
C1—B6—B557.50 (8)B10—B12—H12122.1
B10—B6—B559.71 (10)S1—C13—H13A109.5
B11—B6—B5108.19 (11)S1—C13—H13B109.5
C2—B6—H6121.8H13A—C13—H13B109.5
C1—B6—H6121.9S1—C13—H13C109.5
B10—B6—H6124.0H13A—C13—H13C109.5
B11—B6—H6121.9H13B—C13—H13C109.5
B5—B6—H6122.0S2—C14—H14A109.5
C2—B7—B12105.66 (11)S2—C14—H14B109.5
C2—B7—B1158.66 (8)H14A—C14—H14B109.5
B12—B7—B1159.96 (10)S2—C14—H14C109.5
C2—B7—B8106.20 (10)H14A—C14—H14C109.5
B12—B7—B860.55 (10)H14B—C14—H14C109.5
S1—C1—C2—S21.07 (13)C2—C1—S1—C1392.40 (12)
C1—C2—S2—C14101.12 (11)

Experimental details

Crystal data
Chemical formulaC4H16B10S2
Mr236.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)7.1667 (1), 15.1733 (2), 11.8894 (2)
β (°) 92.976 (1)
V3)1291.14 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.22 × 0.20 × 0.10
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4565, 2397, 2208
Rint0.013
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.07
No. of reflections2397
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.24

Computer programs: COLLECT (Nonius, 1998), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK, SHELXS97 (Sheldrick, 1990a), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1990b), SHELXL97.

Selected geometric parameters (Å, º) top
S1—C11.7610 (13)C1—B61.7233 (19)
S1—C131.7876 (18)C1—C21.8033 (18)
S2—C21.7630 (14)C2—B61.7121 (19)
S2—C141.7929 (18)C2—B31.7255 (19)
C1—B31.7208 (19)
C1—S1—C13104.27 (7)S1—C1—C2117.90 (8)
C2—S2—C14104.25 (8)B7—C2—S2126.21 (9)
B4—C1—S1126.22 (9)B11—C2—S2120.03 (10)
B5—C1—S1119.05 (9)B6—C2—S2112.45 (9)
B3—C1—S1122.47 (9)B3—C2—S2121.43 (9)
B6—C1—S1112.05 (9)S2—C2—C1117.29 (9)
S1—C1—C2—S21.07 (13)C2—C1—S1—C1392.40 (12)
C1—C2—S2—C14101.12 (11)
C1-C2 distances (Å) for selected Ccage-substituted 1,2-dicarba-closo-dodecaborane(12) derivatives. (Compounds containing metal ions or strained rings are not included) top
CompoundC1—C2
{1,2-closo-C2B10H12.hmpa}21.629 (6), 1.630 (6)a
1-COOH-closo-C2B10H111.631 (2)b
1,2-(COOH)2-closo-C2B10H10·0.5C2H6O1.651 (2)–1.660 (2)c
1-P(C6H5)2-1,2-closo-C2B10H111.666 (9)d
1-COOH-2-CH3-closo-C2B10H101.6694 (17)e
1-CH2CH2SH-2-CH3-1,2-closo-C2B10H101.670 (3)f
1-COOH-2-C6H5-closo-C2B10H101.678 (3), 1.691 (3)e
1,1'-Si(CH3)2-2,2'-Si(CH3)2-(1,2-closo-C2B10H10)21.688 (5)g
1-C6H5-2-CO(C6H5)-closo-C2B10H101.695 (3)e
1-P(C6H5)2-2-CH3-1,2-closo-C2B10H101.702 (6)h
1-COOH-2-C6H5-closo-C2B10H10·2H2O1.705 (2)e
1,2-{P(2-C3H7)2}2-1,2-closo-C2B10H101.719 (3)i
1,2-{P(C6H5)2}2-1,2-closo-C2B10H101.722 (4)j
1,2-(C6H5)2-1,2-closo-C2B10H101.720 (4), 1.733 (4)k
1-P(2-C3H7)2-2-CH3-1,2-closo-C2B10H101.731 (9)j
1-P(C6H5)2-2-S(2-C3H7)-1,2-closo-C2B10H101.747 (5)l
1-P(C6H5)2-2-C6H5-1,2-closo-C2B10H101.755 (6)m
1-P(2-C3H7)2-2-C6H5-1,2-closo-C2B10H101.769 (4)n
[PCH3(C6H5)3][1-CH3-2-S-1,2-closo-C2B10H10]1.792 (5)o
1,2-(SC6H5)2-1,2-closo-C2B10H101.799 (3)p
1,2-(SCH3)2-closo-1,2-C2B10H101.8033 (18)q
1,2-µ-SCH2CH2OCH2CH2S-1,2-closo-C2B10H101.816 (6)r
1,2-µ-SCH2(CH2OCH2)2CH2S-1,2-closo-C2B10H101.826 (5), 1.858 (5)s
Notes: (a) Davidson et al. (1996) (hmpa is hexamethylphosphoramide); (b) Welch et al. (2001); (c) Venkatasubramanian et al. (2003); (d) Kivekäs, Teixidor et al. (1995); (e) Venkatasubramanian et al. (2004); (f) Kivekäs et al. (1998); (g) Kivekäs Romerosa & Viñas (1994); (h) Kivekäs, Sillanpää et al. (1994); (i) Kivekäs, Sillanpää et al. (1995); (j) Paavola (2002); (k) Lewis & Welch (1993); (l) Teixidor et al. (1997); (m) McWhannell et al. (1996); (n) Sillanpää et al. (1996); (o) Kivekäs et al. (1999); (p) Llop et al. (2002); (q) this work; (r) Teixidor, Romerosa et al. (1990); (s) Teixidor, Viñas et al. (1990);
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds